

Advanced Cost Model (ACM)

Dr. Roy Smoker rsmoker@mcri.com

Daniel Feldman dfeldman@mcri.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Research for this paper was conducted by Advatech Pacific, Inc., and MCR as part of a Small Business Innovative Research project for the Air Force Human Resources Laboratory at Kirtland AFB, NM to develop Advanced Life Cycle/Risk Cost Model for Space Concepts Development. The content of the paper is the responsibility of the authors only and does not necessarily represent the views or positions of the AFRL, the USAF or any other portion of the United States Government.

Overview

- I. Describe the Advance Cost Model
- II. CER Development
- III. Technical Maturity Cost Factor (TMCF) Developed by TRL
- IV. Risk
- V. Conclusion

Description of ACM

- Advance Cost Model (ACM) for rocket motors is a cost model intended to cost alternative designs of future systems
 - Build cost estimating relationships (CERs) for both solid stages and liquid stages
 - Use the CERs to perform an initial estimate of a new system
 - Apply technical maturity factors to grow the initial estimate to a level consistent with a mature system
 - Integrate treatment of risk in all facets of the program

CER Development

- Requirements
 - Data Collection
 - Methodology Development
 - Data Analysis
 - Validation
- Data Targets are:
 - ATLAS V
 - DELTA IV

ATLAS V SPECIFICATIONS

	GTO Payload* (27 degree inclination)	GSO Payload* (0 degree inclination)	Estimated Launch Price	Configuration	Launch Mass
Atlas V 401	11,000 lb 5,000 kg		US \$90 M	Common Core + Centaur (1x RL-10A- 4-1)	734,850 lb 334,045 kg
Atlas V 501	9,000 lb 4,100 kg	1,500 lb 3,300 kg	1,500 lb 3,300 kg US \$85 M		741,165 lb 336,895 kg
Atlas V 511	10,800 lb 4,900 kg	3,900 lb 1,750 kg	US \$90 M	Common Core + 1 SRB + Centaur (1x RL-10A- 4-2)	831,180 lb 377,805 kg
Atlas V 521	13,200 lb 6,000 kg	4,900 lb 2,200 kg	US \$95 M	Common Core + 2 SRB's + Centaur (1x RL-10A- 4-2)	921,200 lb 418,725 kg
Atlas V 531	15,200 lb 6,900 kg	6,600 lb 3,000 kg	US \$100 M	Common Core + 3 SRB's + Centaur (1x RL-10A- 4-2)	1,011,220 lb 459,545 kg
Atlas V 541	16,700 lb 7,600 kg	7,500 lb 3,400 kg	US \$105 M	Common Core + 4 SRB's + Centaur (1x RL-10A- 4-2)	1,101,230 lb 500,365 kg
Atlas V 551	18,080 lb 8,200 kg	8,200 lb 3,750 kg	US \$110 M	Common Core + 5 SRB's + Centaur (1x RL-10A- 4-2)	1,191,250 lb 541,195 kg
Atlas V Heavy ++	30,000 lb 13,605 kg	13,000 lb 5,900 kg	US \$130 M	Common Core + 2 Common Core Boosters + Centaur (1x RL-10A- 4-2)	2,120,000 lb 961,451 kg

Source: www.spaceandtech.com/elvs/atlasv_specs.shtml, Copyright 2001 - Andrews Space & Technology

ATLAS V CONFIGURATIONS

	Solid Strap-Ons	Stage 1 (Common Core)	Stage 2 (Centaur)	Stage 2 (Stretched Centaur)
Length	39 ft 17.7 m	106.2 ft 32.4 m	33.5 ft 10.2 m	38.5 ft 11.7 m
Diameter	3.4 ft 1.55 m	12.5 ft 3.8 m	10 ft 3.0 m	10 ft 3.0 m
Gross Mass	90,000 lb 40,824 kg	683,650 lb 310,045 kg	41,800 lb 18,960 kg	51,200 lb 23,220 kg
Propellant Propellant Mass	HTPB 85,300 lb 38,770 kg	LOX / RP 627,000 lb 284,350 kg	LOX / LH2 37,000 lb 16,780 kg	LOX / LH2 45,000 lb 20,410 kg
Engine** Thrust Isp	Atlas 5 SRB 255,405 lbf SL 1,134 kN SL 275 sec SL	RD-180 860,400 lbf SL 3,820 kN SL 311 sec SL	RL-10A-4-1 22,300 lbf 99,000 N 451 sec	RL-10A-4-2 22,300 lbf 99,000 N 451 sec
Number of Engines	0 - 5	1	1	2
Nominal Burn Time	94 sec	236 sec	894 sec	429 sec

** Note: Vacuum engine performance unless otherwise specified.

Source: www.spaceandtech.com/elvs/atlasv_specs.shtml, Copyright 2001 - Andrews Space & Technology

DELTA IV SPECIFICATIONS

	GTO Payload* (ETR)	ETR* Referenc e Orbit	Estimated Launch Price	Configuration	Launch Mass
Delta IVM	8,600 lb 3,900 kg	14,900 lb 6,760 kg	US \$70 M	Core + 4m Fairing	349,140 lb 158,340 kg
Delta IVM+ (4,2)	11,700 lb 5,300 kg	20,000 lb 9,070 kg	US \$90 M	Core + 2 GEMS + 4m Fairing	377,990 lb 171,420 kg
Delta IVM+ (5,2)	9,600 lb 4,350 kg	17,300 lb 7,850 kg	US \$80 M	Core + 2 GEMS + 5m Fairing	522,190 lb 231,670 kg
Delta IVM+ (5,4)	13,500 lb 6,120 kg	22,700 lb 10,300 kg	US \$100 M	Core + 4 GEMS + 5m Fairing	522,190 lb 231,670 kg
Delta IVH	27,400 lb 12,400 kg	45,200 lb 20,500 kg	US \$140 M	Core + 2 Core Boosters + 5m Fairing	522,190 lb 231,670 kg

Source: <u>www.spaceandtech.com/elvs/atlasv_specs.shtml</u>, Copyright 2001 - Andrews Space & Technology

DELTA IV CONFIGURATIONS

	Solid Strap-Ons	Stage 1 (Common Core)	Stage 2 (4-m Fairing)	Stage 2 (5-m Fairing)
Length	50 ft 15.2 m	120 ft 36.6 m	40 ft 12.2 m	45 ft 13.7 m
Diameter	5.0 ft 1.52 m	16.8 ft 5.13 m	8.0 ft 4.0 m	16.7 ft 5.1 m
Gross Mass	(Non-TVC / TVC) 41,990 / 42,500 lb 19,082 / 19,327 kg	480,750 lb 218,030 kg	51,000 lb 23,130 kg	68,000 lb 30,840 kg
Propellant Propellant Mass	HTPB 37,500 lb 17,045 kg	LOX / LH2 440,000 lb 200,000 kg	LOX / LH2 45,000 lb 24,410 kg	LOX / LH2 60,000 lb 27,200 kg
Engine** Thrust Isp	GEM - 60 (ground lit / air lit) 136.7 / 141.3 klbf 606.1 / 626.5 kN 273.8 sec	<u>RS-68</u> 650,000 lbf SL 2,886.0 kN SL 365 sec SL	<u>RL-10B-2</u> 24,750 lbf 110,094 N 462.4 sec	<u>RL-10B-2</u> 24,750 lbf 110,094 N 462.4 sec
Number of Engines	0 - 4	1	1	1
Nominal Burn Time	78 sec	249 sec	850 sec	1125 sec

** Note: Vacuum engine performance unless otherwise specified.

Source: www.spaceandtech.com/elvs/atlasv_specs.shtml, Copyright 2001 - Andrews Space & Technology

CER Characteristics

- These types of rockets are of an integrated design
- Consist of liquid core with solid/liquid strap-ons and possible solid upper stages
- Thus need 2 different CERs to estimate top level costs, one to cost solids and one to cost the liquids
- In developing the CERs, the new rocket was fit into a power function form $(y = ax^b)$

Solid and Liquid WBSs

1.0 Solid Rocket Motor

- 1.1 Nozzle
- 1.2 Case
- 1.3 Insulation & Liner
- 1.4 External Insulation
- 1.5 Propellant
- 1.6 Igniter
- 1.7 Thrust Vector Control
- 1.8 Integration & Assembly
- 1.9 Raceway
- 1.10 Interstage Assembly

2.0 Liquid Rocket Launch System

- 2.1 Nozzles
- 2.2 Fuel Tank
- 2.3 Oxidizer Tank
- 2.4 Engines
- 2.5 Thrust Structure
- 2.6 Pressurant System
- 2.7 Propellant
- 2.8 TVC
- 2.9 Integration & Assembly
- 2.10 Raceway
- 2.11 Interstage Assembly

Solid CER

Develop CER:

(1)
$$AUC_{new}(Prod)_i = \alpha_s * (W_{new_i})^{\beta_s} (Q_{new})^c * Factor(Prod)$$

(2)
$$AUC_{New}(Dev)_{i} = AUC_{New}(Prod)_{i} * \frac{BaselineDevelopmentCosts}{BaselineProductionCosts}$$

 $*\frac{Factor(Dev)}{Factor(Prod)} = AUC_{New}(Prod)_{i} * 925.7\% * \frac{Factor(Dev)}{Factor(Prod)}$

Where, c = ln(LC%)/ln(2) = -.158 α_s , $\beta_s = coefficients to be solved for$ W = weight AUC = Average Unit CostFactor = Unit Adjustment between MMIII rocket and new rocket Q = quantity of new rockets© MCR, LLC

Liquid CER

Develop CER:

(2)
$$AUC_{new}(Prod)_i = \alpha_l * (W_{new_i})^{\beta_l} * Factor(Prod) - J * W_{new_i} * S_i$$

3)
$$AUC_{New}(Dev)_{i} = AUC_{New}(Prod)_{i} * \frac{BaselineDevelopmentCosts}{BaselineProductionCosts}$$

 $*\frac{Factor(Dev)}{Factor(Prod)} = AUC_{New}(Prod)_{i} * 605.03\% * \frac{Factor(Dev)}{Factor(Prod)}$

Where,
α_I, β_I, J = coefficients to be solved for
W = weight
AUC = Average Unit Cost
Factor = Unit Adjustment between EELV rocket and new rocket
S = Number of liquid Strap-ons

Final Coefficient Values

Results from optimization software (Microsoft Solver) in BY 06\$:

- Number of Coefficients Estimated = 5
 - Sample Size =

26

	solids	liquids
alpha	10819.946	7169.987
beta	0.561	0.675

Liquid Strapon Adjustment (J) = 27.878

Mean Absolute Relative Error (MARE) =	5.90%
Standard Percentage Error of the Estmiate (SPEE) =	9.53%
Avg % Bias =	0.18%
$R^2 =$	0.92855

"Creating Customer-Focused

Shred of Costs to Lower WBS Elements

Solid:

N/Ghi

Stage/		
Component	Dev %	Prod %
Stage I Tot	100.00%	100.00%
Nozzle	34.88%	34.24%
Case	25.30%	23.16%
Insul	3.70%	1.39%
Liner		
External Inst	0.37%	0.09%
Propellant	3.90%	8.56%
lgniter	7.94%	8.25%
TVC	7.95%	17.78%
Intg/Sep Sys	8.16%	4.47%
Raceway	0.50%	0.09%
Stage Assembly	7.31%	1.97%
Stage II Tot	100.00%	100.00%
Nozzle	37.03%	35.48%
Case	12.01%	21.94%
Insul	4.83%	1.46%
Liner		
External Inst	0.13%	0.11%
Propellant	5.50%	10.70%
Igniter	9.59%	7.84%
TVC	6.33%	12.38%
Intg/Sep Sys	15.89%	7.42%
Raceway	1.27%	0.30%
Stage Assembly	7.43%	2.37%
Stage III Tot	100.00%	100.00%
Nozzle	42.44%	38.02%
Case	9.03%	16.19%
Insul	5.94%	1.68%
Liner		
External Inst	0.15%	0.13%
Propellant	6.49%	12.34%
Igniter	13.45%	10.04%
TVC	8.38%	16.29%
Intg/Sep Sys	1.33%	0.29%
Raceway	8.95%	2.64%
Stage Assembly	3.84%	2.38%

			-
Liquid:	Component	Dev %	Prod %
	Stage I Tot	100.00%	100.00%
	Nozzles	0.00%	0.00%
	Fuel Tank	7.03%	3.19%
	Oxidizer Tank	15.00%	7.35%
	Engines	42.22%	33.00%
	Thrust Structure	2.33%	0.99%
	Pressurant System	7.21%	3.29%
	Wiring Harness	1.84%	0.71%
	Propellant	1.83%	33.81%
	Interstage	15.70%	16.40%
	LRE Intg & Test	6.83%	1.28%
	Integ Stg 1 & 2	0.00%	0.00%
	Stage II Tot	100.00%	100.00%
	Nozzles	0.00%	0.00%
	Fuel Tank	14.59%	11.41%
	Oxidizer Tank	19.62%	9.72%
	Engines	41.10%	34.72%
	Thrust Structure	0.51%	0.63%
	Pressurant System	14.59%	14.11%
	Wiring Harness	0.89%	0.74%
	Propellant	1.87%	25.01%
	Interstage	0.00%	0.00%
	LRE Intg & Test	3.87%	0.44%
	Integ Stg 1 & 2	2.95%	3.21%

Customer-Focused CERs Are Not the Complete Estimate

- The outputs from the CERs are considered the "initial point estimate" or "most likely" costs
- The price quotes taken relatively early in the program (ie. CY2000) do not capture the cost growth due to:
 - Collapse of the commercial market
 - Addition of program resources for development
 - Costs associated with changing the contract from a "FAR Part 12" commercial type contract to a more conventional government development and production contract
 - Does not account for TRL levels lacksquare

Creating

Success"

Relationship of NASA TRLs to DOD Acquisition Management Framework

TRL	NASA Definition	Defense Acquisition Management
		Framework Analogy
1	Basic principles observed and	Paper studies of alternative concepts for meeting a
	reported	mission
2	Technology concept and/or	Analysis of alternatives; Validated and approved
	application formulated	MNS; Exit criteria: Having specific concept to
		be pursued and technology exists
3	Analytical and experimental	Concept in hand, but system architecture to be
	critical function and/or	developed;
	characteristic proof of concept	Exit criteria: Development Contract Awarded
4	Component and/or breadboard	Architecture complete, but components need to
	validation in laboratory	be integrated into complete system;
	environment	Exit criteria: Preliminary Design Review (PDR)
5	Component and/or breadboard	System prototypes demonstrated in relevant
	validation in relevant environment	environment;
		Exit criteria: Critical Design Review (CDR)
6	System/subsystem model or	System demonstrated in its intended environment;
	prototype demonstration in a	
	relevant environment	Exit criteria: System Verification Review (SVR)
7	System prototype demonstration	Technically Mature; Low Rate Initial Production;
	in a space (if applicable)	
	environment	Exit Criteria: Initial Operational Capability
		(IOC)
8	Actual system demonstration and	Initial Operational Capability; System
	"flight qualified"	operationally effective; Exit Criteria:
		Manufacturing ready for full-rate production
9	Actual system "flight-proven"	Full-rate production; Deploy System;
	through successful mission	Exit Criteria: Full Operational Capability

"Measurement of System Cost Growth Associated with TRLs Using SARs" by Roy Smoker and Sean Smith. ISPA/SCEA 2005.

Technical Maturity Cost Factor Development

- TMCFs are essentially a multiplier against an early estimate calibrated to mature the estimate to a future point in time.
- SAR data was used to identify key milestones
 - ATP TRL 4
 - PDR TRL 5
 - CDR TRL 6
 - FCA/PCA TRL 7
 - IOC TRL 8
 - FOC TRL 9
- TMCF = e^{rt}
 - "r" is the rate of cost growth
 - "t" is the time between the respective milestones

Notional SAR Data to Illustrate Methodology

Notional Program										
			Initial							
			Proc SAR							
Source: Selected Acquisition F	Reports	12/31/X1	12/31/X2	12/31/X3	12/31/X5	9/30/X6	12/31/X6	9/30/X7	12/31/X7	12/31/X8
		Current	Current	Current	Current	Current	Current	Current	Current	Current
TRL Marker	TRL	Est	Est	Est	Est	Est	Est	Est	Est	Est
Milestone I	3	12/1/X0	12/1/X0	12/1/X0	12/1/X0	12/1/X0	12/1/X0	12/1/X0	12/1/X0	12/1/X0
Milestone II ATP	4	6/1/X2	6/1/X2	10/1/X2	10/1/X2	10/1/X2	10/1/X2	10/1/X2	10/1/X2	10/1/X2
PDR	5	7/1/X2	7/1/X3	10/1/X3	10/1/X3	10/1/X3	10/1/X3	10/1/X3	10/1/X3	10/1/X3
CDR	6	12/1/X5	12/1/X5	12/1/X5	7/1/X6	8/1/X6	8/1/X6	8/1/X6	8/1/X6	8/1/X6
FCA/PCA	7	6/1/X7	6/1/X7	6/1/X7	6/1/X7	6/1/X7	6/1/X7	6/1/X7	6/1/X7	7/1/X7
1st Flight		7/1/X7	3/1/X7	3/1/X7	1/1/X7	9/1/X8	7/1/X7	7/3/X8	3/1/X9	12/1/X8
IOC	8	4/1/X7	4/1/X7	4/1/X7	4/1/X7	4/1/X7	9/1/X8	2/1/X9	3/1/X9	12/1/X8
Baseline # of Months Planned		58.0	58.0	54.0	54.0	54.0	71.1	76.1	77.0	74.1
%Sched			0.00%	-6.91%	-6.91%	-6.91%	22.49%	31.16%	32.75%	27.65%
Dev Quantity		2	1	1	1	1	1	1	1	1
Procurement Quantity		0	200	200	200	200	200	200	200	149
Total Quantity		2	201	201	201	201	201	201	201	150
Development		\$1,419.4	\$918.6	\$788.4	\$836.3	\$1,013.6	\$1,002.3	\$1,076.3	\$1,137.5	\$1,121.9
Procurement		\$0.0	\$53,436.0	\$54,039.8	\$58,169.1	\$59,905.8	\$65,284.2	\$67,736.1	\$103,071.3	\$94,060.7
Milcon										
O&M										
Total Program BY\$ M		\$1,419.4	\$54,354.6	\$54,828.2	\$59,005.4	\$60,919.5	\$66,286.6	\$68,812.4	\$104,208.8	\$95,182.6
Total Program BY\$ M (AUC)			\$270.4	\$272.8	\$293.6	\$303.1	\$329.8	\$342.4	\$518.5	\$634.6
Percent Cost Growth			0.0%	0.9%	8.6%	12.1%	22.0%	26.6%	91.7%	134.7%
Months from Milestone I		13.0	7.0	15.0	39.0	48.0	51.0	60.0	63.0	75.1

Missile System Programs

From SAR Data:

Time to Mature Technology from TRL=4 to TRL = 9

TRL	EELV	MMIII-GRP	Average
4	0.00	0.00	0.00
5	12.00	30.05	21.02
6	46.03	47.01	46.52
7	56.02	55.00	55.51
8	74.10	83.05	78.57
9		194.10	194.10

Utilizing the average schedule of EELV and GRP from the previous slide and the cost growth of EELV:

$$r = \frac{ln(1 + Cost Growth\%)}{\# Months}$$

	"r" Rate of Cost	Growth / N	"t" Time t e	<mark>o Mature T</mark>	echnology	
Phase Po	L	М	Н	L	М	Н
ATP	0.00%	0.00%	0.00%	0.0	0.0	0.0
PDR	0.03%	0.04%	0.04%	12.0	21.0	30.0
CDR	0.20%	0.25%	0.28%	46.0	46.5	47.0
FCA	0.38%	0.42%	0.47%	55.0	55.5	56.0
IOC	0.92%	1.09%	1.13%	74.1	78.6	83.0

Technical Maturity Cost Factors (TMCF)

For EELV:

$TMCF = e^{rt}$

	L	Μ	Н	
ATP	1	1	1	
PDR	1.003	1.009	1.011	
CDR	1.097	1.121	1.123	
FCA	1.104	1.266	1.392	
	1.978	2.347	2.545	

GAO Study Comparison

The program unit cost (FY 07 \$M) comparison from the GAO study:

Beginning of Program:	\$88.256
Latest 12/2005:	\$207.101
Percent Change:	134.7%
Percent Change from SAR:	134.7%

GAO Source: http://www.gao.gov/new.items/d07406sp.pdf

Table of Results (PAUC)

Vehicle	2001 \$M	BY 95 \$M	BY 95 \$M	BY 95 \$M	BY 95 \$M	BY 95 \$M	2006 \$M
	ATP	ATP	PDR	CDR	FCA/PCA	IOC	IOC
Vehicle A	40	37.317	37.642	41.825	47.243	87.564	101.320
Vehicle B	70	65.305	65.873	73.193	82.676	153.237	177.310
Vehicle C	90	83.963	84.694	94.106	106.297	197.019	227.970
Vehicle D	110	102.622	103.514	115.018	129.919	240.802	278.630
Vehicle E	140	130.609	131.746	146.387	165.351	306.475	354.620

Graph of Results

Launch vehicles A, B, C, D, & E

Risk Assumptions...

- Example Vehicle: LV-E
- Cost in FY 06\$
- Buy schedule consisting of 10 Development units and 100 Production units
- -10%, +20% triangle risk bounds on all lower level WBS elements

Creating Burn Rate v. Schedule v. Probability of Success

Summary

- SAR data provides information on trends, cost growth, and schedule
- Deficiencies in SAR data from EELV since the program is "family of families" (ATLAS & DELTA)
- Dependent variable represents commercial price quotes for each vehicle configuration for liquid with or without solid strap-ons
- Cost growth rates developed from historical data in SARs
- This methodology can be applied to mature the expected cost on an ongoing program to a TRL 8 or 9 level
- Our model's prediction level is validated by a GAO study