

Boeing Defense, Space & Security Phantom Works

Strategic Development and Experimentation

Simulation-based Experimentation: How to Scope and Estimate Development Projects

Karen Mourikas SD&E - Experimentation Denise Nelson BR&T – Affordability

> ISPA/SCEA Workshop June 2010

How to Estimate Costs of Simulation-based Experimentation

Boeing Defense, Space & Security | Phantom Works

Overall Problem Statement

- Need to estimate the cost of simulation-based experimentation
 - Accurately
 - Consistent approach
 - Easy to use
 - Defendable estimates
 - Value-added
- Solution
 - Develop a standard process and toolkit to estimate the cost and schedule of simulation-based experimentation
 - Using standard cost estimating tools
 - Incorporating standard processes
 - Based on historical data

Objective of Presentation

Boeing Defense, Space & Security | Phantom Works

- To provide overview of Simulation-based Experimentation
- To introduce "CostX for Experimentation" Process
- To review Statistical Analysis options used to address the problem

Outline

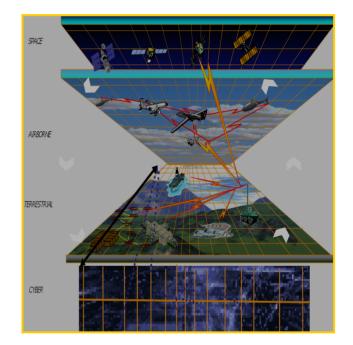
- Problem to be addressed
- Simulation-based Experimentation
 - In a Nutshell
- Experimentation Cost Estimating
 - Process and Data
- Statistical Analysis
 - Options

Experimentation

Boeing Defense, Space & Security | Phantom Works

- Definition of Experimentation *
 - The process of conducting a test under controlled conditions to
 - examine the validity of a hypothesis, or
 - determine the efficacy of something previously untried.
- Experimentation in general
 - Consists of gathering and examining data
 - Explores and Answers Questions with Analyses and Observations
 - Provide Insights to Questions

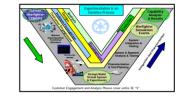
SCIENCE FAIR



* www.thefreedictionary.com

Simulation-based Experimentation

- Simulation-based Experimentation
 - Conducting experiments with the use of virtual and constructive
 - Models
 - Simulations
 - Visualizations
 - Live-Virtual-Constructive (LVC) Components
 - · Live : Real people operating real systems
 - · Virtual : Real people operating simulated systems
 - Constructive : Automated systems simulating the actions of people and systems

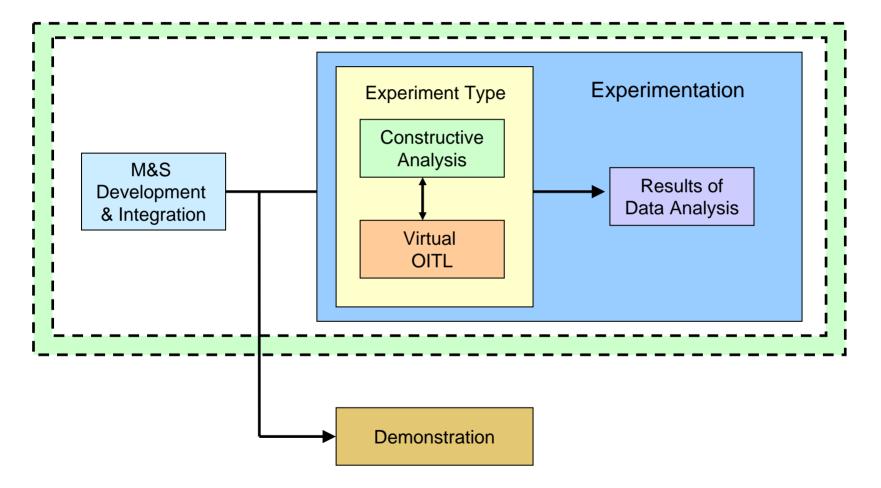


Proposed Solution

Boeing Defense, Space & Security | Phantom Works

Develop a cost estimating toolkit that is

- Easy to use
 - Excel-like interface / Web-based GUI (future development)
 - Limited inputs required
 - Quick estimates and standard reports produced
- Incorporates Standard Processes and Terminology
 - Boeing and Industry
 - Experimentation and Cost Estimating
- Based on comprehensive, historical Boeing data
 - 70 completed experimentation projects: cost and scope data
 - Multiple sites, organizations, project type and scope
- Value-added to the users
 - Not just another task to do


Affordability

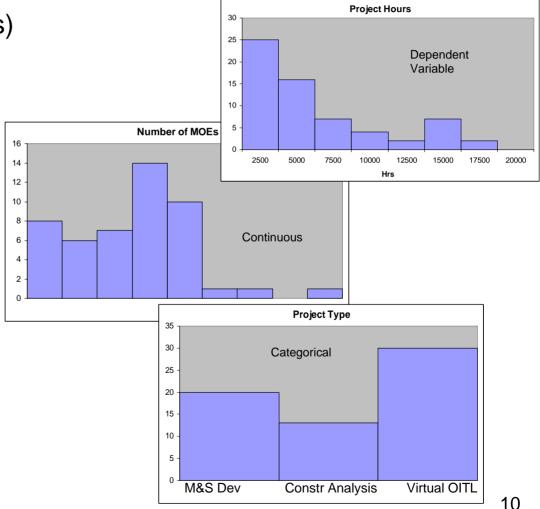
6

Focus of Experimentation Data Collection

Project Data

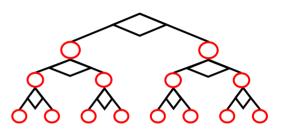
- 70 Completed Projects
 - Recent data (2006-2009)
 - -31 in work to be collected
- Various project types
 - M&S development & integration
 - Constructive Analysis
 - Virtual OITL simulations
- Leverage reuse
 - Simulations
 - Environment
 - Team Management
 - Data / Analysis
- Scope & Complexity
 - Short to long range duration
 - Simple to Complex simulations and integration

	Proj Info	Complexity			Execution		Cost/Sched			
Project ID	POC	Туре	Num Sys	VCL	Num MOEs	Num Sites	Mths	Cos	t (\$K)	POP
a1	John Smith	Modeling	5	С	0	1	4	\$	90	4Q 2008
a2	Pocahontas	Analysis	12	С	4	2	10	\$	450	mar 07- dec 07

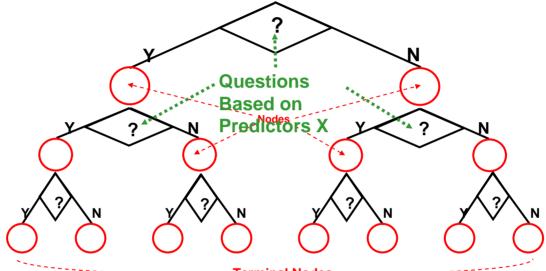

a3		Reusability							Team	
a4	Project ID	Modeling	Tool Developmt	Tool Integration	Environment	Programatic	Data Collection	Analysis Results	Individual Experience	Team Dynamics
a5	a1	В	В	E+	А	A	В	A	E	E
a6	a2	С	А	B-	В	В	С	B-	B+	В
	a3	Е	В	А	А	Е	Е	С	С	D
	a4	С	С	А	Е	D	А	В	D	Е
	a5	В	В	А	В	А	В	А	А	В
	a6	Е	В	Е	В	D	Е	D	В	В

Statistical Analysis Options

- Database constantly changing
 - Baselined database (configuration control)
 - To be updated 2 times per year
 - Approximately 30 new data points expected per year
- Statistical Analysis
 - Issue with data
 - · Lots of qualitative (categorical) data
 - · Relatively small dataset
 - Options
 - Random Forests
 - Linear / Multivariate Regression
 - Adjustments to data
 - Goal
 - · Determine which variables are most important
 - Develop model with good prediction capability


Statistical Analysis: Descriptive Statistics

- 70 data points (observations)
 - 2 Responses
 - Hours (Cost)
 - Duration (Schedule)*
 - 18 Potential Predictors
 - 4 Continuous
 - 4 Categorical Not-ordered
 - 1 with 2 levels (y/n)
 - 2 with 3 levels
 - 1 with 4 levels
 - 10 Ordinal
 - With 5 levels

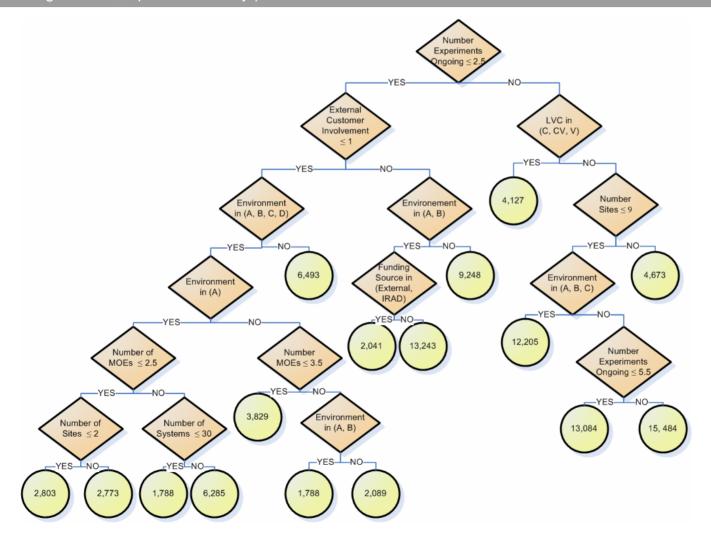

Statistical Analysis: Random Forests

- Random Forests generate multiple decision trees randomly constructed
- A Single Decision Tree is interpretable
 - But not a great predictor
- Rather than pick one "Best" model (tree)
 - Fit collection of decision tree models (forest)
 - Leads to greater accuracy but more difficult to interpret
 - Can handle "wide" problems: small n, large p
- "Black Box" Process
 - Not easily interpretable
 - Predicts a cost number
 - Not a parametric equation

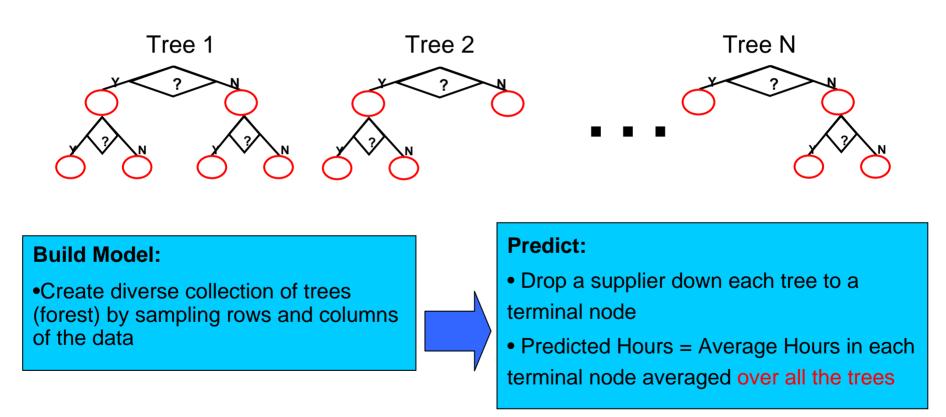
Picture of Single Tree

Boeing Defense, Space & Security | Phantom Works

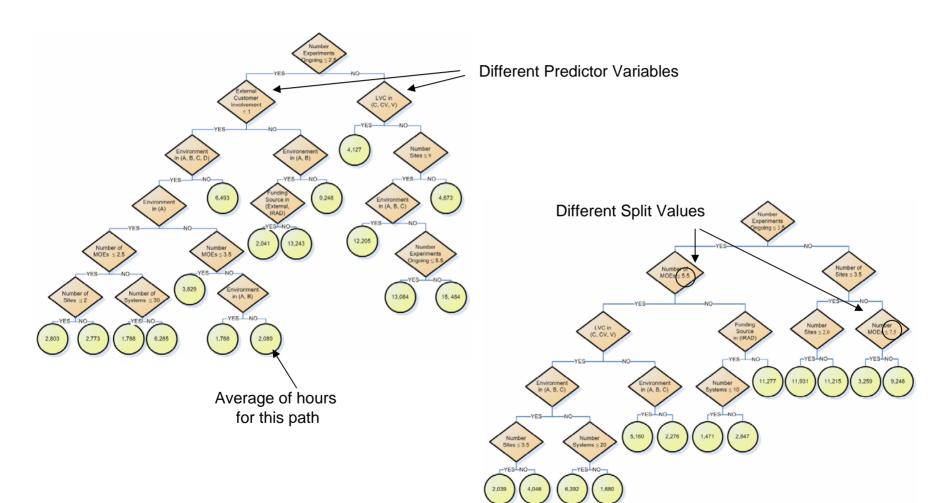
---- Terminal Nodes----


Build Model:

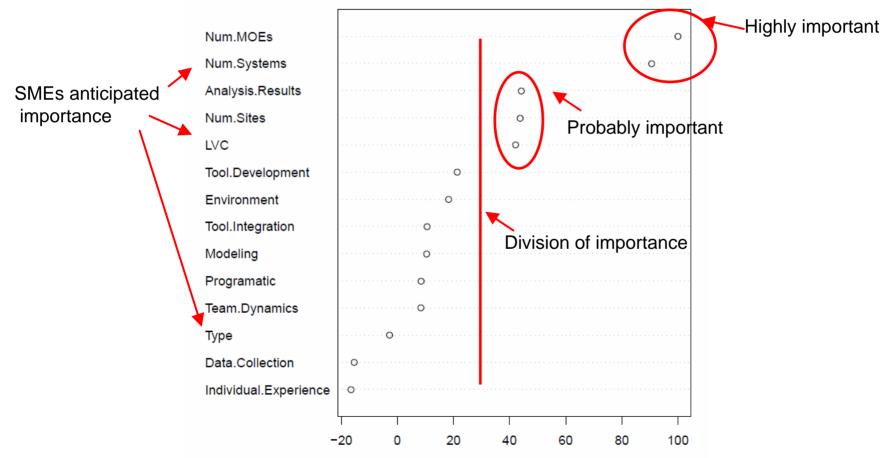
- At each node, split on a predictor variable that divides the data into two parts that most reduce prediction error.
- Each node is predicted by the average Hours.


Predict:

- Drop a supplier down the tree to a terminal node
- Predicted Hours = average Hours at each terminal node


Example of Random Forest Generated Tree

Random Forest



Examples of Trees

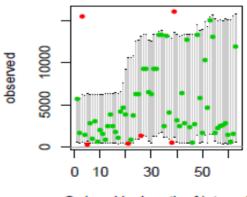
Variable Importance from Random Forest

Boeing Defense, Space & Security | Phantom Works

Hrs.vs.Predictors.-ProjectIDPoints.Feb15

Adjusted Split Importance

Results of Random Forest Analysis


Boeing Defense, Space & Security | Phantom Works

Most Important Predictors

- Accuracy / Goodness of Fit
 - Removed some variables based on Variable Importance
 - Improved R²
 - R² ~ 92%
 - Wide Prediction Intervals
 - Need more data to develop smaller prediction intervals

$\begin{array}{c} 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 15000 \\ 000 \\ 15000 \\ 000 \\ 15000 \\ 000 \\ 000 \\ 15000 \\ 000$

90 % prediction intervals on OOB

Ordered by length of interval

Copyright © 2009 Boeing. All rights reserved.

Statistical Analysis: Regression

- Assumption: model is NOT linear
 - Expect interaction and/or quadratic terms
- Easily understandable relationship between input variables & responses
- Lots of categorical data
 - Numerical data easier to analyze
 - Converted Categorical data
 - Based on engineering judgement
 - Is this statistically valid?
 - Goal: Develop model with good prediction capability
 - Hence reasonable approach to take
- Accuracy / Goodness of Fit
 - R² (Variability explained by model) ~70%

Analysis Options Evaluation

Boeing Defense, Space & Security | Phantom Works

Random Forests

- Pros

- Can be used with categorical data
- Can be used with small data sets
- Statistical Results R2 ~ .92
- Prediction accuracy: very good
- Data Mining community big supporter

- Cons
 - Black Box
 - Results in a number, not a CER
 - Prediction Intervals need lots of data (more than we have)

Regression

- Pros

- Familiar Process
- Results in a CER
- Statistical Results : R2 ~ .70
- Prediction Accuracy: good

- Cons

- Small dataset => limited DOF
- Categorical to numeric data conversion
- Prediction intervals easier to obtain (with assumptions)
- Validity of approach

Next Steps for 2010

Boeing Defense, Space & Security | Phantom Works

Data Collection/Analysis

- Collect new data
 - Update database
- Analyze additional data
 - Update cost estimating relationships
- Analyze pre and post project scope
 - Adjust estimate based on leads' knowledge

Contributor Information:

Karen Mourikas: Phantom Works/SD&E	714-580-9609	karen.mourikas@boeing.com
Denise Nelson: BR&T/Affordability	714-389-8501	denise.j.nelson@boeing.com
Nancy Gove: BR&T/Cyber Analytics	425-373-2698	nancy.gove@boeing.com
Jim Schimert : BR&T/Cyber Analytics	425-373-2728	james.schimert@boeing.com
Julio Peixoto:EOT/Applied Statistics	425-373-2720	julio.l.peixoto@boeing.com