
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Modeling the Life Cycle Cost of Protecting US Commercial Aircraft

By:

Presentation to: 2007 Joint ISPA-SCEA International Conference and Workshop 12-15 June 2007

Mr. Kirk L. Hoy Mr. Kurt Willstatter Summit Engineering Group 102 Paul Mellon Court, Suite 1 Waldorf, Maryland 20602 301-645-3535 (-3950 fax)

Khoy@summit-group.com Kwillstatter@summit-group.com www.summit-group.com

Preface

- This briefing focuses on the Life Cycle Cost (LCC) estimate developed by Summit Engineering Group for the Counter-MANPADS (CM) Program managed by the Department of Homeland Security (DHS)
- The completeness and accuracy of the LCC estimate was a key requirement

The Risk of Any Specific Threat is NOT Addressed Here

Acronyms

- A/C = Aircraft
- CM = Counter-MANPADS & Countermeasures
- DHS = Department of Homeland Security
- DIRCM = Directed Infrared Countermeasures
- DT&E = Developmental Test and Evaluation
- ECP = Engineering Change Proposal
- LCC = Life Cycle Cost
- LOE = Level of Effort
- LRU = Line Replicable Unit
- MFHBF = Mean Flight Hours Between Failure
- NB = Narrow Body
- O&S = Operations and Support

- OEM = Original Equipment Manufacturer
- OGC = Other Government Costs
- OT&E = Operational Test and Evaluation
- P³I = Pre-Planned Product Improvement
- PM = Program Management
- PMP = Prime Mission Product
- RDT&E = Research, Development, Test, and Evaluation
- SE =System Engineering
- ST&E = System Test and Evaluation
- STC = Supplemental Type Certificate
- T₁ = First Unit
- WB = Wide Body

Discussion Topics

- Background
- LCC Estimate
 - Goals
 - Risks
 - Risk Mitigation
- Key Assumptions
- LCC Estimate
 - Summary
 - RDT&E Phase
 - Production & Deployment Phase
 - Operations & Support (O&S) Phase
 - De-Modification & Disposal Phase
- Risk Insights
- Related Ăctivities
- Questions

Background

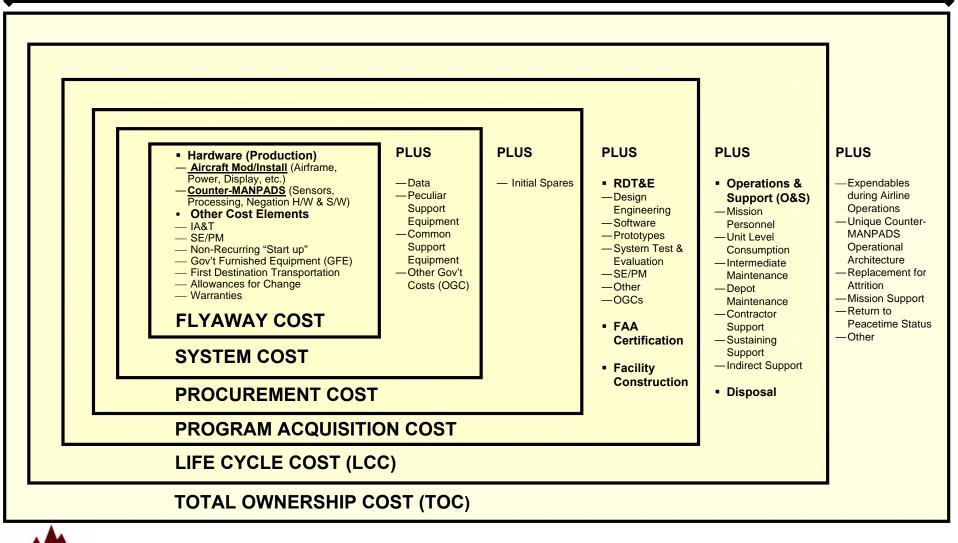
- DHS Science and Technology (S&T) Directorate tasked with demonstrating the technical feasibility, assessing life cycle costs, and evaluating the effectiveness of protecting commercial aircraft against the threat of Man-Portable Air Defense Systems (MANPADS)
- Primarily focused on mature Directed Infrared Countermeasure (DIRCM) systems
 - Self-contained pod
 - Distributed installation
- Complex problem due to
 - Multitude of aircraft types (Wide-body vs. Narrow-body)
 - Varying flight profiles as a function of aircraft type
 - Multiple operating environments (Cargo vs. Passenger)
 - Potentially large lost revenue costs for installations that fall outside normal maintenance cycles

Aircraft Demographics

- Wide body (WB)
 - Multi-aisle
 - Longer flights at altitude
 - More passengers per aircraft
- Narrow body (NB)
 - Single-aisle
 - Shorter, more frequent flights
 - Fewer passengers per aircraft, but higher total passenger volume
- Cargo is ~1,000 of total

Aircraft	Туре	Fleet Size*
777	WB	122
767	WB	334
747	WB	108
DC/MD10	WB	99
MD11	WB	74
A300	WB	140
A310	WB	64
A330	WB	29
A318/19	NB	279
A320/21	NB	368
717/727	NB	271
737	NB	1241
757	NB	617
DC8,9/MD80/90	NB	703
	Total**	4,449

* Circa 2005 ** Excludes ~1,600 regional jets


LCC Estimate Goals

- Comprehensive accounting of all foreseeable costs
- Explicitly address key LCC parameters
 - STCs and follow-on P3I/testing
 - Production rate tooling/test equipment (& for depot)
 - Investments to achieve reliability growth
 - CM system weight/drag impacts to fuel consumption
- Consistent approaches among vendors' LCC estimates so individual results could be leveraged
- Exercise LCC across various quantity profiles

The goal was an independent, vendor-neutral Cost Estimate at about the 70% confidence level

Civil Counter-MANPADS Cost Elements

LCC Estimate Risks

- Inaccurate assumptions
- Vendor optimism
 - Initial system reliability and reliability growth
 - Learning curves
 - Flight duration across various aircraft types
- Uncertain policies
 - Export controls
 - Ground notification requirements
 - Alarm response
- Deployment timeframe

LCC Estimate Risk Mitigation

Summit Engineering Group role was to ...

- Develop comprehensive Cost Ground Rules and Assumptions
 - Promulgated and updated at each major program milestone
- Interface with major air carriers to discuss and socialize program assumptions
- Conduct intensive research into US commercial flight demographics
- Interface with vendors on developing detailed Manufacturing Rate Assessments

Key Assumptions

- Quantity of CM Systems and Aircraft Modified
- Production start & initial deployment in FY08
- 20-year service life
- 2-level maintenance (Airport and OEM/Depot)
- Flights demographics
 - 350 Days per Year
 - Narrow body (NB), ~5 flights/ day, ~2.3 hours/ flight
 - Wide body (WB), ~2 flights/ day, ~6.8 hours/ flight
- \$2.00/gallon (BY03) applied to CM system induced fuel consumption
- >525 A-kit installs/ year could a 'special visit' penalty

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

-Illustrative-

LCC Estimate – Summary

LCC Phase	% of Total Cost	
1. RDT&E	1.5%	
2. Production & Deployment	23.4%	Large Cost
3. O&S	73.9%	Drivers
4. De-Mod & Disposal	1.1%	
Total	100.0%	

- RDT&E FY08 to FY18
- Production & Deployment FY08 to FY17
- O&S FY08 to FY34
- De-mod & Disposal FY27 to FY35

LCC Estimate – RDT&E Phase

WBS Element	Phase%	LCC%	
1.1 PMP	17.4%	0.3%	
1.2 A/C Integr	0.0%	0.0%	
1.3 Grd Sys Imp	0.0%	0.0%	
1.4 ST&E	56.2%	0.8%	
1.5 SE/PM	14.9%	0.2%	
1.6 Support	1.1%	0.0%	
1.7 Data	1.1%	0.0%	
1.8 ECP	4.5%	0.1%	
1.9 OGC	4.8%	0.1%	
Total	100.0%	1.5%	

- 73.6% of Total RDT&E \$ is for PMP and ST&E (shaded areas)
- Prime Mission Product (PMP)
 - ~LOE/Yr for Block Design Upgrades
- System Test & Evaluation (ST&E)
 - Periodic DT&E/OT&E to Support PMP block upgrades
 - LOE/Test Cycle & Test Materials
 - New/Amendment STCs each vendor
 - X quantity New STC
 - Y quantity Amendment STC

Strongest Influences or Highest Risk
PMP – Extent of future design updates
ST&E – # and Extent of STCs

LCC Estimate – Production/Deployment Phase

WBS Element	Phase%	LCC%	
2.1 PMP	61.8%	14.5%	
2.2 A/C Integr	3.6%	0.8%	
2.3 Grd Sys Imp	0.0%	0.0%	
2.4 ST&E	0.0%	0.0%	
2.5 SE/PM	8.3%	2.0%	
2.6 Supportability	20.3%	4.7%	
2.7 Data	1.2%	0.3%	
2.8 ECP	1.9%	0.4%	
2.9 OGC	2.9%	0.7%	
Total	100.0%	23.4%	

- 85.7% of Production/Deployment \$ is for PMP, A/C Integration and Supportability (shaded areas)
- Prime Mission Product (PMP)
 - Detailed T₁ (Labor/Mat'l) and Learning Curve across Each LRU

Aircraft (A/C) Integration

- Assumed no Learning for Modification/Install Labor based on numerous organizations performing them across time
- Supportability
 - Manufacturing Rate Assessment: Special Tooling/Prod Rate SE/Repair Station SE
 - Annual Quantity drives demand

<u>Strongest Influences or Highest Risk</u> PMP – Assumed learning curve A/C Integration & Supportability – System deployment qty/rate

LCC Estimate – Operations & Support Phase

WBS Element	Phase%	LCC%
3.1 Mission Per	3.2%	2.4%
3.2 UL Consmp	56.1%	41.4%
3.3 I/M Maint	16.1%	11.9%
3.4 Depot Maint	8.9%	6.6%
3.5 Ktr Support	3.5%	2.6%
3.6 Sustain Spt	8.8%	6.5%
3.7 Indirect Spt	1.4%	1.0%
3.8 ECP	0.5%	0.4%
3.9 OGC	1.5%	1.1%
Total	100.0%	73.9%

- 81.1% of Total O&S \$ is for Unit Level Consumption, Inter. Maint. and Depot Maint. (shaded areas)
- Unit Level (UL) Consumption
 - CM System induced Weight/Drag Impacts on Fuel Use across Aircraft Types (done for every discrete aircraft type) Ex of how risk/uncertainty reduced
- Intermediate Maintenance (I/M)
 - Unscheduled Repairs—due to MFHBF/year across each LRU times \$/Repair
- Depot Maintenance
 - Periodic CM System Tech Refresh

Strongest Influences or Highest Risk

Unit Level Consumption – Assumed fuel cost, induced drag
Maintenance – System reliability

LCC Estimate – De-Mod/Disposal Phase

WBS Element	Phase%	LCC%
4.1 De-Mod	72.2%	0.8%
4.2 Disposal	27.8%	0.3%
Total	100.0%	1.1%

- De-Modification
 - Final removal of the Aircraft Modifications (e.g., A-kit)
 - 100% of original install time
 - Final removal of CM Equipment (e.g., B-kit)
 - 50% of original install time
- Disposal
 - All disposal costs of A-kit and B-kit material

Strongest Influences or Highest Risk

De-Modification – % of labor effort from original installation

LCC Estimate – Sensitivities

Attribute	+ / - %	Low	LCC	High
\$/STC (New/Amend)	20	0.998	1.000	1.002
CM System T ₁	15	0.952	1.000	1.048
CM System Learning Curve	5	0.852	1.000	1.255
Fuel (\$/gal)	25	0.903	1.000	1.097
Fleet Drag (%)	20	0.941	1.000	1.059
Installed Weight (lbs)	10	0.991	1.000	1.009
Initial Reliability (MFHBF, WB/NB)	25	0.970	1.000	1.050
Order Quantity (For Illustrative Case)	5	0.958	1.000	1.040

- Costs normalized to 'Base Case'
- Sensitivities are shown as being independent of each other
 - Correlations could result in significantly different impacts (e.g., an increase in fuel cost coupled with higher than projected drag effects)

Risk Insights

- Highest Estimating Risk
 - System Deployment Quantity and Rate
 - -Fuel Cost
 - System Reliability
 - Learning Curves
- Other 'Influences'
 - -NRE Cost for Each Aircraft Type
 - Technology Refresh Costs
 - Installation Weight (unless talking Regional Jets)
 - First Unit Cost (e.g., T_1)

Related Activities

- Deployment decision influenced by probability of threat and applicable cost/benefit analyses
- USC CREATE has done groundbreaking work on the economic impacts of a MANPADS attack
 - Avoiding the economic impact is a benefit
- Ongoing threat assessments are crucial to evaluating the likelihood of a MANPADS attack
- Metrics for quantifying the level of protection afforded by a given deployment alternative
 - More than just number of planes, number of flights, and/or number of passengers

Presenter Biographies

- Mr. Kirk L. Hoy
 - Sr. Principal Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BS/BA Industrial Engineering/Economics (Lehigh University)
 - MS Systems Engineering (Virginia Tech)
 - 23+ years of systems engineering and cost estimation/analysis experience
- Mr. Kurt Willstatter
 - Sr. Principal Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BA Biology (Texas A&M)
 - MS Operations Research (Naval Post Graduate School)
 - 15+ years of systems engineering, modeling & simulation, cost estimation experience
 - 20 years of Navy operations and systems engineering

