U.S. AIR FORCE

Faster & Better Ways to Determine an Engineering Labor Rate for Pre-Award Development Contract Cost Estimates

Presented by ESC/FMC

- Scope
- CPRs vs. FPRAs
- Fully-burdened rates
- ESC study
- Conclusion

- Pre-RFP estimate: what is an appropriate composite engineering labor rate to use?
 - Multiple qualified contractors expected to bid
 - Some insight about specifics of the program, e.g. number of labor hours, complexity
 - Some insight as to which contractors likely to bid
 - Limited data existing from potential bidders (past CPRs & current FPRAs only)

Available Methods

- Analysis of Contract Performance Reports (CPRs)
- Study of Forward Pricing Rate Agreements (FPRAs)

U.S. AIR FORCE

Strengths

- Most reliable sources of primary cost data available to analysts
- Elements such as change over time easily identifiable
- Wealth of recent CPRs from various programs available on DCARC EVM-CR

Weaknesses

- Format varies from program to program and contractor to contractor
- Difficulties identifying and allocating all relevant costs to a direct labor rate

Nard Pricing Rate Agreements

Strengths

- Burdening statistics explicitly stated, easy to apply
- Figures are presented for various years into the future
- Easily attainable via DCARC, DCMA Help Desk, local organizations

Weaknesses

- Only large contractors have FPRA negotiated with Government
- Rates are subject to change
- Most accurate in near term
- Difficult to determine proper mixing of labor categories

Why Use FPRAs?

Format of CPRs can lead to many problems, likely errors

 FPRAs are easier to read, understand and apply; ultimately can lead to more accurately estimating rates in a shorter timeframe than CPRs

- FPRAs provide analysts with all relevant information to devise a fully-burdened labor rate
- LR_{Bur}=LR_{Dir}+(LR_{Dir}*OH)+(LR_{Dir}*GA), where
 - LR_{Bur} is the fully-burdened (loaded) labor rate
 - LR_{Dir} is the direct labor rate
 - OH is the overhead burdening rate (expressed as a decimal)
 - GA is the general and administrative costs burdening rate (expressed as a decimal)

Fully-Burdened Rate Example

U.S. AIR FORCE

	2009 Labor	2010 Labor	2011 Labor
Jr. Engineer	\$40.00	\$46.00	\$50.00
Engineer	\$50.00	\$56.00	\$60.00
Sr. Engineer	\$65.00	\$71.00	\$74.00
O/H Burden	130%	128%	127%
G&A Burden	20%	19%	21%

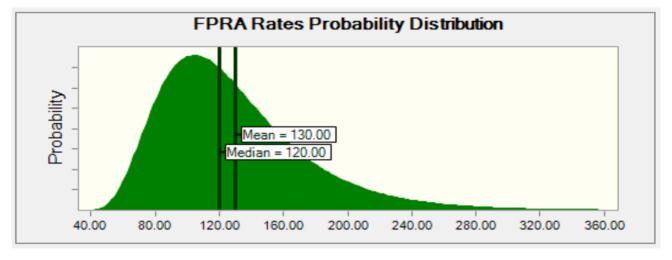
Using 2010 data for a Sr. Engineer:

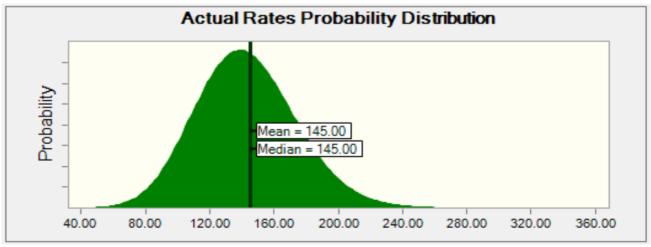
$$LR_{Bur}=LR_{Dir}+(LR_{Dir}*OH)+(LR_{Dir}*GA)$$

 $LR_{Bur}=71+(71*1.28)+(71*0.19)$
 $LR_{Bur}=$175.37$

ESC Labor Rates Study

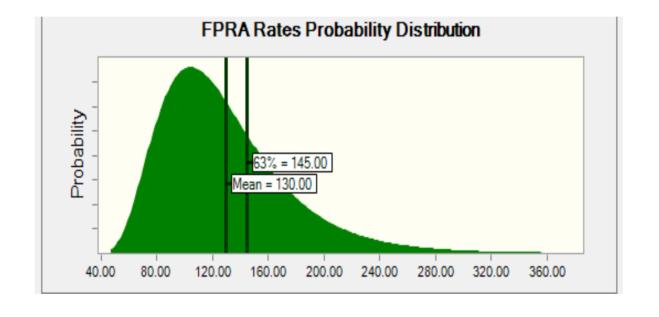
- ESC/FMC undertook effort to study best practices for labor rate formulation based on FPRAs
- Two datasets compiled
 - FPRA set gathered from DCARC and inputs from ESC organizations
 - 14 FPRAs representing 5 contractors, 39 total observations, lognormal distribution
 - Actual rates gathered from ESC organizations' inputs
 - 27 total observations. One datapoint excluded as it was an extreme outlier representative of a sole-source environment on a highly specialized platform.
- Primary challenge: Determining rate that accounts properly for labor/skill mixing




	FPRA Set	Actuals Set
Mean	\$130	\$140
Median	\$120	\$145
Minimum	\$65	\$85
Maximum	\$220	\$200

- In comparing the summary statistics of each group the major flaw of the FPRA is revealed: the aggregation of FPRA data does not accurately account for labor skill mixing
 - FPRA data clearly weighs too heavily the rates of junior-level laborers
 - Typically used method of applying mean or median of FPRA dataset flawed

Comparison Cont.



Different statistical method must be applied to the dataset

- 63rd percentile of the FPRA dataset has been found to be the closest match to the mean of the actuals, a statistic which inherently incorporates skill mixing
- Easy to calculate using Microsoft Excel

FPRA Mean vs. FPRA 63d

Limitations

- Limited dataset
- Reliance on local program offices to provide data
- Analysis only done on composite engineering data, did not study whether practices would be applicable for other labor categories
- Devised as a better alternative to current methods being used— but still not to be a perfect approach!

Conclusion

- Better methodologies exist for estimating labor rates based on FPRAs
 - 63rd percentile method allows for up to 15-20% more accuracy compared to using mean or median against several ongoing programs
- Use intuition: when something looks wrong, it probably is; question it!

Special Thanks

- Thank you to the entire ESC cost community, especially ESC/FMC, Jim Campbell and Elaine Lee for continued support throughout the study
- Special thanks to Brian Fersch and Wes Tate whose advice and mentorship throughout the study were much appreciated!

Questions?

U.S. AIR FORCE

