

Advancing the Art of Technology Cost Estimatinga Collaboration between NASA and Boeing

ISPA / SCEA International Conference San Diego, California June 2010

Authors:

Mark.S.Schankman@Boeing.com

John W. Reynolds@NASA.gov

Boeing and NASA Have Successfully Applied P-BEAT

Application Category	P-BEAT Past Applications	P-BEAT Applications In Work
Technology Development Cost Estimating	 Boeing Air Traffic Management NASA "N+3"Supersonic Aircraft Technology Study NASA Advanced engine studies 	 Boeing technology planning NASA technology cost studies
Design Trade Studies	 Boeing Unmanned Aircraft design Boeing Directed Energy weapons NASA Crew Exploratory Vehicle Advanced Engine Cost- Performance Studies 	Conceptual Aircraft Design Trade Studies (Perform rapid cost estimates from computer aided design models)
Manufacturing Cost Reduction	 Boeing V-22 cost reduction Commercial aircraft derivatives F/A-18/ F-15, C-17 cost reduction 	 Cost reduction of production parts Quicker cost estimates for engineers Tool to control cost of production (Manufacturing Make-buy decisions)

NASA & Boeing have Demonstrated P-BEAT Cost Estimating Capabilities Needed For All Life Cycle Phases

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com P-BEAT Cost Analysis has been successfully used on Boeing and NASA programs

- Supports Conceptual Design Trade Studies
- Estimates cost to Develop Technologies
- Used by NASA Centers (Glenn, Marshal, Johnson) NASA Crew Exploratory Vehicle Design NASA Aries Design
- Boeing Applications:

Customer contracts (CRAD):

- N+3 Supersonic aircraft design (NASA-Langley)
- VAATE Affordable engine design trade study
- UAV sub-system technology study (NASIC)

Boeing programs:

- Supplier part "should cost" (F/A-18, F-15, C-17)
- Air Traffic Management technology study

Cost Estimating Approaches vs. Program Phases

P-BEAT Provides Analogy Cost Estimating Approach Needed During Early Life Cycle Phases

P-BEAT is Built on a Set of Tools & Databases

P-BEAT relies on a Benchmark database of known design characteristics and costs. Database is built with each cost estimate.

Copyright © 2010 Boeing. All Rights Reserved.

Chart 5

P-BEAT Screen Layout is Designed for Usability

- Help screens readily available
- Data stored in MS Access files

Tool

Features

- Use only inputs at indenture level required
- Extensive Benchmark Database
- Simulation Tool for cost-risk
- Sensitivity analysis module

Comparison of Process-based vs. Mass-based Cost Data Regression

- Mass-based CERs cannot account for full spread of cost data
- CERs with process-based parameters yield regression fits that use ALL the data
- Process-based CERS provide greater insight as to why the cost data varies

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Engineering Attribute Inputs Define P-BEAT Complexities that Determine Costs Relative to Baseline

Example P-BEAT Chart/Table Outputs

Cost Distribution by Phase

Needs Analysis									
Define Mission		\$0							
Define		\$0							
		\$280,644							
Perform Preliminary Design									
		Perform Detailed Design						\$289,763	
		Build 1st Unit						\$330,689	
					Production			\$135,280	
						Suppor	t	\$0	
							Deactiva	ition	
0.0% 0.0% 0.0%	20.3%	25.2%	20.9%	23.9%	9.8%	0.0%	0.0%		
Development Total \$1,385,262									

Cost Uncertainty

Cost Sensitivities

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com **Technology Readiness Level and Design Maturity Drive Technology Development Cost in P-BEAT**

Technology Maturity and Readiness Levels are Cost Driver Inputs in P-BEAT Cost Methodology

Example P-BEAT Input Categories

- 1. Engineering and Development Labor Rates Direct rate and wrap rate
- 2. Production Life Cycle Phases

Define Requirements Conceptual Design Preliminary Design Build 1st Unit

- 3. Mass Properties: Weight (lbs) Materials (choose from database of 14,000 materials)
- 4. Design Team Capability (Low, Normal, High)
- 5. Technical Readiness Level (Start and End)
- 6. Software Characteristics Language (choose from database of 100 languages) Source Lines of Code % Reuse Maturity (choose from list) Team Capability (choose from list)
- 7. Manufacturing Process Description (choose from list of 800 processes)

Copyright © 2010 Boeing. All Rights Reserved.

Chart 11

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Cost Impact of Technology Maturity Is Modeled with P-BEAT Methodology

Technology Development Cost

Copyright © 2010 Boeing. All Rights Reserved.

P-BEAT Can be Connected to CADD model data

CATIA model

Cost driver data: mass, no. parts, feature count, size, materials, tolerances, manufacturing process

Summary and Conclusions

R&D investment decisions require a cost tool to estimate relative technology development costs of candidate projects.

P-BEAT is designed to be sensitive to technology and design cost drivers.

Mass-based only cost estimating relationships do not account for full spread of cost data. Complexity cost drivers must be included.

P-BEAT combines Analogy with Parametric cost estimating methods to obtain greater accuracy and cost estimate confidence. These methods are well suited to estimate relative technology project costs.

> P-BEAT can be integrated to geometry based design tools for rapid cost estimates needed in design trade studies.

Boeing and NASA-Glenn are Applying Technology Cost Analysis Techniques and Tools to Improve Technology Investment Decisions