AMethodology to Improve the Predictability of the CER with Insufficient Data in the Korean Weapons Systems R&D Environment

Contents

Introduction

The Limitations of the Cost Analysis In Korea

• No cost estimation tools suitable for Korean defense industry environment

• The insufficiency of R&D, production experiences of weapons systems

The Recently Changes to Strengthen the Cost Analysis System In Korea

• The Application of **TLCCSM** to Weapons Systems Acquisition Process

TLCCSM : Total Life-Cycle Cost System Management

• The Development of the Korean Version Cost Estimation Model

Goals

• Propose the Methodology and Process of CER Development Suitable for Korean Defense Industry Environment

• Propose the Methodology to Improve the Predictability of the CER with Insufficient

Data

Background

CER (Cost Estimation Relationships)

The relationship between the dependent variable of cost and the independent variable of cost drivers

How to Develop a CER?

• Regression Analysis

e most appropriate method

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{k}X_{ik} + \varepsilon_{i}$$

- The Assumption for the Linear Regression
 - $E(\varepsilon_i)$ for i = 1, 2, ..., n or, equivalently, -
 - $var(\varepsilon_i) = 1, 2, ..., n \text{ or, equivalently,}$ -
 - $cov(\varepsilon_i, \varepsilon_j)$ for Call $i \neq j$, or, equivalently, -

 $E(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k x_{ik}$ $\operatorname{var}(Y_i) = \sigma^2$

 $\operatorname{cov}(Y_i, Y_i) = 0$

If One or More assumptions do not hold ?

- The estimators may be poor
- If then, how to develop the CER if one or more assumptions do not hold ?
 - Step #1 : Analyze the characteristics of data
 - Step #2 : Select appropriate method and Apply it to the development of CER

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com CER Linear Combination Model

Introduction

Background

CER Linear Combination Mo

Case Study

Conclusion

What is a CER Linear Combination Model ?

The linear combined CER by administering the weight based on the degree of accuracy upon each of the single CERs

How to Develop a CER Linear Combination Model ?

- Develop the single CERs
- Select the single CERs to combine them
- Calculate the weights
- Combine the single CERs based the weights

 $\mathbf{CER} = W_1 CER_1 + W_2 CER_2 + \ldots + W_k CER_k$

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com CER Linear Combination Model (cont')

ntroduction

Background

CER Linear Combination Me

Case Study

Conclusion

Prior Experimental Analysis and Test for the Linear Combination Model

• Bates and Granger(1965)

Reduce the errors in comparison to the unassociated models through experimental analysis

• International Journal of Forcasting(1992)

83% of scholars participating in the verification test stated that the forecasted error for the combination model had been minimized

• Armstrong(1989, 2001)

The combination model reduced the error by average of 12.5% in comparison to the single model

Development Method for the CER Linear Combination Model

- Development Process
- Data Collection and Normalization
 - Data Analysis & the Dev. of a Single CER
 - Dev. Of CER Linear Combination Model

CER Validation

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Collection and Normalization

kground

CER Linear Combination Model

Case Study

Conclusion

Data Collection

- Definition of the scope of weapon system for estimating cost
 - Homogeneity and Consistency
 - Feasibility of the data collection

(Example) Armored vehicle and Tank? R&D cost / Product cost / O&S cost?

• Data collection

- Cost data as the dependent variable
- Cost drivers as the independent variable

(Example) Weight, Speed, Fire range, etc.

- The number of data
 - It is important in Korean defense environment
 - If *n* (the number of projects) -k (the number of cost drivers) ≥ 2 , feasible
 - If not feasible, stop/eliminate cost drivers/data generation ...

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Collection and Normalization (cont')

11111

Backgr

CER Linear Combination Model

Case Study

Conclusion

Data Collection (cont')

The most important thing is to collect the reliable data from authorized institutes or companies which produce those cost drivers

Normalization

Provide consistent data by neutralizing the impacts of external influences

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Analysis & The Dev. Of a single CER

Introduction

kground

CER Linear Combination Model

Case Study

Conclusio

Judgment & Solutions for Multicollinearity

Multicollinearity

The Independent variables and correlated among the cost drivers

Violate the assumption for the Linear Regression

Regression Coefficients and Estimated Values may not be confident

Judgment

Correlation Analysis : Correlation Matrix

Variance Inflation Factor(VIF): $VIF_k = 1/(1 - R_k^2) \ge 10$ $E(VIF_k) = \frac{1}{k} \sum_{i=1}^k (VIF_i) > 1$ **Condition Index(CI):** $\eta_j = \sqrt{\frac{\max\lambda}{\lambda_i}} > 30$

Solution

Eliminate one or more unimportant cost drivers among high correlated ones Apply the Principal Component Regression(PCR), Ridge Regression(RR)

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Analysis & The Dev. Of a single CER (cont')

Introduction

kground

CER Linear Combination Model

Case Study

Conclusio

Judgment & Solutions for Outliers

Outliers

Some residuals are much larger than the others

Unusual data may have a big influence on the regression model

Judgment

Studentized Residual, Studentized Deleted Residual Cook's Distance, Difference in Betas(DFBETAS), etc.

Solution

Eliminate outliers if data are enough

Apply the Robust Regression if data are not enough or important

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Analysis & The Dev. Of a single CER (cont')

ckground

CER Linear Combination Model

Case Study

Conclusion

Judgment & Solutions for Heteroscedasticity

Heteroscedasticity

The residuals disperse regularly

Violate the basic hypotheses for the least squares theory

The estimate of the regression coefficients may be inaccurate

Judgment

Solution

Weighted Regression

Development of a Single CER and Statistical test

Development of a Single CER

Apply the appropriate method

according to the characteristics of data

Statistical test of a Single CER

R², _{adj.}R², T-test, F-test

monly Acceptable Criteria

(

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dev. of CER Linear Combination Model

Introduction

ckground

CER Linear Combination Model

Case Study

Conclusio

Dev. of CER Linear Combination Model

Objective

 $Min(RMSE_1, RMSE_2, ..., RMSE_j)$

Subject to

$$C_{j} = \sum_{k=1}^{m} W_{jk} CER_{k}$$
$$\sum_{k=1}^{m} W_{jk} = 1$$

Definition of parameters

- *j* : Weight calculation method
- k: Single CER type

m: the number of selected single CERs of type k

 RMSE_{j} : RMSE value of C_{j} within R^{2} value ≥ 0.8

 C_j : Linear Combining CER of method j

 CER_k : Selected single CER of type k

 W_{jk} : Weight of CER_k with method j

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dev. of CER Linear Combination Model (cont')

Introduction

Background

CER Linear Combination Model

Case Study

Conclusion

Methods of placing the weight

Error Sum of Squares(SSE)

$$W_{jk} = (1 / SSE_k) / (\sum_{k=1}^{m} 1 / SSE_k)$$

where

- $SSE = \sum_{i=1}^{n} (y_i y_i)^2$
- y_i : Actual cost of observation *i* y_i^{s} : Estimated cost of observation *i*

• Mean Magnitude of Relative Error(MMRE) $W_{jk} = (1 / MMRE_k) / (\sum_{k=1}^{m} 1 / MMRE_k)$

where

MMRE =
$$(1/n) \sum_{i=1}^{n} [(|y_i - \hat{y}_i|)^2 / y_i]$$

n: Number of observations

Adjusted R²

$$W_{jk} = R_{adj,k}^2 / \sum_{k=1}^m R_{adj,k}^2$$

where

$$R_{adj,k}^{2} = 1 - [SSE/(n - (k+1))]/[SST/(n-1)]$$

SST(Total Sum of Squared deviations) : $\sum_{i=1}^{n} (y_{i} - \mathfrak{P}_{i})^{2}$

Partial Regression Coefficient

$$W_{jk} = \beta_k / \sum_{k=1}^m \beta_k$$

where β_k : Regression coefficient of selected single CER_k , $\sum_{k=1}^{m} \beta_k = 1$

20 / 40

• The Final CER Selection

R² or adjusted **R**² value over a commonly(generally) acceptable criteria

The minimum Root Mean Squared Error(RMSE) value

The comparison of the actual cost and the estimates

Mean Magnitude of Relative Error(MMRE)

$$MMRE = (1/n) \sum_{i=1}^{n} [(|y_i - y_i|)^2 / y_i] = (1/n) \sum_{i=1}^{n} MRE_i$$

Prediction al level l (PRED(l))

PRED(l) = q/n

where

- q: Observation number of $MRE_i \leq l$
- n: Total number of observations

Case Study

- Data Collection & Normalization
- Data Analysis & the Dev. of a Single CER
- Dev. Of CER Linear Combination Model

• Definition of the scope of weapon system

Artillery Weapon System / R&D Cost

• Data collection

Cost data	1	R&D Cost	5 1 3 V 1
Specification data	6	Max Range, Caliber, Weight, Length, Max rapidity of Fire, Continue rapidity of Fire	かけて

• The number of data

- The number of projects : 9
- The number of cost drivers : 6

(the number of projects) -6 (the number of cost drivers) ≥ 2 , it is feasible to develop

the CER by regression analysis

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Collection and Normalization (cont')

```
Introduction
```

ckground

CER Linear Combination Mo

Case Study

Conclusion

Normalization

Weapon	Max Range (km)	Caliber (mm)	Weight (kg)	Length (cm)	Max rapidity of fire (R/min)	Continuous rapidity of fire (R/min)	R&D cost (100M\$, 2010)
1	3.59	60	18	99	30	20	18.2027
2	1.8	60	21	82	30	18	12.7289
3	6.473	81	41	155	30	11	35.2546
4	4.737	81	81	130	12	5	17.8506
5	11.274	105	2,260	231	3	1	37.6372
6	14.7	105	2,650	392	5	2	27.069
7	18	155	6,890	701	4	2	43.0712
8	18	155	25,000	912	4		74.0739
9	41	155	47,000	810	6	2	1,342.85

Cost Driver Selection

• The selection for the variable was executed

R², Adj.R², Forward/Backward/Stepwise Regression, C(p) Selection

R ²	Adjusted R ²	Forward	Backward	Stepwise	C(p) Selection
Max	x Range, Weight,	Length	Caliber	Max Range,	Weight, Length

Feasible Cost Drivers : Max Range, Weight, Caliber, Length

Data Analysis (cont')

- Multicollinearity
 - Judgment
 - * Correlation Matrix

* VIF and CI

	Max Range	Caliber	Weight
Caliber	0.827	-	-
Weight	0.925	0.740	-
Length	0.818	0.964	0.804

Statistics	tatistics Max Range		Weight	Length	
VIF	15.76	30.2	14.54	29.74	
СІ	2.75	6.7	10.87	42.8	

Existence of multicollinearity

• Solution

- **#1 : Eliminate cost drivers(Max. Range and Length)**
- #2 : PCR, RR

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Analysis & The Dev. Of a single CER (cont')

Introduction

ground

CER Linear Combination Mo

Case Study

Conclusion

Data Analysis (cont')

Outlier

Judgment

* Studentized Residual, Studentized Deleted Residual, Cook's Distance, DFBETAS, etc.

Weapon	SR	SDR	Hat	Cook'	DFBETAS				
meapon	51C	SDR	Diag	Distance	Constant	Max Range	Caliber	Weight	Length
1	0.15	0.13	0.41	0	0.08	0.03	-0.07	-0.02	0.05
2	0.68	0.62	0.36	0.05	0.24	-0.09	-0.12	0.09	0.07
3	0.15	0.13	0.18	0	0	-0.01	0.01	0.01	-0.02
4	0.35	0.31	0.34	0.01	-0.09	-0.13	0.14	0.13	-0.15
5	-1.52	-2.04	0.53	0.52	1.54	0.65	-1.68	-0.72	1.74
6	-1.48	-1.91	0.69	0.98	-1.76	-2.44	2	2.59	-1.95
7	1.89	5.02	0.62	1.18	-1.86	1.02	1.04	-2.6	0.34
8	-1.94	-7.06	0.89	6.37	-0.44	10.48	-0.53	-6.62	-4.22
9	1.99	19.08	0.98	45.17	2.73	30.47	-3.84	24.81	-16.4

Outlier is suspected in the 9th data

Solution

- **#1 : Eliminate the 9th data**
- **#2 : Robust Regression**

The residuals disperse irregularly. So no heteroscedasticity

Development of a single CER

Feasible Single CERs according to the characteristics of data

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Data Analysis & The Dev. Of a single CER (cont')

Introduction

Backgrou

CER Linear Combination M

Case Study

Conclusion

0

Development of a single CER (cont')

Test statistics of single CERs

CER Type	Cost Driver	R ² (R ² _{adj})	Test result
Principal Component	Max range(A)	0.82 (0.80)	• Model Pr>F : 0.002 • Coefficient Pr> t : intercept=1, Prin1=0.002
Ridge	Caliber(B) Weight(C) Length(D)	0.93 (0.83)	 Model Pr>F : 0.047 Coefficient Pr> t : intercept=0.8337, A=0.636, B=0.372 C=0.099, D=0.311
Robust(LTS)	Caliber(B) Weight(C)	0.86 (0.81)	• Coefficient Pr>ChiSq : intercept=0.477, B=0.127, C=0.007
Linear()	Caliber(B)	0.89 (0.85)	• Model Pr>F : 0.004 • Coefficient Pr> t : intercept=0.509, B=0.187, C=0.043
Log-linear()	Weight(C)	0.78 (0.69)	• Model Pr>F : 0.023 • Coefficient Pr> t : intercept=0.431, B=0.218, C=0.832
Linear()	$W_{oight}(C)$	0.84 (0.81)	Model Pr>F : 0.001 Coefficient Pr> t : intercept=0.0005, C=0.0014
Log-linear()	weight(C)	0.69 (0.64)	• Model Pr>F : 0.011 • Coefficient Pr> t : intercept=0.0002, C=0.01

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dev. of CER Linear Combination Model

Introduction

kground

CER Linear Combination Mod

Case Study

Conclusion

Selecting the Single CERs

Criteria to select the single CERs

$R^2 \ge 0.8$, Confidence Level : 5%

CER Type	Cost Driver	R ² (R ² _{adj})	Test result
Principal Component	Max range(A) Caliber(B)	0.82 (0.80)	• Model Pr>F : 0.002 • Coefficient Pr> t : intercept=1, Prin1=0.002
Ridge	Weight(C) Length(D)	0.93 (0.83)	• Model Pr>F : 0.047 • Coefficient Pr> t : intercept=0.8337, A=0.636, B=0.372 C=0.099, D=0.311
Robust(LTS)	Caliber(B) Weight(C)	0.86 (0.81)	• Coefficient Pr>ChiSq : intercept=0.477, B=0.127, C=0.007
Linear(I)	Caliber(B)	0.89 (0.85)	• Model Pr>F : 0.004 • Coefficient Pr> t : intercept=0.509, B=0.187, C=0.043
Log-linear(I)	Weight(C)	0.78 (0.69)	• Model Pr>F : 0.023 • Coefficient Pr> t : intercept=0.431, B=0.218, C=0.832
Linear(II)	Weight(C)	0.84 (0.81)	• Model Pr>F : 0.001 • Coefficient Pr> t : intercept=0.0005, C=0.0014
Log-linear(II)	₩ EISH(40)	0.69 (0.64)	• Model Pr>F : 0.011 • Coefficient Pr> t : intercept=0.0002, C=0.01

 CER #]

 $Y_{PCR} = 5.747 + 0.714 Range$

 +0.127 Caliber + 0.001 Weight

 +0.016 Length

CER # 2

 $Y_{Lin2} = 23.52163 + 0.0021Weight$

32 / 40

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dev. of CER Linear Combination Model (cont')

Introduction

ckground

CER Linear Combination Mo

Case Study

Conclusion

Dev. Of CER Linear Combination Model

Formula

 $Min(RMSE_1, RMSE_2, RMSE_3, RMSE_4)$ subject to

$$C_{j} = \sum_{k=1}^{2} W_{jk} CER_{k}$$
$$\sum_{k=1}^{2} W_{jk} = 1$$

Definition of parameters

j: 1(Combining model by *SSE*), 2(Combining model by *MMRE*),

3(Combining model by R^2), 4(Combining model by regeression coefficient)

k : 1(PCR), 2(Linear regression 2)

Combination Models according to methods of placing the weight

	By SSE		By MMRE		By adj.R2		By Regression	
	CER	CER2	CER	CER2	CER	CER ₂	CER	CER2
SSE/MMRE/adjR ²	475-178	437-393	0.214	0.284	0.795	0-815		
Weights	0.479	0.521	0-570	0.430	0.495	0.505	0.469	0.543
Model	0-479*CER ₁ +	0.521*CER ₂	0-570*CER ₁	+0-430*CER ₂	0-495*CER ₁ +	0-505*CER ₂	D-469*CER	+0-543*CER ₂

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dev. of CER Linear Combination Model (cont')

Introduction

Background

CER Linear Combination Mo

Case Study

Conclusion

Model Selection

Comparison the RMSE and R² values of each combination model

		CER linear co	Single (1	ER model		
	by SSE	by MMRE	By adj.R ² by Regression		PCR	Linear
R ²	0.879	0.879	0.879	<u>0.880</u>	0.825	0-839
RMSE	7-3988	7.3974	7.3968	<u>7.3734</u>	12.582	8-5381

The final CER Linear Combination Model

 $C_4 = 15.46 + 0.3350 Range + 0.00598 Caliber + 0.0014 Weight + 0.0074 Length$

	CER Linear Combination Model	Case Study	Conclusion
		<u>NNNN</u>	NN

CER Validation

The comparison of the actual cost and the estimates

The CER linear combination model is closer to the actual cost than the linear regression model

Case Study	CER Linear Combination Model	
MMMM	N.N.	

CER Validation (cont')

Accuracy Improvement

	By SSE	By MMRE	By adj-R ²	by Regression
SSE	328.449	328-326	328-275	326-203
Accuracy improvement rate(%)	24.91	24.94	24.95	25.42

Accuracy improvement rate = $[1 - \min(SSE_k)/(SSE_j)] \times 100$

The accuracy of CER linear combination model is better than the other regression model in this case study

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com CER Validation (cont') Introduction Background CeR Linear Combination Model Case Study Conclusion

CER Validation (cont')

Mean Magnitude of Relative Error(MMRE)

 $MMRE = (1/n) \sum_{i=1}^{n} MRE_i = 0.23 \le 0.25$

	ľ	г	Э	4	5	6	7	8	Average(MRE)
MRE	0.154	0.594	0-328	0-286	0-194	0-228	0.056	0-028	0.23

Prediction al level l (PRED(l))

 $PRED(0.3) = q/n = 6/8 = 0.75 \ge 0.3$

The final CER Linear Combination Model is acceptable

Conclusion

- The process for CER development considering the various characteristics of data proposed in this study can be used as the standard process
- The CER linear combination method is enabled to solve the possibilities for omission of the critical factors within the process of cost estimation by forecasting based on more information than the single model
- The CER linear combination method is able to reduce the errors that occur by the single model

This study has proposed a CER development methodology which has enabled the overcoming of the restrictions of an insufficient amount of weapon system R&D, production data under the situations in Korea.

