COINCOMO Software Cost and Schedule Estimation Models

COCOTS Integration Challenges

A. Winsor Brown Ed Colbert AWBrown@CSSE.USC.edu EColbert@CSSE.USC.edu

Goals

Present the new, extended, combined COCOMO Model: COINCOMO (Incremental Development)

- COCOTS for COTS software with applications
- COSECMO for software systems with security

Show how RUP/MBASE and COINCOMO fit with the Incremental Commitment Model for systems development

Outline

COCOMO + COPSEMO (COINCOMO Base) Models

COTS and (some) Open Source Models

COSECMO with COCOTS and COINCOMO = the New [or Extended] COINCOMO

Incremental Commitment Models (ICMs)

ICM for Software with Extended COINCOMO

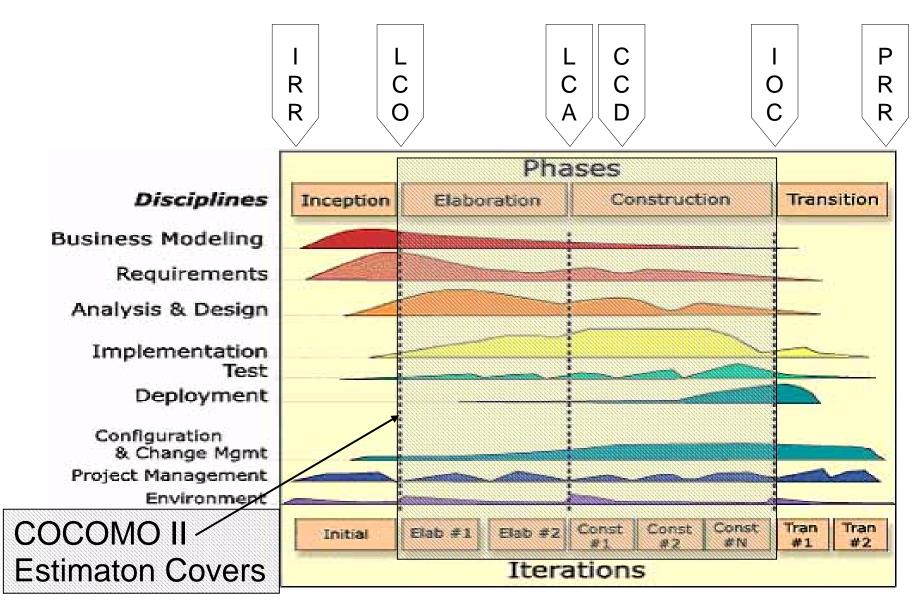
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com University of Southern California Center for Software Engineering **COCOTS Integration Challenges** <u>|</u>C || S ||E || RUP/MBASE Application Development Model¹ Ρ С С С R С R Ο С R Ο Α D R Phases Disciplines Elaboration Construction Transition Inception **Business Modeling** Requirements Analysis & Design Implementation Test Deployment Configuration & Change Mgmt Project Management Environment Const Tran Tran Const Const Elab #1 Elab #2 Initial #PA #2 #1 82 Iterations

1 (efforts not to scale)

Building on the COCOMO II (CII) Base

COPSEMO (COngruent Phase Schedule and Effort MOdel) [nee COnstructive Phase Schedule and Effort MOdel]

> $E_P\% = X_P\%$ of $E_{CIIbase}$ $S_P\% = Y_P\%$ of $S_{CIIbase}$


- Extrapolation of Effort (E) and Schedule (S) from CII's
 - $-E_1\% \& S_1\%$ of CII to Inception E and S
 - $-E_T\% \& S_T\%$ of CII to Transition E and S
- Interpolation of Effort (E) and Schedule (S) from CII's
 - $-E_E\% \& S_E\%$ of CII to Elaboration E and S
 - $-100-E_E\% \& 100-S_E\%$ (the rest) of CII's to Construction

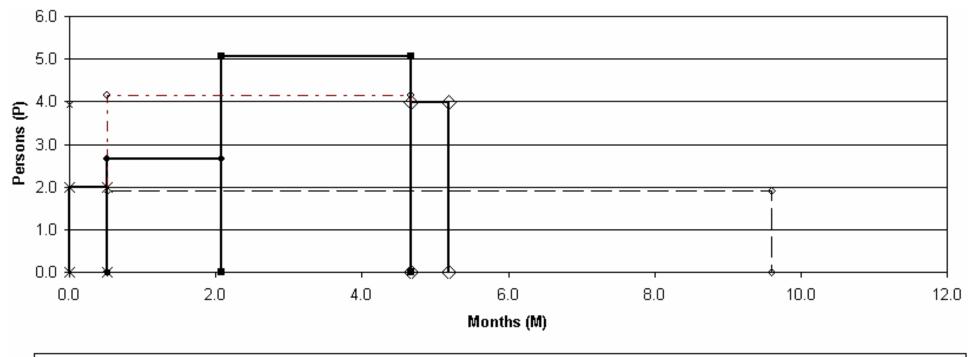
NOTE: Percentages currently all based on experience

Recalculate Persons needed per phase: P=PM/M

MOD-4 Brown Paper COINCOMO.doc - 5 of 33

MBASE/RUP Concurrent Activities

University of Southern California Center for Software Engineering **COCOTS Integration Challenges**


COCOMO II with COPSEMO (for IECT)

ÜŠ	USC-C	осомо	II.2000.3 - I	Untitle	ed										- D ×
F	ile Edit	View	Parameters	Calibr	ate Phase	Maint	enance Help								
	D 🖻	R X	, e C	J	?										
F	roject	: Name:	Buildl=Co	re						Scale F	actor:	16.14	Sel	hedule	
			Projec	t Not	tes					Devel	opment	Model: Po	st Arcl	nitectu	ure 🔻
	(Mod	ule Na	Modul me Siz(LABOR Rate \$/month)	EAF	Languag		NOM Effort DEV	EST Effort DEV	PROD	COST	INST COST	Staff	RISK
	Core	Buildl	. <mark>S:229</mark> 9	_	0.00	1.68			997.0	1675.1	137.3	0.00	0.0	44.9	1.4 🔺
											\mathbb{R}				
							Estimate	ed.	Effort	Sched	PROD	COST	INST	Staff	RISK
		tal Li Code:	nes 2299	99			Optimist:	ic [1340.1	34.8	171.6	0.00	0.0	38.5	
		urs/PM	152.	00			Most Like	ely [1675.1	37.3	137.3	0.00	0.0	44.9	1.4
							Pessimis	tic [2093.9	40.0	109.8	0.00	0.0	52.4	
Pr	Project Is Saved To File : C:\COCOMOII.2000.3\MultiBuildExample\3Builds=200+150+100K\Build1\Build1-200K.est														
	COPSE	MO									@ Cop'	yright 1998-2004 L	JSC Center f	or Softwar	e Engineering.
Ste	0		OLD implies a re				optional value								
1.0			implemented on		ojects (not mod	dules)									
	Get COCO	MO II.2000	data and adjustri	ients											
2.0		Project:	Build1=Core		TotalSize=		PM_C=	-	M_C=	37.28					
	(automatic	cally from C	OCOMO_charts.	xls)	SCED_R=	4	SCEDinc:	0%		SCE	DV= 1.00		P_C=	44.93	
	۱	Vork hour	s per months	(non-ov	erhead or "billa	ible"; COC	OMO-II.2000 defa	ult=152)=	= 152						

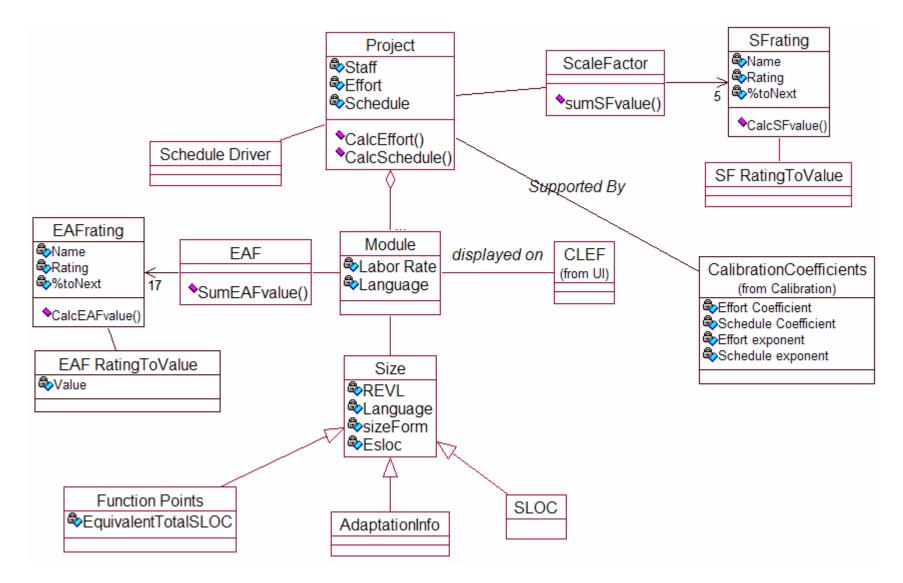
University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

COPSEMO: Phased Schedule and Effort Dist.

	—×— Inception	Elaboration		– ∻– ·E+C_P	→P_C	\longrightarrow Transition	—×— Ave	
--	---------------	-------------	--	-------------	------	------------------------------	---------	--

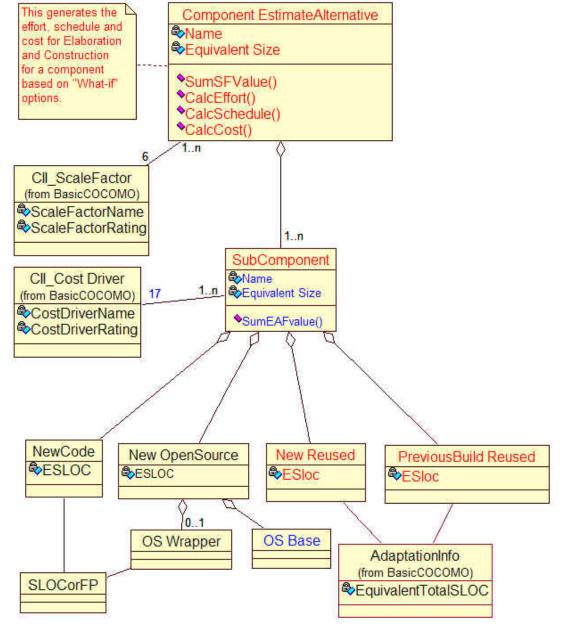
Default value	s: Italic																							
		Incepti	on			El	aborat	ion		Construction			Transition				Total E&C			Total				
Effort %	6.0	6.0		•	24.0		24.0	• •	76.0	76.0	I		12	12	.0	•	100.0		118.0					
Schedule %	12.5	12.5		▲ ▼	37.5		37.5	• •	62.5	62.5	i		12.5	12	.5	• •	100.0			125.0				
P/Ave(P)		0.48					0.64			1.2	1.22 0.96			1.0)0		Does not apply		ply					
	PM .	/ M	=	Р	PM	1	Μ	= P	PM	/ M	=	Р	PM	/ N	1 =	= P	PM	1	M	= P	PM	/ N	1	P-ave
PSE Distributed	1.04	0.52	=	1.99	4.14	1	1.56	= 2.66	13.12	/ 2.60	=	5.05	2.07	/ 0.5	52 =	3.99	17.3	1	4.15	= 4.15	20.4	/ 5:	9	3.92
Ave(P) refer	s to the	average	e nu	umber of	persons	з ог	h the p	roject; it is	the same	e as PM	_B3	S/M_BS fo	, or the en	tire pr	oject	t,								
	and eacl	h stage	's P	/Ave(P) i	s the sa	me	e as sta	aqe's Effor	t%/Sched	dule%.														

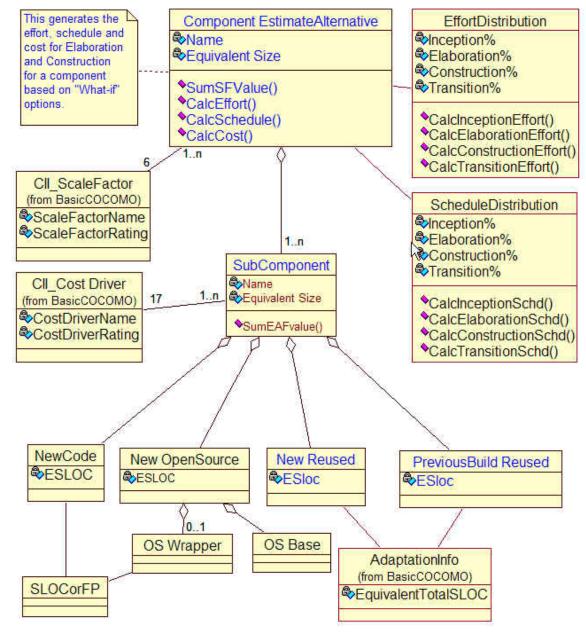
COCOMO Models Represented in UML


COCOMO.II.2003 (the software package) COINCOMO.2006 version of COCOMO.II.2003

- Has concept of stored alternatives for
 - Components (AKA Project) [shown]
 - EAF and SF Driver sets [not shown]
 - Sub-Components (AKA Modules) [not shown]
- Has four SLOC sources:
 - SLOC or FP converted to SLOC: New & New Open Source
 - Adaptation Only: New Reused & Previous Build Reused

COINCOMO version of COCOMO.II.2003 with COPSEMO


COCOMO.II.2003 in UML

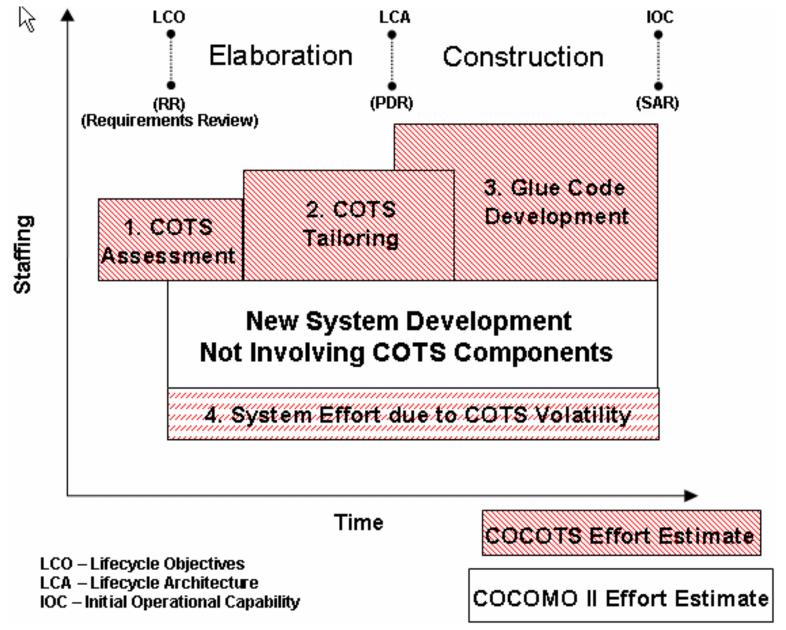


University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

COINCOMO's COCOMO.II.2003 in UML

COINCOMO's COCOMO + COPSEMO in UML

COTS and Open Source Software


Today's Realities:

- Many, many systems have COTS components
- Many systems use Open Source components which are treated like COTS (AKA pseudo-COTS):
 - Might put wrappers around it
 - Don't look at internals
 - Let the Open Source developers control its evolution

COCOTS calculates effort and schedule for systems with COTS (or pseudo-COTS)

- Activity based estimates for Assessment and Tailoring
- Special "Glue Code" model for COTS to rest of system
- NOTE: COTS volatility effects not calculated!

COCOTS: COTS with Assessment, Tailoring and Glue Code

COCOTS + COCOMO + COPSEMO

Issues:

- How to determine relative anchor point dates?
 - Apply maximum calculated LCA date (adjust COPSEMO S&E percentages to fit)
 - Reality is that they are probably politically based
 o But don't do LCO or LCA too early;
 o If "scheduled" IOC before calculated IOC, adjust Sched!
- How to allocate Assessment to phases?
 - Initial Assessment (or screening) to Inception?
 - Detailed Assessment and selection in Elaboration?
- How to allocate Tailoring to phases?
 - All to Elaboration: COTS selection required(?) for LCA?
 - Need another percentage factor, derived from experience, to allocate parts to Elaboration and Construction.

COSECMO Extension to COCOMO

COSECMO, the COCOMO SECurity MOdel, Focus: Cost & Schedule Estimates (C&SE)

- COCOMO covers Elaboration (E) & Construction (C)
- COSECMO covers the *increased* costs *and* schedule for security, spread over
 - o Inception (I)
 - o Elaboration (E)
 - o Construction (C)
 - o Transition (T)

COSECMO to help government and industry, using modern practices (e.g., the Common Criteria), predict cost of developing or acquiring secure systems.

COSECMO model still evolving, implementation based on COINCOMO available to Affiliates since the fall of 2005

COSECMO

COSECMO Conceptual Model

	COCOMO Base Expansion for "GlueCode" to Kernel	
Security Risk Analysis; Security Target	COCOMO Base	Certification Activities
Definition; Protection Profile	Security Kernel	

Inception Elaboration with Evolution Requireme	Construction	Transition
--	--------------	------------

COSECMO Impacts on Schedule COPSEMO ranges of percentages²

	MBASE					
Phase (endpoints)	Effort%	Schedule%				
Inception (IRR to LCO)	6 (2-15)	12.5 (2-30)				
Elaboration (LCO to LCA)	24 (20-28)	37.5 (33-42)				
Construction (LCA to IOC)	76 (72-80)	62.5 (58-67)				
Transition (IOC to RRR)	12 (0-20)	12.5 (0-20)				
Totals:	118	125				

COSECMO *increases in* schedule depend on EAL – suggestions for initial selections (no experience)

- EALs 1 and 2: use normal
- EALs 3 and 4: use high end of ranges
- EALs 5, 6 and 7: beyond the ranges shown above

² from Table A.5 of

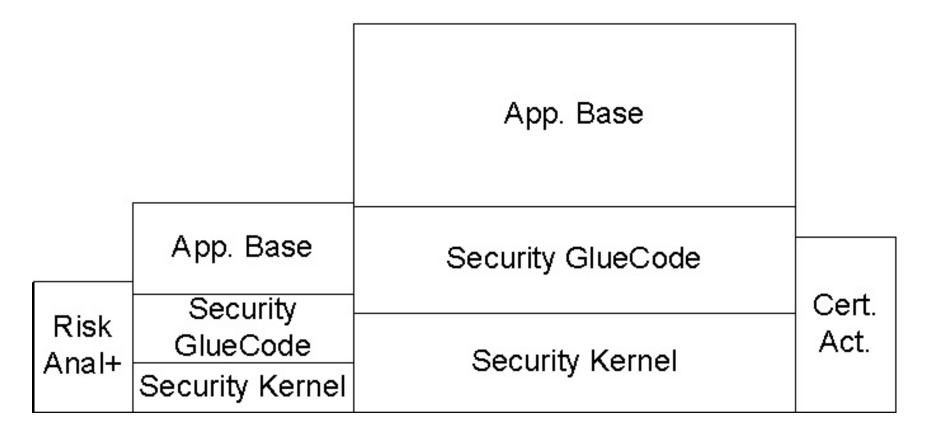
COSECMO increases in schedule for security

S₁% of CII with COSECMO (for Inception)

• EAL 3 and 4: S_1 % = 25. Higher because of Security Risk Analysis, Security Target Definition and Protection Profile

S_E% of CII with COSECMO (for Elaboration)

• EAL 3 and 4: $S_E\% = 28+$. Higher because of need for architecture completeness with evaluation of security.

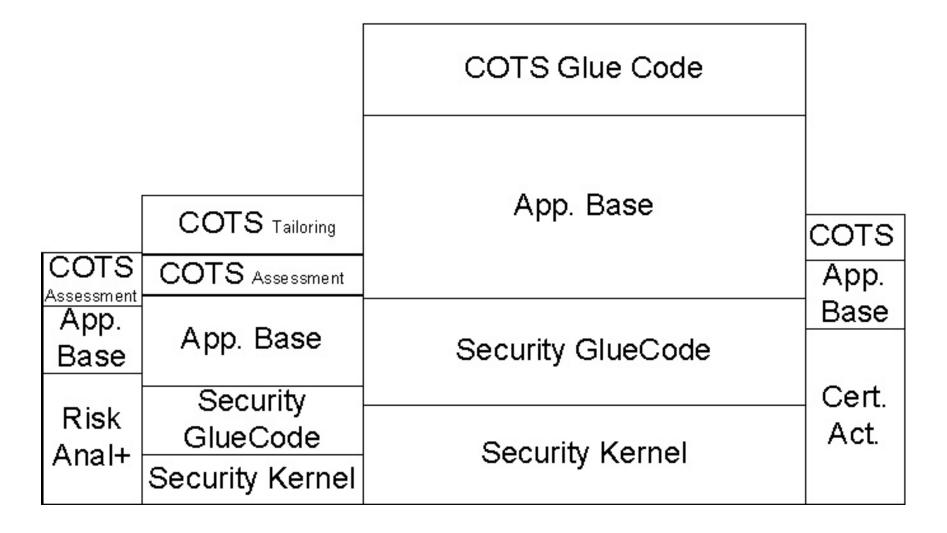

S_c% of CII with COSECMO (for Construction)

• EAL 3 and 4: $100-S_E\% = 72-(72 \text{ or lower})$

S_T% of CII with COSECMO (for Transition)

• EAL 3 and 4: $S_T\% = 20+$. Higher because of certification time (on top of increase related to higher cost).

COSECMO with COPSEMO distributions



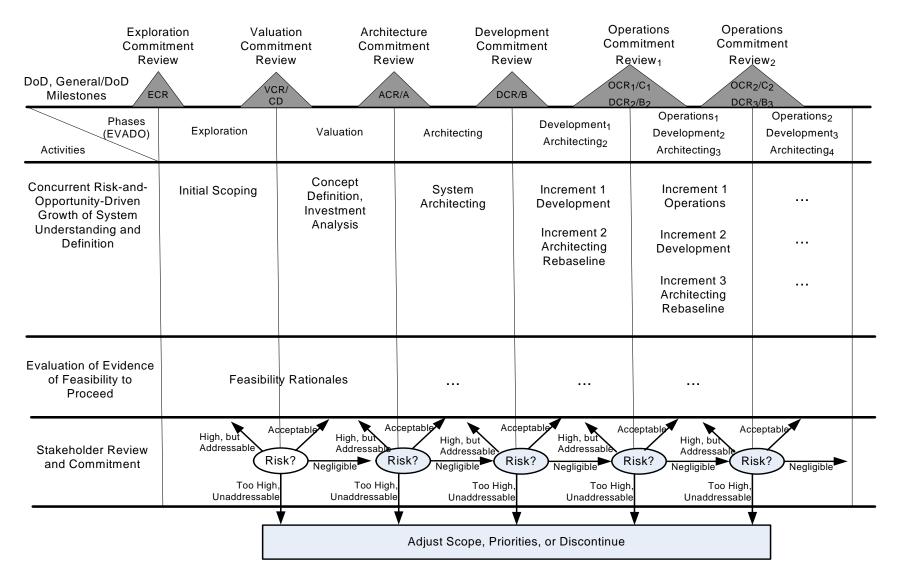
University of Southern California Center for Software Engineering

COCOTS Integration Challenges

COINCOMO=COSECMO+COPSEMO+COCOTS

Incremental Commitment Models The Incremental Commitment Models (ICMs) for Life Cycle Processes

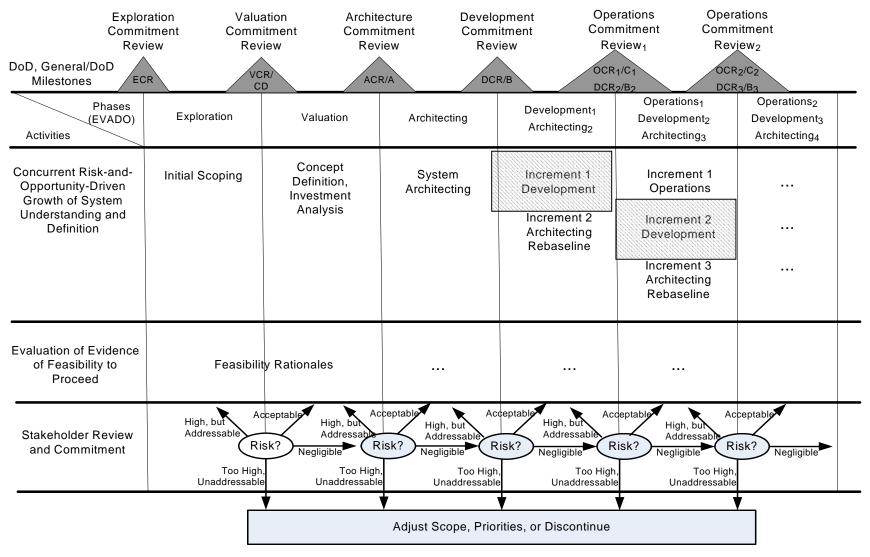
- For Systems (Human, Hardware and Software)
- ICM for Software Intensive Systems (ubiquitous hardware)
- ICM for Software (only) Systems


ICMs solve Spiral Model problems

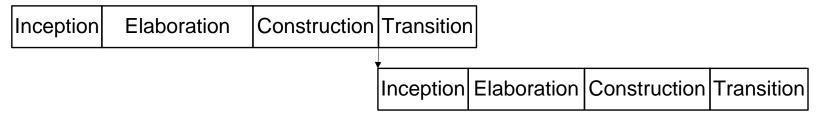

- Use spiral principles vs. diagram
- Relate to stakeholder commitments and values
- Make concurrency explicit
- Use risk to explicitly show go-backs and skips
- Provide view for handling mini-spirals

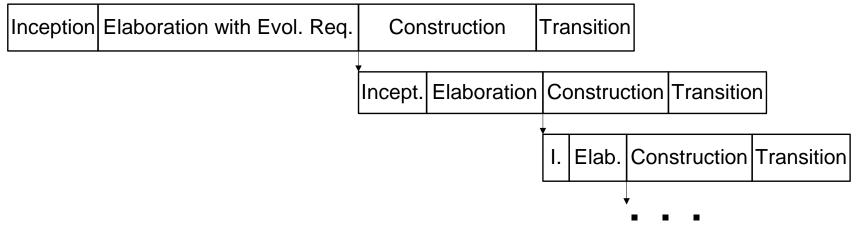
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com **COCOTS Integration Challenges** University of Southern California CSSE

Center for Software Engineering


ICM LC Processes For Systems [of Systems]

University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

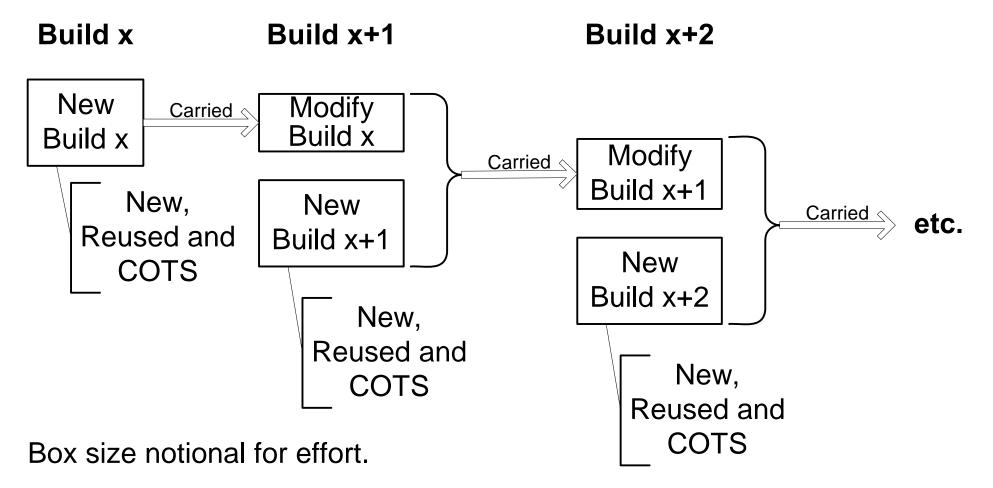

ICM Showing Software in Systems



Overlaps Across Software Builds

Evolve During Transition [After Sw IOC]

Evolve After Architecture Complete


University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

ICM for Software

Multi-Build COCOMO II COINCOMO Sums Across Builds

University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

COINCOMO = Multi-Build COCOMO II Guidance about how to "carry" forward

Modified Component	REVL %	% Design Modified (DM)	% Code Modified (CM)	% Integration Required (IM)	Software Under- standing (SU) (%)	Assessment and Assimil- ation (AA) 0-1 *(10%)	Programmer Unfamiliarity (UNFM) (0-1)
1. default	15	20	40	100	30	4	.4
 Carried Build assumed designed for reuse (CB) 1st time 	15	10	20	50	20	0	.1
3. CB 2nd time	10	5	10	40	10	0	0
4. CB 3rd or more times	5	5	5	30	5	0	0

Table 2 Modified Code Adaptation Parameters

University of Southern California Center for Software Engineering **COCOTS Integration Challenges**

COINCOMO = Multi-Build COCOMO II Guidance about how to "carry" forward (cont.)

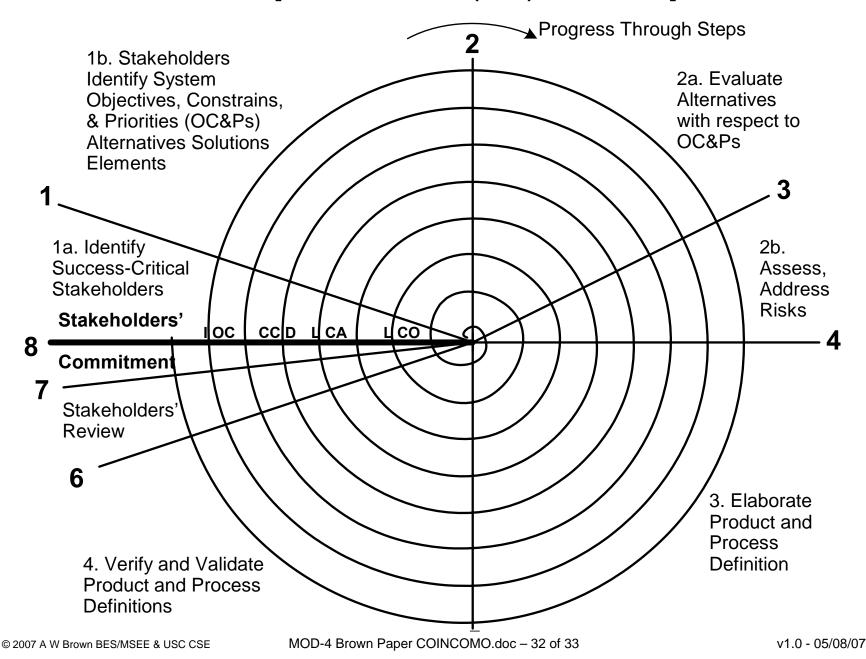
Table 3 Reused Code Adaptation Parameters

Reused Component Type	REVL (%)	% Integration Required (IM)	Assessment & Assimilation (AA) 0-10 * (10%)
1. COTS	0	100 – 25 – 10 based on mission criticality	4
2. COTS from previous build (re-test only)	0	25 – 10 – 5 based on mission criticality	0
 Which has been (Re)Designed for reuse, based on new (or modified) code by vendor. 	15	100	6
 4. 1st Carry from Previous build of code (Re)Designed for reuse, based on new (or modified) code by vendor. 	15	100	2
5. 2nd Carry from Previous build of code (Re)Designed for reuse, based on new (or modified) code by vendor.	10	100	1
 6. 3rdnth Carry from Previous build of code (Re)Designed for reuse, based on new (or modified) code by vendor. 	5	100	0.5

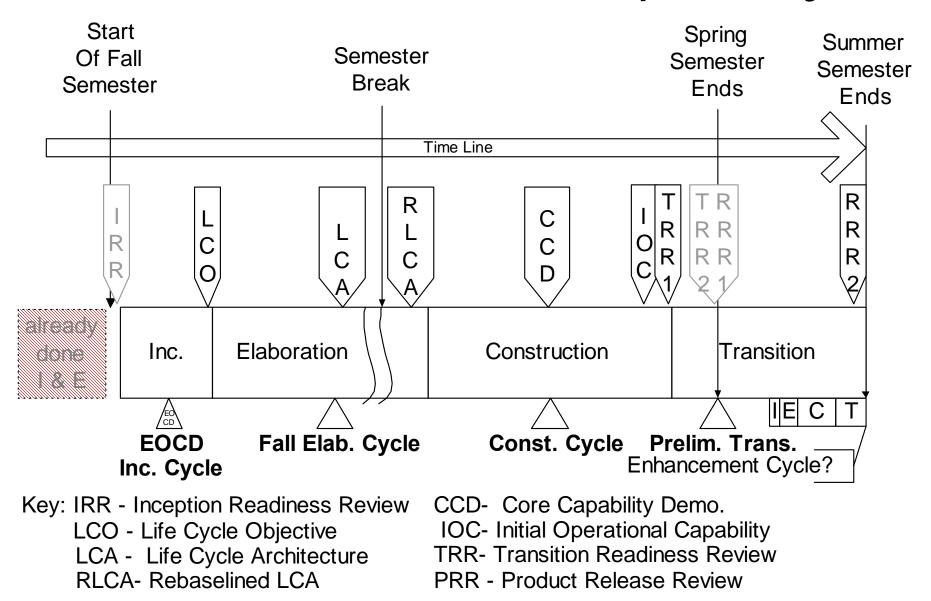
Background

WinWin Spiral Model (WWSM)

WWSM: CSCI577 Unrolled with Repeated Cycles



Background and Definitions (cont.)


WinWin Spiral Model

- Risk Driven Selection, Execution and Validitation of Activities and Products
- Feasibility "demonstration" needed to proceed
- Stakeholder concurrence to proceed at major milestones
- Life Cycle Process(s) Model Generator: Select and document/plan for next "rounds" a specific "Development Process Model".

Stylized WinWin Spiral with Activities Mapped to Original Spiral [radial dimension (cost) not to scale]

WWSM: CSCI577 Unrolled With Repeated Cycles

