

Using your Cost Estimate to Answer Budget Questions

Melissa Cyrulik

Joint ISPA/SCEA Conference

June 2007

Introduction

- We can use the budget and estimate together to answer three key questions:
 - Is the budget sufficient for my program? Do I have years with budget shortfalls?
 - If the budget changes how will it affect my program?
 - Will you be able to purchase more units or forced to lower unit quantities?
 - Will the schedule need to be revised?
 - Will the budget confidence level change?
 - Which estimate elements do I need to watch carefully to help me keep on budget?
- This presentation demonstrates some modeling techniques used to answer these questions and proposes how to display the results to management.

This presentation was presented at this years ACEIT User Conference for purposes of providing specific guidance on how to apply the techniques in ACE. In this version of the presentation the goal is to focus on the techniques and reports.

Topics

Foundational Items in the analysis: Budget Section Set Up

 Recommendations on how to set up the budget information to maximize budget analysis capabilities

Estimate and Budget Reports

 Reports that show the estimate and the budget together in one view for easy comparison

Budgetary "What if" Drills

- Reports that show the budget/estimate delta
- What if drills and updating the budget/estimate reports

Understanding Estimate Drivers

 Reports that identify the top contributors to the WBS elements these are the items to watch to keep on budget

ACEIT was used to perform the analysis and generate the reports described in this presentation, however the concepts are tool independent.

The Scenario

Example Estimate Specifics

- Model includes only a procurement section
- Joint program using Air Force and Army procurement appropriations
- Uncertainty distributions applied to the model inputs and estimating methods
- Uncertainty distributions are correlated

Budget Requirements

 The budget is to be managed at the procurement level 2 elements (AF and Army Manufacturing, Quality Control, SEPM, Program Office Costs)

Example Estimate Requirements

 Procurement level 2 elements should be at the 65% CL (Manufacturing, Quality Control, SEPM, Program Office Costs)

ACEIT Example file (shipped with ACEIT) used to demonstrate the techniques

• File name: 03 Enhancing the Production Estimate.aceit

Foundational Items in the ACE Session: Budget Section Set Up in ACE

Estimate Example

Joint program with 3010 and 2031 appropriations

	. •								
	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	^
77	'Estimate		*Estimate						
78	Total		Total\$	\$ 417,296.810 (26%) *					
79	Procurement		Proc\$	\$ 417,296.810 (26%) *					
80	Manufacturing (Air Force)		AF_Mfg\$	\$ 197,825.262 (25%) *					
81	Air Vehicle (AF)		AF_AV\$	\$ 165,261.290 (24%) *					
82	Basic Structure (AF)	3010		\$ 85,709.612 (0+%) *	R	10000	2003	\$K	
83	Navigation/Guidance (AF)	3010		\$ 15,871.523 (15%) *	F	StepVal(FYCVal(@AFBuyQty), @BBQL,			
84	Propulsion (AF)	3010		\$ 63,680.155 (50%) *	F	PropUC\$ * AFBuyQty			
85	Integration & Test (AF)	3010		\$ 24,789.194 (42%) *	F	0.15 * AF_AV\$			
86	Ground Station LRIP Support (AF)	3010		\$ 556.431 (25%) *	F	NPeople * Pay\$			
87	Transportation (AF)	3010	Trans\$	\$1,261.243 (17%) *	F	TransUC\$ * FYCVal(@AFBuyQty,			
88	Initial Operational Test & Eval (AF)	3010		\$ 3,179.604 (17%) *	F	3	2004	\$M	
89	Initial Spares & Repair Parts (AF)	3010		\$ 2,777.501 (24%) *	F	FYTot(@AvgAF\$) * NInitAFSpr			
90									
91	Manufacturing (Army)		Army_Mfg\$	\$ 101,216.057 (18%) *					
92	Air Vehicle (Army)		Army_AV\$	\$ 79,957.087 (24%) *					
93	Basic Structure (Army)	2031		\$ 41,585.308 (0+%) *	R	[Shared Learning - StrShr]			
94	Navigation/Guidance (Army)	2031		\$ 7,869.520 (15%) *	F	StepVal(FYCVal(@ArmyBuyQty), @BBQL,			
95	Propulsion (Army)	2031		\$ 30,502.259 (50%) *	F	PropUC\$ * ArmyBuyQty			
96	Air Vehicle Integration (Army)	2031		\$ 11,993.563 (38%) *	F	0.15 * Army_AV\$			
97	Transportable Ground Stations (Army)			\$ 556.431 (16%) *					
98	Ground Station Hardware (Army)	2031	GSHW	\$ 238.470 (17%) *	F	GSHWUC\$ * ArmyGSQty			
99	Transportable Vehicle (Army)	2031	T∨\$	\$ 206.674 (20%) *	F	TVUC\$ * ArmyGSQty			
100	Vehicle Ruggedization (Army)	2031	VehRug	\$ 41.335 (30%) *	F	VR% * TV\$			
101	Integration & Test (Army)	2031		\$ 69.951 (23%) *	F	IT% * (VehRug + GSHVV)			
102	Transportation (Army)	2031		\$ 604.125 (17%) *	F	TransUC\$ * ArmyBuyQty			
103	Initial Operational Test & Eval (Army)	2031		\$ 5,299.340 (13%) *	F	5	2004	\$M	
104	Initial Spares & Repair Parts (Army)	2031		\$ 2,805.512 (24%) *	F	FYTot(@AvgArmy\$) * NInitArmySpr			
105	Quality Control	3010		\$ 5,863.495 (21%) *	F	FYCVal(@QC%, FYYR - Adj) * (AF_Mfg\$ +			
106	SEPM	3010		\$ 110,645.288 (37%) *	TC	0.37 * (FYTOT(@AF_Mfg\$) +			
107	Program Office Costs	3010		\$1,746.708 (17%) *	TY	[Cost Throughput]		\$K	v
<	· III							>	

Identify the Estimate Corresponding to the Budget

- Identify the estimate rows that correspond to the level of budget that you are managing
- In this example we are managing to the procurement level 2 costs which are captured with two separate appropriations
- Summarize the estimate by appropriation There are two main ways to do this:
 - If the estimate structure WBS permits, utilize existing or insert parent elements that map to the funds you are managing
 - Add a summary section that calculates the appropriate sum example below with the SumIf function

WBS/CES Description	Approp	AppropType (!) Approp Type	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
*Estimate Summary by Approp			*EstSum			
Estimate Total				\$ 417,296.810 (26%) *		
Procurment Estimate			SummaryNoAppn\$	\$ 417,296.810 (26%) *		
3010 Estimate			Estimate3010	\$ 316,080.753 (28%) *	F	Sumlf(AppropType, 3010, @Total\$)
2031 Estimate			Estimate2031	\$ 101,216.057 (18%) *	F	Sumlf(AppropType, 2031, @Total\$)

Calculate a Budget Delta

Budget Delta

- Appropriation parents (rows 21 and 24) shows the delta by total and fiscal year
- Total delta parent row (row 19) shows the overall delta by total and fiscal year

Estimate included in section with subtraction

	icidae	a iii secilori wilii su	ibua	CUOII				
		WBS/CES	Appn	ID	Point Estimate	Ph	Eq / Thruput	^
 -	12	*Budget Information		*Budget				
	13	Total Budget			\$ 411,234.784 *			
Pudget	14	Procurement Budget			\$ 411,234.784 *			
Budget	15	3010 Budget	3010	Budget3010	\$ 305,904.925 *	TY	[Cost Throughput]	
	16	2031 Budget	2031	Budget2031	\$ 105,329.859 *	TY	[Cost Throughput]	_
	17							
	18	*Budget Delta						
	19	Total Delta			\$ -6,062.026 *			
	20	Procurment Budget Delta			\$ -6,062.026 *			
	21	3010 Budget Delta		BudgetDelta3010	\$ -10,175.828 *			
Budget Delta	22	3010 Budget			\$ 305,904.925 *	F	Budget3010	
3	23	3010 Estimate			\$ -316,080.753 *	F	-Estimate3010	
	24	2031 Budget Delta		BudgetDelta2031	\$ 4,113.802 *			
	25	2031 Budget			\$ 105,329.859 *	F	Budget2031	
	26	2031 Estimate			\$ -101,216.057 *	F	-Estimate2031	
	27							
	56	*Estimate Summary by Approp		*EstSum				
Fathmata	57	Estimate Total			\$ 417,296.810 (26%) *			
Estimate _	58	Procurment Estimate		ntalSummaryAppn\$	\$ 417,296.810 (26%) *			
Summary	59	3010 Estimate	3010		\$ 316,080.753 (28%) *	F	Sumlf(AppropType, 3010, @Total\$)	
ا ا	60	2031 Estimate	2031		\$ 101,216.057 (18%) *	F	Sumif(AppropType, 2031, @Total\$)	V
	<			d Farmanian Sir	4079		>	

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

RESEARCH, INC. Calculate the Yearly Budget/Estimate Delta

Objective: calculate the budget delta overall AND for each year - Isolating the delta each year allows you to create some analysis reports to understand what is causing the delta

	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	Start Date	Finish Date
18	*Budget Delta									
19	Total Delta	ĺ		\$ -6,062.026 *						
20	Procurment Budget Delta			\$ -6,062.026 *						
21	3010 Budget Delta		BudgetDelta3010	\$ -10,175.828 *						
22	3010 Budget			\$ 305,904.925 *	F	Budget3010				
23	3010 Estimate			\$ -316,080.753 *	F	-Estimate3010				
24	2031 Budget Delta		BudgetDelta2031	\$ 4,113.802 *						
25	2031 Budget	İ		\$ 105,329.859 *	F	Budget2031				
26	2031 Estimate			\$ -101,216.057 *	F	-Estimate2031				
27										
28	*Yearly Budget Deltas									
29	Last Year of Estimate			2007 *	С	FYCFirstYr(@Proc\$)				
30	First Year of Estimate			2015 *	С	FYCLastYr(@Proc\$)				
31										
32	Total 3010 Delta			\$ -10,175.828 *						
33	Budget 3010 Delta FY 1			\$ 677.508 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)	aStartDate
34	Budget 3010 Delta FY 2			\$ -3,074.144 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+1	aStartDate
35	Budget 3010 Delta FY 3			\$ 1,493.689 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+2	aStartDate
36	Budget 3010 Delta FY 4			\$ 1,143.590 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+3	aStartDate
37	Budget 3010 Delta FY 5			\$ 2,293.726 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+4	aStartDate
38	Budget 3010 Delta FY 6			\$ 8,248.166 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+5	aStartDate
39	Budget 3010 Delta FY 7			\$ -29,942.394 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+6	aStartDate
40	Budget 3010 Delta FY 8			\$ 8,926.907 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+7	aStartDate
41	Budget 3010 Delta FY 9			\$ 57.123 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+8	aStartDate
42	Budget 3010 Delta FY 10			\$ 0.000 *	F	BudgetDelta3010			FYCFirstYr(@Proc\$)+9	aStartDate

■ Use the features in your tool of choice to organize the yearly data to simplify suitable reporting

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

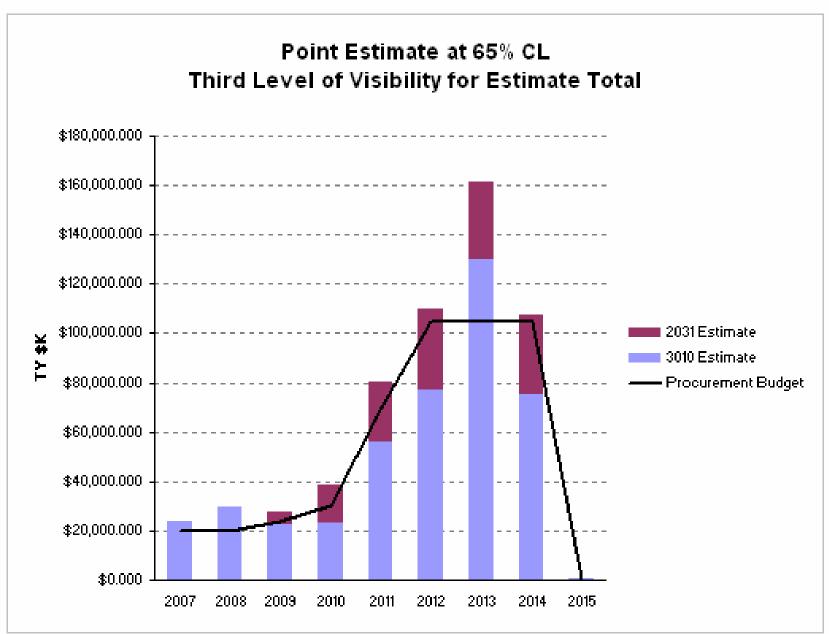
TECOLOTE RESEARCH, INC.

Define Risk Allocation to Calculate Delta Adjusted for Risk

- The example session produces a risk adjusted result at any confidence level
- In order to calculate a time phased risk adjusted result we must define how we want to spread the risk dollars throughout the WBS
 - Defining the risk allocation level for the estimate to compare it to a budget requires deep understanding of the scenario you are working to emulate
 - Different scenarios require different allocation specifications
 - ➤ For example, do you want to allocate from level 1, 2 or 3 of the WBS or a mixture of levels? In general, WBS level alone may not be sufficient
 - In ACE, the recommended approach is to create a risk allocation level column
 - Change a Category Column name to "Risk Allocation Level"
 - > In the column mark the rows where you want to manage the program from
 - In our scenario, the procurement level 2 costs should be at the 65% CL
 - Mark the rows in the estimate WBS AF Manufacturing, Army Manufacturing, Quality Control, SEPM, and Program Office Costs
 - See the example in back up

Estimate and Budget Reports

Is the budget sufficient for my program? Do I have years with budget shortfalls?


Estimate Report with Budget Marker

Report for the Point Estimate at 65% CL with the Total Budget

Sand Chart

TECOLOTE Research, Inc.

0807

Budget Delta Yearly Results

■ Time Phased report of budget delta rows shows the yearly shortfalls in the program 65% CL estimate

Time Phased Results for Point Estimate at 65% CL

Funding in TY \$K										
WBS	Total	2007	2008	2009	2010	2011	2012	2013	2014	2015
"Budget Delta										
Total Delta	-\$99,666.900	-\$3,638.964	-\$9,670.500	-\$3,351.764	-\$8,710.829	-\$10,216.332	-\$5,187.586	-\$56,637.638	-\$2,228.599	-\$24.688
Procurment Budget Delta	-\$99,666.900	-\$3,638.964	-\$9,670.500	-\$3,351.764	-\$8,710.829	-\$10,216.332	-\$5,187.586	-\$56,637.638	-\$2,228.599	-\$24.688
3010 Budget Delta	-\$82,109.672	-\$3,638.964	-\$9,670.500	-\$2,605.109	-\$3,032.593	-\$6,137.946	-\$1,970.981	-\$54,540.195	-\$523.714	\$10.332
3010 Budget	\$355,400.000	\$20,000.000	\$20,000.000	\$20,000.000	\$20,000.000	\$50,000.000	\$75,000.000	\$75,000.000	\$75,000.000	\$400.000
3010 Estimate	-\$437,509.672	-\$23,638.964	-\$29,670.500	-\$22,605.109	-\$23,032.593	-\$56,137.946	-\$76,970.981	-\$129,540.195	-\$75,523.714	-\$389.668
2031 Budget Delta	-\$17,557.228			-\$746.655	-\$5,678.236	-\$4,078.386	-\$3,216.604	-\$2,097.443	-\$1,704.885	-\$35.020
2031 Budget	\$124,200.000			\$4,000.000	\$10,000.000	\$20,000.000	\$30,000.000	\$30,000.000	\$30,000.000	\$200.000
2031 Estimate	-\$141,757.228			-\$4,746.655	-\$15,678.236	-\$24,078.386	-\$33,216.604	-\$32,097.443	-\$31,704.885	-\$235.020

Budgetary What if Drills

If the budget changes how will it affect my program?

Perform a What if Drill and View Estimate **Impacts**

Create new What if case at the 65% uncertainty CL

Cases 🥦		WBS	Total	2006	2007	2008	2009	2010	2011	2012	2013
National Lower Propulsion Cost Scen	124	*Buy Quantities	1								
Na Point Estimate	125	Total Air Vehicle Buy Quantity	156*		1 *	1 *	2*	2*	20 *	40 *	65 *
Point Estimate at 65% CL (B	126	Air Force Buy Quantities	99*		1 *	1 *	1 *	1 *	10 *	20*	45 *
III New Quantities at 65% CL (B	127	Low Rate Initial Production	4*		1 *	1 *	1 *	1 *			
	128	Full Rate Production	95*						10	20	45
	129	Army Buy Quantities	57*				1 *	1 *	10 *	20*	20*
	130	Low Rate Initial Production		:	:	:					:
	131	Full Rate Production				ſ	Multip	le cas	es		

Compare Cases to examine the impacts

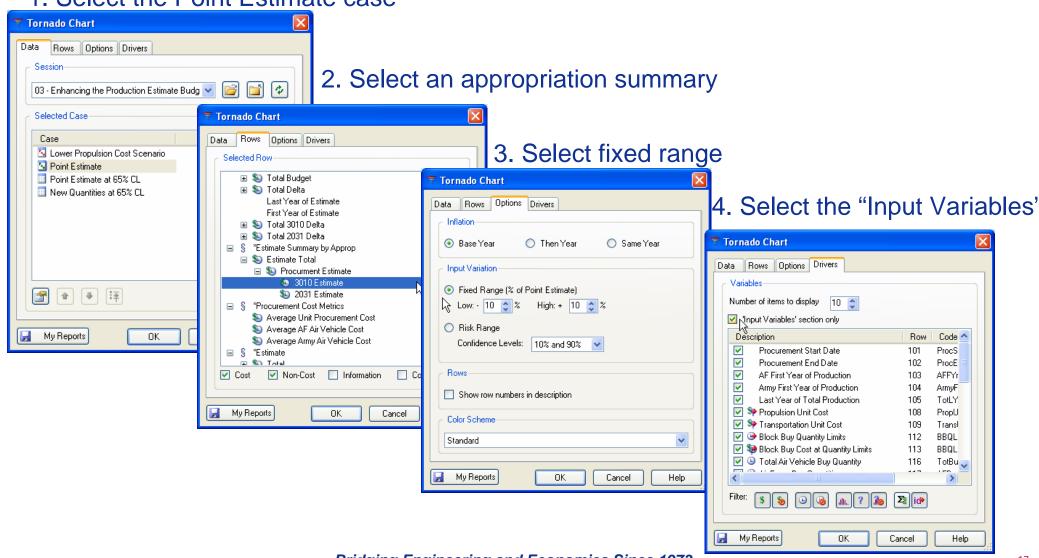
- **Compare Time Phased Results**
- Compare S-Curves

Army Transportable Ground Station Quanti Estimate Total Statistics Calculated with 500 iterations 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% \$450,000 \$250,000 \$350,000 \$550,000 \$650,000 \$750,000 \$850,000 BY2006 **\$**K Point Estimate at 65% CL (cdf) Point Estimate Mean 50% Confidence Level 80% Confidence Level New Quantities at 65% CL (cdf) Mean (New Quantities at 65% CL)

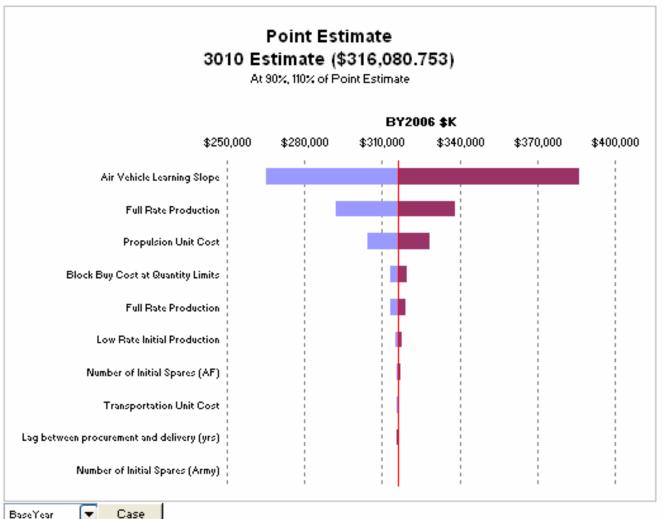
Delta Comparison

Costs in BY2006 \$K	Total	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Point Estimate at 65% CL	\$493,167.997		\$21,579.189	\$25,502.287	\$24,023.022	\$30,435.492	\$70,205.093	\$94,999.136	\$137,030.187	\$88,891.906	\$501.686	
New Quantities at 65% CL	\$443,856.212		\$19,953.670	\$23,864.639	\$22,396.125	\$28,771.111	\$58,574.942	\$93,788.951	\$135,588.358	\$60,606.255	\$312,161	
Delta (∆)	-\$49,311.785		-\$1,625.519	-\$1,637.647	-\$1,626.897	-\$1,664.381	-\$11,630,151	-\$1,210.184	-\$1,441.828	-\$28,285.651	-\$189,525	
Percent ∆	(10.00%)		(7.53%)	(6.42%)	(6.77%)	(5.47%)	(16.57%)	(1.27%)	(1.05%)	(31.82%)	(37.78%)	
Threshold	Medium		Medium	Medium	Medium	Medium	High	Low	Low	High	High	

Understanding Estimate Drivers


Which estimate elements do I need to watch carefully to help me keep on budget?

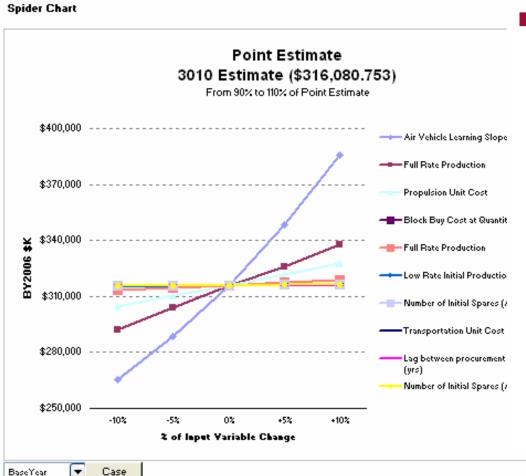
Understanding Estimate Drivers


- Tornado and Spider reports display the impact of changing selected variables that drive the total result of a selected row
- 1. Select the Point Estimate case

Reporting Estimate Drivers

Tornado Chart

■ Tornado Chart


- Each variable is varied
 +/- 10% and the effect
 is measure on the
 target row
- In our example the Learning Slope has the biggest effect on the 3010 estimate

Drivers & Results

		Targ	get Row Res	ults	Fix	ed Range Inp	uts
Drivers (exlouding Rollup)	Row	Delta	-10%	+10%	Point Estimate	-10%	+10%
Air Vehicle Learning Slope	140	\$120,645.657	\$265,124.506	\$385,770.163	90	81	99
Full Rate Production	129	\$45,799.094	\$291,934.891	\$337,733.984	115	104	127
Propulsion Unit Cost	118	\$23,453.797	\$304,353.854	\$327,807.651	\$535.127	\$481.615	\$588.640
Block Buil Cost at Quantitu Limits 0807	Bridging I	\$5 870 747 Engineering	\$313 145 379	\$319 016 126	\$667 717 • 1973	\$600,945	\$734 489

Reporting Estimate Drivers

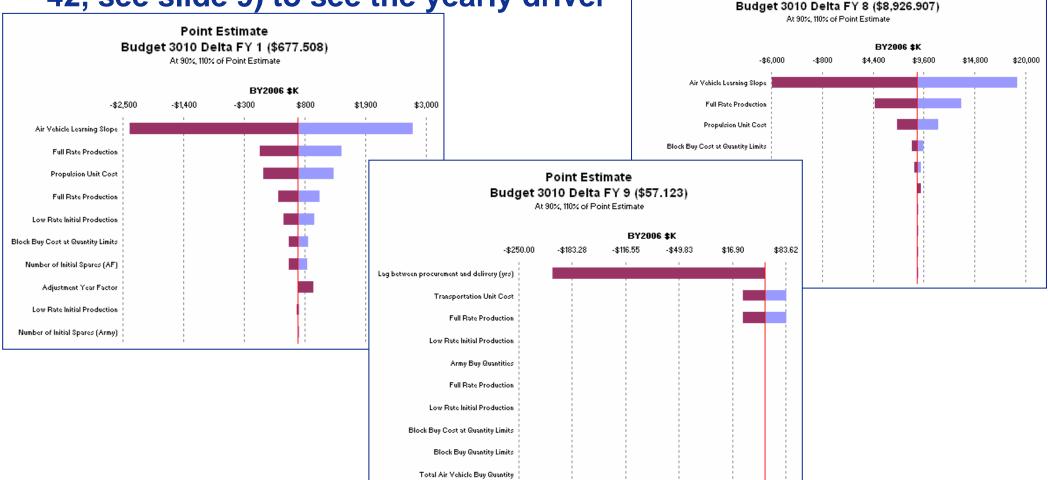
Spider Chart

- Similar to the Tornado chart, it plots results at user specified intervals between the end points to the plot driver sensitivity trend
- The line with the steepest slope corresponds to the input with the largest impact
- Useful to identify linear, non-linear, step and trend reversals of the variables
- In our example the AV learning slope has the steepest slope - Changes in this variable have the biggest effect on the 3010 estimate

Drivers & Results

			Target Row Results						Fized Range Inputs			
Drivers (exlouding Rollup)	Row	Delta	-10%	-5%	0%	+5%	+10%	Point Estimate	-10%	-5%	0%	
Air Vehicle Learning Slope	140	\$120,645.657	\$265,124.506	\$288,499.779	\$316,080.753	\$348,338.626	\$385,770.163	90	81	86	90	
Full Rate Production	129	\$45,799.094	\$291,934.891	\$304,025.340	\$316,080.753	\$325,850.199	\$337,733.984	115	104	109	115	
Propulsion Unit Cost	118	\$23,453.797	\$304,353.854	\$310,217.304	\$316,080.753	\$321,944.202	\$327,807.651	\$535.127	\$481.615	\$508.371	\$535.127	
Block Buy Cost at Quantity Limits	123	\$5,870.747	\$313,145.379	\$314,613.066	\$316,080.753	\$317,548.440	\$319,016.126	\$667.717	\$600.945	\$634.331	\$667.717	

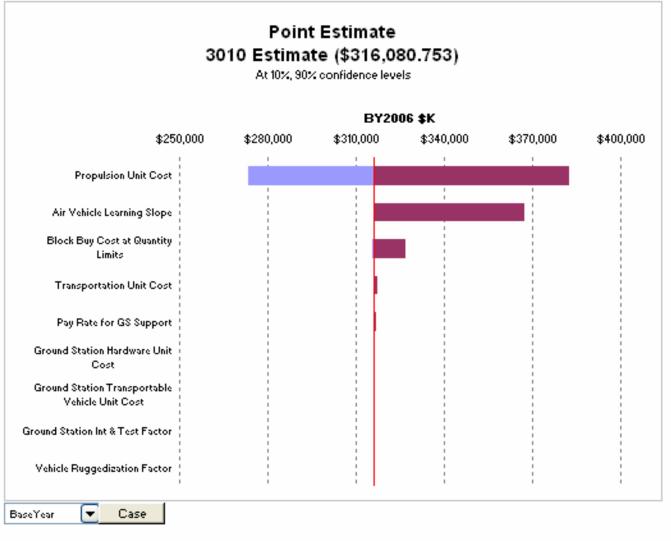
0807


Do the Estimate Drivers Change Over the Fiscal Years?

Point Estimate

The yearly estimate drivers most likely will change as program activities commence and complete - The estimate driver in FY1 may not be the same in FY8 or FY9

■ Run the Tornado or Spider chart on the yearly delta rows (rows 32 –

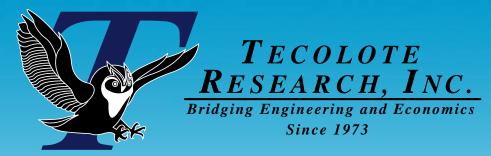

42, see slide 9) to see the yearly driver

Understanding Uncertainty

Tornado Chart

- Tornado and Spider chart with risk range
- This report shows for all the uncertain elements that effect the target row (i.e. WBS Total) the 10/90 bounds of propulsion unit cost produce the greatest impact

21


Drivers & Results

		Tar	get Row Res	ulte	Die	k Range Inpu	te.
	_						
Drivers (exlouding Rollup, Zero Uncertainty)	Row	Delta	10%	90%	Point Estimate	10%	90%
Propulsion Unit Cost	118	\$108,506.875	\$273,683.984	\$382,190.858	\$535.127	\$341.660	\$836.804
Air Vehicle Learning Slope	140	\$47,562.836	\$319,529.444	\$367,092.280	90	91	97
Block Buy Cost at Quantity Limits	123	\$10,925.161	\$315,624.864	\$326,550.025	\$667.717	\$657.347	\$905.864
Transportation Unit Cost	119	\$764.460		\$316,795.799		\$10.334	\$14.430

Summary

- Working with budget and estimate information requires some set up
 - Make sure you fully understand the scenario you are modeling and the uncertainty/risk requirements
 - Adding elements to the ACE session provides increased flexibility and analytical capability in POST
- Understanding the difference between the Budget and the Estimate
 - Is the budget sufficient for my program? Do I have years with budget shortfalls?
 - Generate POST Sand Charts with the Estimate and Budget line
 - Generate time Phased Reports for the Delta rows
 - If the budget changes how will it affect my program?
 - Quickly perform What if drills by creating new cases and updating the POST reports
 - Which estimate elements do I need to watch carefully to help me keep on budget?
 - Use the Tornado and Spider charts to determine estimate drivers for both the total and yearly results

Back Up

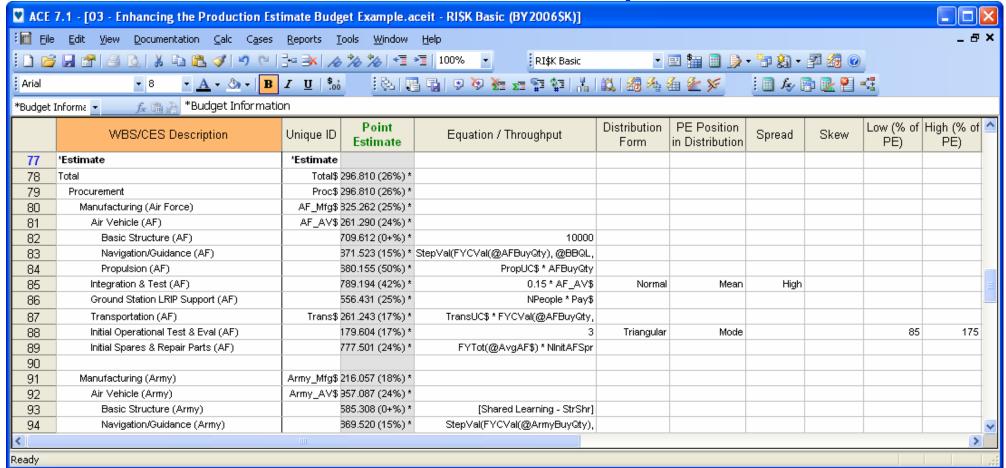
0807

Building the Estimate Summary using the SumIf Function

 The SumIf function requires a summary definition DEC (AppropType) to identify which rows to including in the sum

	WBS/CES Description	Approp	AppropType (!) Approp Type	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	^
56	*Estimate Summary by Approp			*EstSum						Î
62	Estimate Total				\$ 417,296.810 (26%) *					1
63	Procurment Estimate			SummaryNoAppn\$	\$ 417,296.810 (26%) *					
64	3010 Estimate			Estimate3010	\$ 316,080.753 (28%) *	F	Sumif(AppropType, 3010, @Total\$)			
65	2031 Estimate			Estimate2031	\$ 101,216.057 (18%) *	F	Sumlf(AppropType, 2031, @Total\$)			
76										
77	*Estimate			*Estimate						1
78	Total			Total\$	\$ 417,296.810 (26%) *					
79	Procurement			Proc\$	\$ 417,296.810 (26%) *					
80	Manufacturing (Air Force)			AF_Mfg\$	\$ 197,825.262 (25%) *					
81	Air Vehicle (AF)			AF_AV\$	\$ 165,261.290 (24%) *					
82	Basic Structure (AF)	3010	3010		\$ 85,709.612 (0+%) *	R	10000	2003	\$K	
83	Navigation/Guidance (AF)	3010	3010		\$ 15,871.523 (15%) *	F	StepVal(FYCVal(@AFBuyQty), @BBQL,			1
84	Propulsion (AF)	3010	3010		\$ 63,680.155 (50%) *	F	PropUC\$ * AFBuyQty			
85	Integration & Test (AF)	3010	3010		\$ 24,789.194 (42%) *	F	0.15 * AF_AV\$			1
86	Ground Station LRIP Support (AF)	3010	3010		\$ 556.431 (25%) *	F	NPeople * Pay\$			
87	Transportation (AF)	3010	3010	Trans\$	\$ 1,261.243 (17%) *	F	TransUC\$ * FYCVal(@AFBuyQty,			
88	Initial Operational Test & Eval (AF)	3010	3010		\$ 3,179.604 (17%) *	F	3	2004	\$M	
89	Initial Spares & Repair Parts (AF)	3010	3010		\$ 2,777.501 (24%) *	F	FYTot(@AvgAF\$) * NInitAFSpr			1
90										1
91	Manufacturing (Army)			Army_Mfg\$	\$ 101,216.057 (18%) *					1
92	Air Vehicle (Army)			Army_AV\$	\$ 79,957.087 (24%) *					1
93	Basic Structure (Army)	2031	2031		\$ 41,585.308 (0+%) *	R	[Shared Learning - StrShr]			1
94	Navigation/Guidance (Army)	2031	2031		\$ 7,869.520 (15%) *	F	StepVal(FYCVal(@ArmyBuyQty), @BBQL,			
95	Propulsion (Army)	2031	2031		\$ 30,502.259 (50%) *	F	PropUC\$ * ArmyBuyQty			
96	Air Vehicle Integration (Army)	2031	2031		\$ 11,993.563 (38%) *	F	0.15 * Army_AV\$			
97	Transportable Ground Stations (Army)				\$ 556.431 (16%) *					
98	Ground Station Hardware (Army)	2031	2031	GSHW	\$ 238.470 (17%) *	F	GSHWUC\$ * ArmyGSQty			1
99	Transportable Vehicle (Army)	2031	2031	TV\$	\$ 206.674 (20%) *	F	TVUC\$ * ArmyGSQty			1
100	Vehicle Ruggedization (Army)	2031	2031	VehRug	\$ 41.335 (30%) *	F	VR% * TV\$			
101	Integration & Test (Army)	2031	2031		\$ 69.951 (23%) *	F	IT% * (VehRug + GSHW)			
102	Transportation (Army)	2031	2031		\$ 604.125 (17%) *	F	TransUC\$ * ArmyBuyQty			~
<		Ш			, , , , , , , , , , , , , , , , , , , ,					>

Enter the Budget


Enter the budget

- Budget inputs are usually entered in Then Year (TY) dollars
- Give each budget managing row a unique ID
- If using appropriation level budgets include the ACE Appropriation on the row
- Add a section header to easily identify the budget section in report set up dialogs

	WBS/CES Description	Approp	AppropType (!) Approp Type	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
12	*Budget Information			*Budget			
13	Total Budget				\$ 411,234.784 *		
14	Procurement Budget				\$ 411,234.784 *		
15	3010 Budget	3010		Budget3010	\$ 305,904.925 *	TY	[Cost Throughput]
16	2031 Budget	2031		Budget2031	\$ 105,329.859 *	TY	[Cost Throughput]
< -		1					>

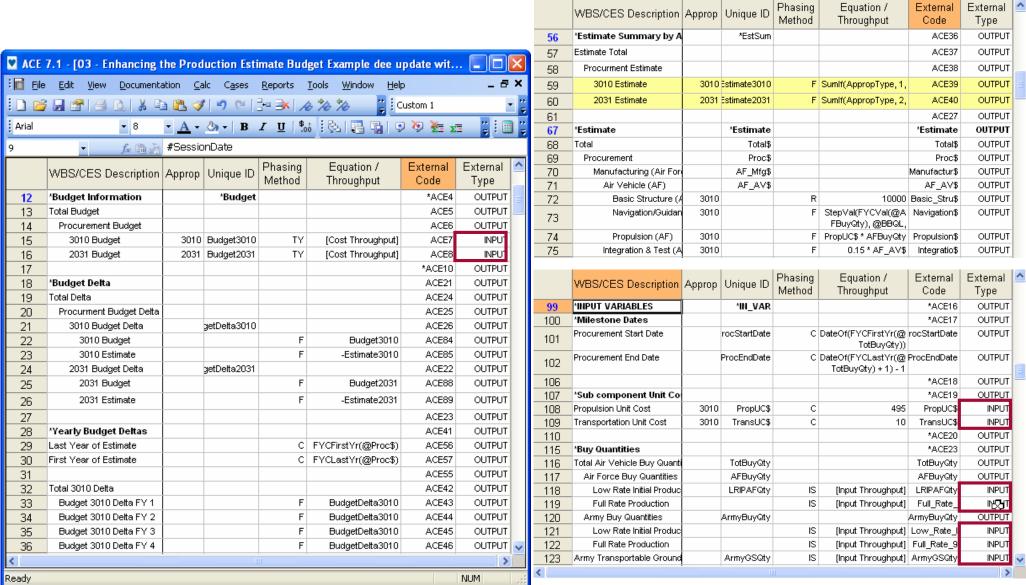
Session Includes Risk Distributions

- The estimate includes uncertainty distributions to produce a result at a requested CL
- The risk inputs are on the estimate inputs and the estimating methods - These automatically ripple thru budget delta calculation rows without additional inputs

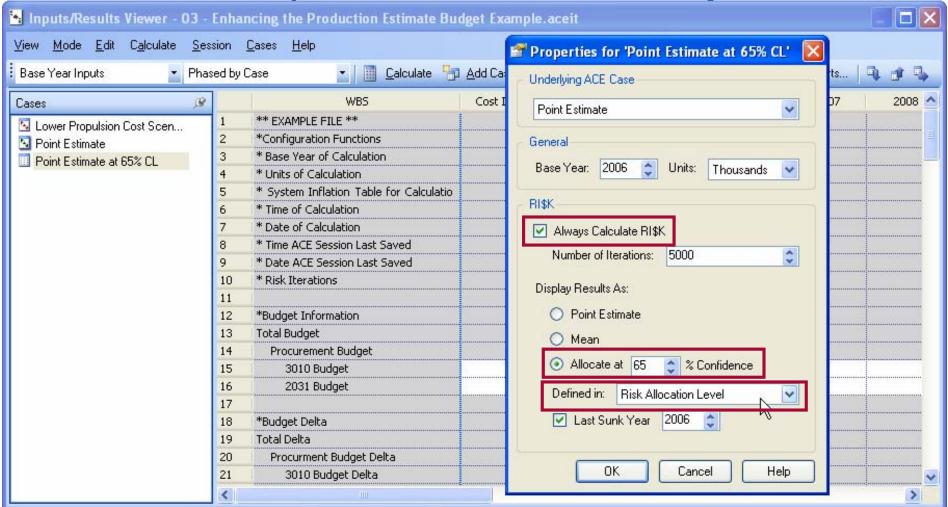
TECOLOTE RESEARCH, INC. Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

TECOLOTE RESEARCH, INC.

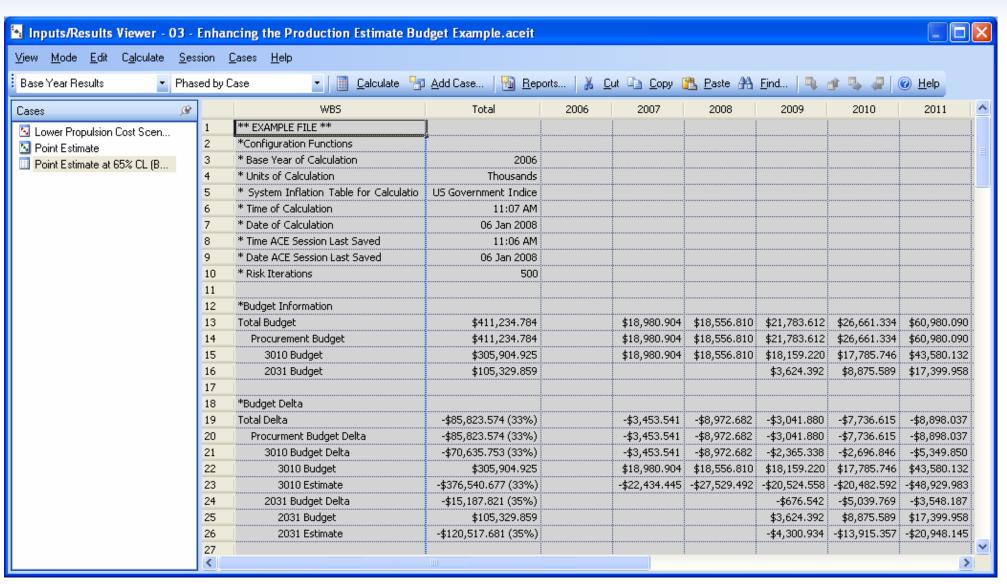
Risk Allocation in our Example


	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	Risk Allocatio Level	n
77	^Estimate		*Estimate							
78	Total		Total\$	\$ 417,296.810 (26%) *						
79	Procurement		Proc\$	\$ 417,296.810 (26%) *						
80	Manufacturing (Air Force)		AF_Mfg\$	\$ 197,825.262 (25%) *						×
81	Air Vehicle (AF)		AF_AV\$	\$ 165,261.290 (24%) *						
82	Basic Structure (AF)	3010		\$ 85,709.612 (0+%) *	R	10000	2003	\$K		
83	Navigation/Guidance (AF)	3010		\$ 15,871.523 (15%) *	F	StepVal(FYCVal(@AFBuyQty), @BBQL,				
84	Propulsion (AF)	3010		\$ 63,680.155 (50%) *	F	PropUC\$ * AFBuyQty				
85	Integration & Test (AF)	3010		\$ 24,789.194 (42%) *	F	0.15 * AF_AV\$				
86	Ground Station LRIP Support (AF)	3010		\$ 556.431 (25%) *	F	NPeople * Pay\$				
87	Transportation (AF)	3010	Trans\$	\$1,261.243 (17%) *	F	TransUC\$ * FYCVal(@AFBuyQty,				
88	Initial Operational Test & Eval (AF)	3010		\$ 3,179.604 (17%) *	F	3	2004	\$M		
89	Initial Spares & Repair Parts (AF)	3010		\$ 2,777.501 (24%) *	F	FYTot(@AvgAF\$) * NInitAFSpr				
90										
91	Manufacturing (Army)		Army_Mfg\$	\$ 101,216.057 (18%) *						x
92	Air Vehicle (Army)		Army_AV\$	\$ 79,957.087 (24%) *						
93	Basic Structure (Army)	2031		\$ 41,585.308 (0+%) *	R	[Shared Learning - StrShr]				
94	Navigation/Guidance (Army)	2031		\$ 7,869.520 (15%) *	F	StepVal(FYCVal(@ArmyBuyQty), @BBQL,				
95	Propulsion (Army)	2031		\$ 30,502.259 (50%) *	F	PropUC\$ * ArmyBuyQty				
96	Air Vehicle Integration (Army)	2031		\$11,993.563 (38%) *	F	0.15 * Army_AV\$				
97	Transportable Ground Stations (Army)			\$ 556.431 (16%) *						7
98	Ground Station Hardware (Army)	2031	GSHW	\$ 238.470 (17%) *	F	GSHWUC\$ * ArmyGSQty				
99	Transportable Vehicle (Army)	2031	TV\$	\$ 206.674 (20%) *	F	TVUC\$ * ArmyGSQty				
100	Vehicle Ruggedization (Army)	2031	VehRug	\$ 41.335 (30%) *	F	VR% * TV\$				
101	Integration & Test (Army)	2031	_	\$ 69.951 (23%) *	F	IT% * (VehRug + GSHW)				
102	Transportation (Army)	2031		\$ 604.125 (17%) *	F	TransUC\$ * ArmyBuyQty				
103	Initial Operational Test & Eval (Army)	2031		\$ 5,299.340 (13%) *	F	5	2004	\$M		
104	Initial Spares & Repair Parts (Army)	2031		\$ 2,805.512 (24%) *	F	FYTot(@AvgArmy\$) * NInitArmySpr				
105	Quality Control	3010		\$ 5,863.495 (21%) *	F	FYCVal(@QC%, FYYR - Adj) * (AF_Mfg\$ +				X
106	SEPM	3010		\$110,645.288 (37%) *	TC	0.37 * (FYTOT(@AF_Mfg\$) +				×
107	Program Office Costs	3010		\$1,746.708 (17%) *	TY	[Cost Throughput]		\$K		x ,
<		Ш			-					>

0807


Row Set Up for POST

■ To maximize the What if drill capabilities in POST set the budget and estimate input rows External Type to "INPUT"



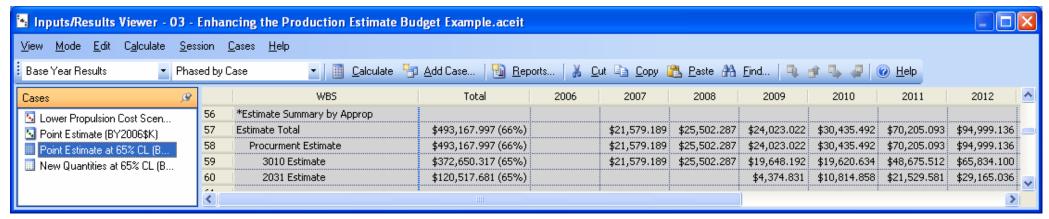
- The reports that we create to compare with the budget should be risk adjusted results
- Create a copy of the Point Estimate Case
- Set the Case Properties to Calculate a risk adjusted result

TECOLOTE RESEARCH, INC. Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

■ You must ignore the CL after the Budget Total numbers - They are meaningless in this context because we took a 65% Risk Adjusted Estimate and subtracted it from a Budget where there is no confidence level association - we hid these CLs in ACE

TECOLOTE

Research, Inc.


Changes required for 65% CL at the Appropriation Level

- If you want the Approp total levels at the 65% level changes need to be made within the ACE session
 - The Risk Allocation markers are moved to the Estimate Summary by Approp

Appropriations need to be added to the summary section

						.			
	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Risk Allocation Level	^
56	*Estimate Summary by Approp		*EstSum						
57	Estimate Total			\$ 417,296.810 (26%) *					
58	Procurment Estimate		ntalSummaryAppn\$	\$ 417,296.810 (26%) *					T
59	3010 Estimate	3010		\$ 316,080.753 (28%) *	F	Sumlf(AppropType, 3010, @Total\$)		X	t l
60	2031 Estimate	2031		\$ 101,216.057 (18%) *	F	Sumlf(AppropType, 2031, @Total\$)		Х	:
ค1			1						~
1								Y	•

■ The appropriation estimates are at the 65% level

The consequence of this approach is that you loose risk allocation within the detailed estimate