Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Using Bottoms-Up Cost Estimating Relationships in a Parametric Cost Estimation System

Dale T. Masel Robert P. Judd Dept. of Industrial & Systems Engineering Ohio University

Presentation Overview

- Cost Estimation Background
- Project Objectives
- Phases of Project
 - > Bottoms-up Cost Estimation
 - Feature Attributes
 - Part Geometry
- Results

Application of Cost Estimation

- Use Cost Estimating Relationships (CERs) to predict the cost of producing a part
- Done during preliminary design phase
 - Many design decisions to be made
 - Multiple options for achieving desired functionality
 - > One of primary decision criteria is often cost
 - Need tools to evaluate cost of design decisions

Approaches to Cost Estimation

- Bottoms-up
 - For accuracy
- Parametric
 - For simplicity
- Other methods (Duverlie & Castelain, 1999)
 - > Analogic
 - Intuitive

Bottoms-up Cost Estimation

- Procedure
 - > CERs are determined for each feature
 - Feature costs for a part are summed to get total cost
- Advantages
 - Accurate
 - Transparent
 - CERs are reusable for new part types
 - New processes and new materials can be easily integrated

Parametric Cost Estimation

- Procedure
 - Relationships are identified between total cost and significant part parameters
- Advantages
 - Less information required from users
 - CERs for entire part can be quickly developed

Project Objective: Original

- Objective: Develop methodology to improve accuracy of cost estimates for jet engine components
- Bottoms-up approach was used, to achieve accuracy
 - Detailed CERs were developed to estimate the cost to produce each of the features and found on a part
 - Detailed geometric model to estimate material cost
 - Prototype developed for limited number of part families
- Full implementation of this approach was declined by project sponsor
 - > Too time-consuming for users to generate a cost estimate

Project Objective: Revised

- Objective #1a: Develop methodology to improve accuracy of cost estimates for jet engine components
- Objective #1b: Minimize number of attributes required to produce a cost estimate
 - Needed to maintain accuracy of bottoms-up approach, while producing a system that appeared more parametric to the user

Modified Project Approach

- Retain bottoms-up CERs for calculating cost of part features
- Develop Attribute Estimating Relationships (AERs)
 - Estimate values for some attributes needed as inputs for the CERs
 - Estimate values for geometric attributes related to overall part shape

Project Phases

• Development of Bottoms-up CERs

> By feature

• Development of Attribute Estimating Relationships (AERs) for features

> AER outputs were inputs to Bottoms-up CERs

• Development of AERs for part geometry

Development of Bottoms-up CERs

- 1. Identify the significant features on a part
- 2. Identify the process(es) used to create each feature
- 3. Develop feature CERs from standard machining formulas

Example:

$$time_{thread} = k \bullet dia \bullet length \bullet pitch$$

k is a constant that combines the process parameters (speed, feed, etc.)

Using Bottoms-up CERs

- Total Cost =
 - Material Cost + (Labor Hours Labor Rate)
 - Material Cost is determined using geometric attributes to determine the part volume
 - Material Cost = Initial Volume Density \$/pound
 - Labor hours include
 - Time to produce the features
 - Time for all-over processes (e.g., inspection, cleaning)

Attribute Estimating Relationships

- Purpose:
 - Reduce the number of attributes that are needed as inputs to the CERs
- Process:
 - Identify relationships between high-level attributes and attributes needed for CERs
- Examples of AER format:
 - Thread length = 0.053 Part Length
 - > Flange OD = Flange ID + 2.42

Calculation of AERs

- General Form
 - $\succ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$
 - y = attribute being estimated
 - x_i = value for given attribute
 - β_i = scaling coefficient
- Coefficients can be determined to minimize
 - Sum of Squared Error
 - Standard Deviation of Error

Attributes Used in AERs

- Dimensions
 - > Relationships between sizes
- Boolean attributes (Yes/No)
 - Existence of a feature on a part
- List attributes
 - > Type(s) of features on a part
- Quantity attributes
 - Number of features on a part

Feature AERS

- Features were primary focus of study
 - > Needed to reduce number of values from user
 - > AERs determine quantity and dimensions of most features
 - > User only needs to define which features a part has
- AER-calculated values are used to calculate most inputs to bottoms-up CERs
- Different AERs can be used for different part types

Geometric AERs

- Most parts studied are axisymmetric
 - > Determine cross-sectional shape of part
 - > Revolve 360° around centerline to calculate volume
- Need to estimate amount of material required to create original part
- Some dimensions scale together

> e.g., as Flange ID increases, so does Flange OD

Testing AER Methodology

- Feature and Geometric AERs generated for jet engine disks
- Figure shows crosssection of a generic disk
 - 8 primary dimensions to describe shape
 - May also have appendages extending from both sides

Results with Feature AERs

- AERs developed for 16 features
 - > All features do not appear on all disks
 - > 56 AERs developed for feature input attributes
- Accuracy compared against actual cost for estimates with and without AERs
 - > Average percent error was unchanged from detailed estimates
 - Standard deviation of error increased by 3%

Results with Geometric AERs

- Good accuracy achieved with models that use only extreme dimensions of the part
 - Accuracy measured against original volume estimate
- Disks without appendages
 - > Min ID, Max OD, Hub Width, Web Geometry
 - > Average Error = -3.5%
- Disks with appendages
 - Min ID, Max OD, Total Length
 - > Average Error = 1.7%

Conclusions

- Attribute Estimating Relationships can be used to simplify cost estimation process
 - Produces system with benefits of bottoms-up and parametric cost estimation
- Development process requires more effort than a bottoms-up system alone
 - Savings is in reduced time required to generate the cost estimate of a part

Acknowledgments

- Much of the research in this presentation was conducted with the assistance of students in the Ohio University MS ISE program:
 - > Brian Pepper
 - Shawn Gallaher
 - David Divelbiss