An Intuitive Application of Cost Risk Analysis to a Logistics Requirements Funding Summary (LRFS)

SCEA Conference – Orlando, FL June 2012

Contents

- Background and Overview
- Approach
- Interface
- Backup Slides

Background and Overview

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com LRFS Cost Estimating Tool: Background

- The Uncertainty Modeling capability (UMC) is incorporated into the LRFS Cost Estimating Tool (CET)
- LRFS CET is a MS Excel based, user-friendly tool designed to allow program managers and logisticians to quickly generate LRFSs for all types of Marine Corps programs
- The CET includes a library of cost models for all the ILS disciplines and incorporates statutory and regulatory requirements
- The CET enables users to:
 - Provide a more efficient, effective and accurate means of developing LRFSs
 - Provide visibility of logistics support requirements
 - Inform resource and assessment sponsors of logistics support requirements
 - Serve as the format for presentation of support and associated funding requirements throughout program development at all acquisition milestone decision forums
 - Can be tailored to meet the program's support objectives
 - Support LCCE, POM submission and budgetary decisions

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Why include Uncertainty Analysis in an LRFS?

Point estimates alone are insufficient for good decisions"(1)

- In a program's early phases, knowledge about how well technology will perform, whether the estimates are unbiased, and how external events may affect the program is imperfect
- For management to make good decisions, the program estimate must reflect the degree of uncertainty, so that a level of confidence can be given about the estimate
- The difference between Risk and Uncertainty
 - Risk is the chance of loss or injury. In a situation that includes favorable and unfavorable events, risk is the probability that an unfavorable event will occur
 - Uncertainty is the indefiniteness about the outcome of a situation. It is assessed in cost estimate models to estimate the probability that a specific funding level will be exceeded

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com LRFS CET Uncertainty Modeling Capability: Overview

- The purpose of the CET's UMC is to provide an intuitive process for logisticians to produce uncertainty adjusted LRFS estimates
 - Allow logisticians to produce uncertainty adjusted estimates that are backed by USMC and DoD standards
 - Report uncertainty-adjusted outputs at varying confidence levels for improved budgeting and decision making
- UMC's simulation engine is entirely MS Excel based
 - All statistical analysis is performed by MS Excel functions
 - Simulation, allocation, and phasing processes performed by Visual Basic for Applications (VBA)
- UMC is designed to be portable within the USMC Program Offices and MARCORSYSCOM
 - Simulation capabilities are contained within a MS Excel workbook output by the LRFS CET
 - Can be distributed independent of the LRFS CET and only requires MS Excel version 2007

Approach

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com UMC Approach: Uncertainty Modeling Process Map

1. Develop Point Estimate: LRFS CET Outputs

- The necessary inputs for the UMC Monte Carlo (MC) simulation process are Point Estimate (PE) and Coefficients of Variation (CV)
- > The Point Estimates is the standard output of the LRFS CET
 - Generated with the aid of empirical cost data and CERs
 - Refined by logisticians and program subject matter experts
 - Developed in Base Year dollars and escalated to adjust for inflation and outlay
- Default Coefficients of Variation are provided by the LRFS CET based on program maturity
 - Default CVs derived from USMC Risk Standards Fan Chart (slide #21) and POPS 2.0 CV Standards (slide #22) (more complete discussion on slides 7 and 8)
 - LRFS CET interface allows logisticians to specify a confidence level of *Low*, *Medium*, or *High* to customize default CVs at the module level
 - Within the UMC workbook CVs can be customized for every element that is subject to simulation at the discretion of the user

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com 2. Uncertainty Specification: Relating CV to Program Maturity

- POPS 2.0 standards prescribe estimate health based on CV and program maturity, whereas the Risk Factors Fan Chart (RFFC) relates confidence level to CV by program maturity
- The figure above denotes the RFFC superimposed on the POPS 2.0 CV standards chart
 - The CVs corresponding to high confidence recommended by the RFFC are shown to be overly optimistic by POPS standards

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com 2. Uncertainty Specification: Relating CV to Program Maturity

CETUM Default CV Selection and POPS 2.0 CV Standards

- The LRFS CET requires logisticians to enter dates for MDD, Milestones A,B,C and FRPD
 - The time of the estimate relative to specified milestone dates is used to interpret program maturity
 - UMC's CV selection is more pessimistic than the CVs prescribed by the RFFC

F	Post- Milestone	High	Medium	Low		
	MDD	45%	60%	80%		
	Α	35%	50%	60%		
	В	25%	35%	50%		
	С	15%	25%	35%		
	FRPD	15%	20%	30%		

UMC Default CV by Program Maturity

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com 2. Uncertainty Specification: Distribution Modeling

- UMC models each child level element's total program cost as a Lognormal distribution
 - The Lognormal distribution can increase without limits but cannot fall below zero; most of its values occur near the mode
 - Typical applications include labor rate CERs and factor methods
 - The LRFS CET's CER database consists of 75% labor based models, and 25% factor based models
- The PE position is modeled as the mode
 - The mode of a discrete lognormal distribution is the value at which its probability mass function takes its maximum value
 - In other words, it is the value that occurs with the greatest frequency

Histogram of Lognormal distribution; mode = 100, CV = .30

3. Simulation: Generating Correlated Random Variables

- ▶ UMC relies on MS Excel's built in random number generator (RNG) to sample RVs ~ U(0,1)
 - The RNG in MS Excel versions 2003 and later has been verified as a quality RNG by passing the DIEHARD tests as well as additional tests developed by the NIST(1)
- UMC simulates defined correlation via the Iman-Conover Method
 - Iman-Conover method induces rank correlation through the creation of a reference distribution that has exactly the desired linear correlation of a target correlation matrix
 - The RV matrix is then re-ordered to have the same rank order as the reference distribution
 - The result is a RV sample with rank correlation equal to the reference distribution which has the desired linear correlation
- UMC's target correlation matrix was developed through subjective correlation
 - Pearson's correlation coefficient (ρ) equal to 30% applied to all elements
 - $-\rho = 75\%$ applied to elements with documented or perceived interdependencies

	Positive Correlation	Negative Correlation
Uncorrelated	0%	0%
Small Amount of		
Correlation	30%	-30%
Large Amount of		
Correlation	75%	-75%

Subjective Correlation: SSCAG Space Systems Cost Risk Handbook

3. Simulation: Distribution Sampling

- UMC transforms correlated RVs ~ U(0,1) to the LogNormal distribution via the Inverse CDF technique (CDF⁻¹)
 - Accomplished via the MS Excel Function "=LogInv()" requiring parameters Mean and StDev
 - The parameters *Mean* and *StDev* are analytically derived from the PE developed by the LRFS CET and the CV that corresponds to the user selected confidence level (Math Appendix I, slide #23)
- Once simulated, child element distributions are combined to form parent level distributions
 - Parent's statistical characteristics are defined by the combined effects of children distributions

CDF⁻¹ Technique Mapping RV~U(0,1) to CDF

3. Simulation: Initial Benchmarking

- The LRFS CET module representing Manpower, Personnel and Training (MPT) was simulated for benchmarking purposes
 - MPT is a good test candidate because it is one of the largest modules and contains the most complex parent-child hierarchy
- UMC generated percentiles and descriptive statistics are within ~1% of the results produced by ACEIT and Crystal Ball (CB)

Common Descriptive Statistics BY\$K

	ACEIT	СВ	UMC	%Δ ACEIT	% Δ CB
Mean	\$15,239	\$15,202	\$15,220	0%	0%
StDev	\$3,296	\$3,326	\$3,343	0%	0%
CV	22%	22%	22%	0%	0%

MPT Project Total PE = \$1390K

MPT Project Total BY\$K

Test Assumptions:

MPT module's CES element's project level PEs were simulated Each element modeled as LogNormal distribution; PE position = mode CV = .30 for all elements, blanket correlation of .50 defined 5K LHC trials run in ACEIT, 5K MC trials run in CB and UMC

4. Uncertainty Allocation

- Uncertainty confidence levels are applied at the project total level, and then CES elements are adjusted
 - Confidence levels are not additive
- UMC recursively prorates child values according to weighted averages of child StDVs to ensure summation to the correct parent confidence level (Math Appendix II, slide #24)
 - UMCs allocation process follows cost industry standards and best practices (1)
- UMC calculates the 20th, 30th, 40th, 50th, 60th, 70th, and 80th percentiles for the project level total cost and stores the allocated values for the CES elements

Total	800	
Module 1	200	
1.1	85	
1.2	130	
Module 2	500	
2.1	225	
2.2	300	P
Module 3	118	
3.1	45	
3.2	68	

Booz | Allen | Hamilton

UMC uses Multi-Tiered Recursive Allocation

5. Escalation and Phasing

- The LRFS CET includes adjustment factors for inflation and outlays
 - Factor tables taken from Navy Cost Analysis Inflation Workbook
- Factor tables are included in the UMC workbook and allow for the adjustment of allocated BY\$ confidence levels to reflect TY\$
- Allocated confidence levels for BY\$ and TY\$ are phased over the system life for each CES element
 - Phasing factors are determined by the ratio of yearly PE to total project PE
 - The phased estimates sum to the correct yearly total confidence level as a result of the allocation process

Interface

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com UMC: LRFS CET Interface

Within the LRFS CET, users are allowed to specify confidence level	 LRFS CE	T: Uncertainty Adjusted Output Form			×			
APPN with an accoriated		RDTEN Uncertainty Specifications Specify level of confidence by selecting Low, Medium	C64	Coefficient				
AFFIN WILL ALL ASSOCIATED		or High. Or select Override to customize.	Lonridence	of Variation				
COSt		U1. ILS Management:	High 💌	0.45				
		D2. Performance Based Logistics:	Low	0.8				
		D3. Design Interface:	Medium 🔻	0.6				
		D4. Maintenance Planning:	Medium 🔻	0.6				
		D5. Support Equipment:	Medium 🔻	0.6				
		D6. Supply Support:	Medium 💌	0.6				
		D7. Human Systems Integration:	Medium 💌	0.6				
		D8. Manpower Personnel and Training:	High 💌	0.45				
		D9. Packaging Handling Storage and Transportation:	Medium 💌	0.6				
		10. Configuration Management:	Medium 💌	0.6				
		11. Technical Data and Technical Publications:	Low 🔽	0.8	ΙIΓ	Intui	itive confidence	
		12. Environmental, Safety and Occupational Health:	Medium 💌	0.6				
		13. Facilities:	Medium 💌	0.6				
		14. Computer Resources Support:	Medium 💌	0.6	1	"Higi	n″, "Medium″, or	
		15. Automated Information Technology (IUID - RFID):	Low Medium	16			"Low"	
		16. Disposal:	High Override	0.6				
			1					
	Adj	ect Generate Output to generate Risk justed output, or select Return to Output Form	to Output G	Generate Output	_		Once confidence	e levels are
	to	cancel and return to output form.					specified, an ind	dependent
							"I Incertainty We	rkbook" is
							create	u

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com UMC: Uncertainty Workbook Interface

		Confidence Level Disp	layed: P	oint Estimate 👻				
	_	Element	Point Estima	ate 🔼	TOTAL	FY11	FY12	FY13
Cost values for all		LRFS USMC	Mean 20%		\$49,095	\$0	\$4,741	\$1,917
CES elements		ILS Management	30%		\$7,776	\$0	\$843	\$645
stored at multiple		Performance Based Logistic: Design Interface	40%		\$1,741	\$0	\$125	\$0
confidence levels by APPN			50% 60%		\$8,875	\$0	\$577	\$577
		Maintenance Planning	70%	-	\$1,602	\$0	\$243	\$158
			Su	Support Equipment			\$1,319	\$0
		Supply Support			\$2,924	\$0	\$0	\$0

Summary Statistics BY\$K	RDTEN	PMC	оммс
Mean	\$57,169	\$67,994	\$83,661
StDeV	\$3,675	\$12,199	\$27,008
CV	6%	18%	32%

Backup Slides

Figures

Math Appendices

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com USMC Risk Standards Fan Graph

		Coefficient of Variation (CV) standards												
Gate	POPS 2.0 measure			4.007			254					500		co.,
Gate 1		0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	60%>
Gate 2	2.8.5			CV < 25%			25% < 0V < 35%							
Gate 3	3.8.5	CV < 20%				20% < 0	CV < 30% 30% <			30% < CV < 50%			< CV < 60%	60% < CV
Gate 4	4.8.5		CV < 15%		15% < 0	V < 25% 25% < CV < 35%		35% < CV < 50%				50% < CV		
Gate 5	5.8.5		CV < 15%		15% < 0	CV < 25%	25% 25% < CV < 35%			35% < CV < 50%			50% < CV	
Gate 6.1	6.ibr.8.5	CV <	10%	10% < C	V < 20%	2	0% < CV < 35	%		35% < CV <	50%		50% < C\	/
Gate 6.2	6.cdr.8.5	CV <	10%	10% < C	V < 20%	2	0% < CV < 35	96		35% < CV <	50%		50% < C\	r
Gate 6.3	6.cpd.8.5	CV < 5%	5% < CV < 10%	10% < C	V < 20%	20% < (20% < CV < 30%		30% < CV					
Gate 6.4	6.frp.8.5	CV < 5%	5% < CV < 10%	10% < C	V < 20%	20% < 0	CV < 30%				30% < CV			
Gate 6.5														

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com **Math Appendix I: Deriving LogNormal CDF⁻¹ Parameters**

Let $Y = e^X$ with $X \sim N(\mu, \sigma^2)$. Therefore, $Y \sim Ln(\alpha, \beta^2)$ such that:

$$\beta = \left(\left(e^{\sigma^2} - 1 \right) e^{2\mu + \sigma^2} \right)^{1/2}$$
 Eq. (2)

To solve for σ we note that the square of the coefficient of variation of Y is equal to:

$$CV_Y = \left(rac{eta}{lpha}
ight)^2 = e^{\sigma^2} - 1$$
 Eq. (3)

Solving Eq. (3) for σ in terms of α and β yields:

$$\sigma = \ln(\alpha) - \frac{1}{2} \ln\left(\left(\frac{\beta}{\alpha}\right)^2 + 1\right)$$
 Eq. (4)

The UMC process simulates Y via the MS Excel function LOG.INV with arguments μ_x and σ_x . The known parameters for Y are the point estimate (PE_Y) and the coefficient of variation (CV_Y) . Given the known parameters, and by use of Eq. (4) we calculate the required arguments, μ_x and σ_x , as follows:

$$PE_{y} = e^{\mu_{x} - \sigma_{x}^{2}} \Rightarrow \mu_{x} = \ln\left(PE_{y}(CV_{y}^{2} + 1)\right)$$

$$\sigma_x = \ln(CV_Y^2 + 1)^{\frac{1}{2}}$$

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com **Math Appendix II: Uncertainty Allocation Overview**

(1) First we calculate the target confidence level (TCL) values for a parent and its child elements and define Δ_P :

$$\Delta_P = C_P - \sum_{i}^{N_P} C_{Pi}$$

Where C_P equals the parent TCL value, N_P equals number of child elements, and C_{Pi} is TCL value of the *i*th child. Therefore, Δ_P is the amount by which we will need to adjust child element TCL values to ensure summation to the correct parent TCL value.

(2) Next we prorate Δ_P among child elements to get adjusted cost for child element *i*, denoted here by P_i .

$$P_i = C_{pi} + \Delta_P \frac{\sigma_i}{\sum_j \sigma_j}$$

Where σ_i is the standard deviation of child *i*, and $\sum_j \sigma_j$ is the sum of the standard deviations for all child elements.

(3) For each child element that is also a parent, we repeat the process by distributing the adjusted cost, P_i , among *i*'s child elements. Analogous to step 1 we define Δ_{P_i} :

$$\Delta_{P_i} = P_i - \sum_{i}^{N_P} C_{P_i}$$

(4) We continue to iterate steps 1 and 2 until Δ_P is distributed to the lowest level on the parent-child hierarchy.

Questions?

James Boswell Senior Consultant Booz | Allen | Hamilton Booz Allen Hamilton Inc. Tel (703) 432-5010 Boswell_James@bah.com