Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Life Cycle Cost Normalization for Comparability

By:

Presentation to: 2007 Joint ISPA-SCEA International Conference and Workshop 12-15 June 2007

> Mr. Kirk L. Hoy Mr. Kurt Willstatter Summit Engineering Group 102 Paul Mellon Court, Suite 1 Waldorf, Maryland 20602 301-645-3535 (-3950 fax)

Khoy@summit-group.com Kwillstatter@summit-group.com www.summit-group.com

Preface

- This briefing focuses on Life Cycle Cost (LCC) 'normalization processes' developed and used by Summit Engineering Group
- The completeness, accuracy, and comparability of the LCC Data and Cost 'Metrics' were/are key requirements

Discussion Topics

- Background
- Case Study
- Cost as a Key Consideration
- Cost Groundrules and Assumptions
 - Quantity Profiles
 - WBS Elements
 - Calculation & Reporting of Cost Metrics
- LCC Model / Document Deliverables
 - Due Dates
 - Criteria & Maturation Schedule
- Questions

Background

- Summit Engineering Group has developed and refined this approach over several engagements
 - DARPA Unmanned Combat Armed Rotorcraft (UCAR) program
 - DHS Counter-MANPADS (CM) program
- Common traits
 - Multiple vendors developing LCC for differing approaches to common capability
 - Strong emphasis on meeting cost targets
 - Multi-phased program
 - LCC impacts that extended far beyond the program

Case Study

- DHS Science and Technology (S&T) Directorate tasked with demonstrating the technical feasibility, assessing life cycle costs, and evaluating the effectiveness of protecting commercial aircraft against the threat of Man-Portable Air Defense Systems (MANPADS)
- Primarily focused on mature Directed Infrared Countermeasure (DIRCM) systems
 - Self-contained pod
 - Distributed installation
- Complex problem due to
 - Multitude of aircraft types (Wide-body vs. Narrow-body)
 - Varying flight profiles as a function of aircraft type
 - Multiple operating environments (Cargo vs. Passenger)
 - Potentially large lost revenue costs for installations that fall outside normal maintenance cycles

Acronyms

- A/C = Aircraft
- CM = Counter-MANPADS
- DHS = Department of Homeland Security
- DIRCM = Directed Infrared Countermeasures
- ITAR = International Traffic in Arms Regulation
- LCC = Life Cycle Cost
- MFHBF = Mean Flight Hour Between Failure
- MTBF = Mean Time Between Failure
- MTBUMA = Mean Time Between Unscheduled Maintenance Action

- NB = Narrow Body
- OEM = Original Equipment Manufacturer
- O&S = Operations and Support
- P³I = Pre-Planned Product Improvement
- RDT&E = Research, Development, Test, and Evaluation
- STC = Supplemental Type Certificate
- $T_1 = First Unit$
- WB = Wide Body

Cost as a Key Consideration

- Increased Emphasis on Life Cycle Cost (LCC)
- All Stakeholders Need Insights into Applicable Costs
 - Planning and Budgeting for Potential Implementation Impacts
- Eliminate Surprises
 - Build and Install Counter-MANPADS Units on Commercial Aircraft
 - Operations, Support, and Disposal Activities
 - FAA Certifications (Across All Applicable Aircraft Models)
 - Relevant Security & ITAR Export Controls
 - Emergency Ground Notification Policies & Procedures

Goal: Minimize Impacts to Commercial Aviation !

DHS Counter-MANPADS Cost Goals

Constant GFY03 \$

	Threshold	Goal
Unit Cost	<\$1M for 1,000 th Unit	<\$500K for 1,000 th Unit
O&S Cost	<\$300 per Takeoff and Landing	<\$150 per Takeoff and Landing

<u>Unit Cost</u> = Average Cost of Labor and Material for Counter-MANPADs Equipment, Aircraft Modifications, Installation of Counter-MANPADs Equipment, and associated Systems Engineering/Program Management, Data

<u>O&S Cost</u> = Average Cost of Labor and Material for Operating and Maintaining the Counter-MANPADs Equipment (H/W and S/W) and associated Commercial Aircraft Impacts, including Training of Personnel, Applicable Fuel and Drag Impacts, Support Equipment & Facilities. [Note: Excludes Potential Revenue Losses for Reactions to Emergency Notifications.]

GFY = Government Fiscal Year

O&S = Operations & Support

DHS LCC Estimate Goals

- Comprehensive accounting of all foreseeable costs
- Explicitly address key LCC parameters
 - STCs and follow-on P3I / testing
 - Production rate tooling/test equipment (& for depot)
 - Investments to achieve reliability growth
 - CM system weight/drag impacts to fuel consumption
- Consistent approaches among vendors' LCC estimates so individual results could be leveraged
- Exercise LCC across various quantity profiles

Cost Groundrules & Assumptions

LCC 'Normalization'

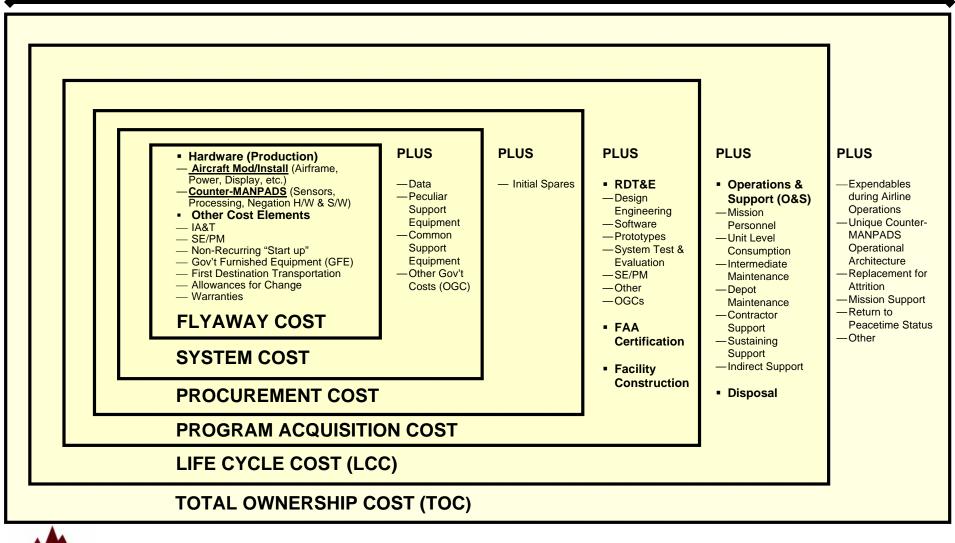
Summit Engineering Group role was to ...

- Develop comprehensive Cost Ground Rules and Assumptions
 - Define common assumptions for topics that were beyond the scope of the program
 - Develop application cases that would shed light on key production and installation constraints
 - Provide guidance on WBS structure and content
 - Promulgated and updated at each major program milestone
- Interface with vendors on developing detailed Manufacturing Rate Assessments
- Guide progressive maturation of LCC models and documentation

Overarching 'Normalization' Challenges

- Aircraft Demographics
- Common Work Breakdown Structure (WBS)
- DIRCM Configurations
- Aircraft Installation Approach
- Other

Aircraft Demographics


- ~350 Days per Year
- Wide body (WB)
 - Multi-aisle
 - Longer flights at altitude
 - More passengers per aircraft
 - ~2 flights/ day, ~6.8 hours/ flight
- Narrow body (NB)
 - Single-aisle
 - Shorter, more frequent flights
 - Fewer passengers per aircraft, but higher total passenger volume
 - ~5 flights/ day, ~2.3 hours/ flight
- Cargo is ~1,000 of total

Aircraft	Туре	Fleet Size*
777	WB	122
767	WB	334
747	WB	108
DC/MD10	WB	99
MD11	WB	74
A300	WB	140
A310	WB	64
A330	WB	29
A318/19	NB	279
A320/21	NB	368
717/727	NB	271
737	NB	1241
757	NB	617
DC8,9/MD80/90	NB	703
	Total**	4,449

* Circa 2006 ** Excludes ~1,600 regional jets

Civil Counter-MANPADS Cost Elements

Example Quantity Profiles*

- Civil Reserve Air Fleet (CRAF)-like [~ 100]
- All Wide-Body Passenger [~ 500]
- All Wide-Body [~1,000]
- All Narrow & Wide Body Passenger [~3,700]
- All Passenger and Cargo [~4,500]

*BACK Aviation Database, March 2006

Other 'Normalization' Assumptions

- Quantity of CM Systems and Aircraft Modified for both DIRCM Suppliers
- Production start & initial deployment in FY08
- 20-year service life
- 2-level maintenance (Airport and OEM/Depot)
- \$2.00/gallon (BY03) applied to CM system induced fuel consumption
- >525 A-kit installs/ year could a 'special visit' penalty

LCC Model/Document

TOC/LCC Deliverables

Deliverables	Due Dates			
LCC Model	Drop1	Drop 2	Drop 3	End of Phase (Drop 4)
LCC Document		Drop 1		End of Phase (Drop 2)

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Example of LCC Model Criteria Maturation

LCC/TOC Model Criteria		Deliverables			
	•				
	Drop 1	Drop 2	Drop 3	Drop 4	
1. Utilizes the updated DHS PO common	- Some	- All incorporated	- All incorporated	- All incorporated	
groundrules and assumptions in determining	incorporated				
the TOC and LCC projections.					
2. Establish and use a baseline LCC across	- As Applicable	- As Applicable	- As Applicable	- As Applicable	
all subsequent trade-off analyses.					
A logical and traceable LCC Model	 Complete; 	- Complete;	 Complete; 	 Complete; 	
structure exists.	updated as	updated as	updated as	updated as	
	necessary for Ph	necessary for Ph	necessary for Ph	necessary for Ph	
	Ш	Ш	III	III	
4. As applicable, each WBS element has an	- Most	- All calculation/	- Complete	- Complete	
estimated cost per year (at least BY03).	calculation/	linkage errors			
	linkage errors	fixed			
	fixed				
5. Contractor provides any other applicable	- As Applicable	- As Applicable	- As Applicable	- As Applicable	
amplifying cost groundrules and assumptions					
for its LCC/TOC estimates.					
6. Conducted at the lowest feasible	- Updates to	- Partially	- Complete	- Complete	
equipment level.	Phase II Level	incorporate			
		agreed to lower			
		level detail in			
		selected areas			
7. Separate visibilities into RDT&E,	- All	- All	- All	- All	
Procurement, O&S, Disposal, etc phase					
costs.					
8. Sensitive to reliability, maintainability,	- Updated some	- Updated most	- Assumptions	- Fully quantified	
quantity, CONOPS, OPTEMPO, unit	assumptions	assumptions	updated and	sensitivity to key	
production cost, and logistics program based on		based on	sensitivity	cost drivers	
planning factors (sites, number of units, etc.)	experience/actual	experience/actual	analyses run		
assumptions.	cost (T1,	cost (T1,			
	reliability, etc.)	reliability, etc.)			

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com **Example of LCC Document Criteria Maturation**

LCC Document Criteria	Deliverables			
	Drop 1	Drop 2		
1. Utilizes the updated DHS PO common	- Scope and intent of almost all DHS	- Scope and intent of all DHS Cost		
groundrules and assumptions in determining	Cost Groundrules and Assumptions	Groundrules and Assumptions		
the TOC and LCC projections.	updates are Addressed	updates are Addressed		
2. References that a baseline LCC was used	- Formal LCC Baseline and	- Relevant LCC Parameters for all		
across all trade-off studies performed.	associated parameters were used in	trade studies used and documented		
	the relevant trade studies			
3. Discuss the logic and structure of the	- All of the companion LCC Model	- All of the companion LCC Model		
companion LCC Model. Tells what is in it,	"features" discussed, including Ph III	"features" discussed, including Ph III		
Model Controls, and why relevant to CM.	updates	updates		
4. As applicable, summarizes each WBS	- The costs and approaches for all	- The costs and approaches for all		
element and the overall approach for deriving	WBS elements are summarized,	WBS elements are summarized,		
the estimated cost per year (at least in	including applicable Ph III updates	including all necessary Ph III updates		
BY03).				
5. Illustrates the software/hardware (CI) level	- All A-kit/B-Kit and O&S cost metric	- All A-kit/B-Kit and O&S cost metric		
of detail addressed. At least, the A-Kit, B-	Cl items addressed, including updates	CI items addressed, including all new		
Kit, O&S elements	for Ph III	Ph III information		
Separate visibilities into RDT&E,	- The costs for all WBS elements	- The costs for all WBS elements		
Procurement, O&S, Disposal, etc. phase	within each phase are separately	within each phase are separately		
costs are provided. Rationale for transitions	captured	captured		
provided.				
7. BOEs provide sufficient details so that the	- An updated for Ph III Estimate (BOE)	- Final validated Basis of Estimate		
cost estimates could be easily reconstructed	exists for each WBS element in the	(BOE) exists for each WBS element		
using the LCC Document. This includes	LCC Model	in the LCC Model		
source data, estimating method, equations,				
factors, etc. used to derive the cost of the				
WBS element.				

Cost Minimization Opportunities

- B-Kits (Counter-MANPADS Equipment)
 - Leverage Military Components & Commercial Practices
- MTBF → → MTBUMA and Impacts on \$/Flight
 - Enhance Reliability and Security
- Deployment Schedule
 - Match Installs to Airlines' Heavy Maintenance Capacity
 - Goal is ~ \$0 Lost Revenue
- A-Kits (Provisions for B-Kits)
 - Investigating OEM Forward Fit Options/Plans

MTBF = Mean Time Between Failure

MTBUMA = Mean Time Between Unscheduled Maintenance Action

Cost Metrics

- All of the Cost Metrics should be calculated for each of the Quantity/Installation profiles
- The Composition (what WBS elements are used) for the Cost Metrics should be clearly Traceable to the LCC Model and LCC Document
- The Cost Metrics to be reported in the LCC Document
 - Unit Flyaway Cost
 - Installation Cost
 - O&S Cost per Take Off / Landing
 - Separate Cost by each Phase (RDT&E, Production, O&S, Disposal)
 - Total Ownership Cost

Examples of LCC Sensitivities

DHS was interested in understanding the sensitivities of the LCC estimates to various 'Attributes', for example ...

Attribute	+/-%	Low	LCC	High
\$/STC (New/Amend)	20		1.000	
CM System T ₁	15		1.000	
CM System Learning Curve	5		1.000	
Fuel (\$/gal)	25		1.000	
Fleet Drag (%)	20		1.000	
Installed Weight (lbs)	10		1.000	
Initial Reliability (MFHBF, WB/NB)	25		1.000	
Order Quantity	5		1.000	

'Normalization' Insights

- Comparability of various LCC models is achievable
 Requires concerted effort and focus throughout the program
- Need firm understanding of the desired 'end state'
- Must think through key 'cost drivers'
 - Those under the control of the vendors
 - Those outside the control of the vendors (assumptions)
- Assumptions must remain stable over a given phase of the program
- Definite LCC differences due to system configuration and not basic assumptions

Questions?

Presenter Biographies

- Mr. Kirk L. Hoy
 - Sr. Principal at Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BS/BA Industrial Engineering/Economics (Lehigh University)
 - MS Systems Engineering (Virginia Tech)
 - 23+ years of systems engineering and cost estimation/analysis experience
- Mr. Kurt Willstatter
 - Sr. Principal at Summit Engineering Group
 - Certified Cost Estimator/Cost Analyst (SCEA)
 - BA Biology (Texas A&M)
 - MS Operations Research (Naval Post Graduate School)
 - 15+ years of systems engineering, modeling & simulation, cost estimation experience
 - 20 years of Navy operations and systems engineering

