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Introduction

• NASA has encountered several challenges in developing credible 
cost estimates for Constellation, including
– Similar, analogous missions were developed more than 40 years 

ago
• Proper hardware analogies may not exist
• Systems-level activities have also changed substantially 

– e.g., GSE/Tooling
– New launch vehicle development presents new communication 

challenges with technical personnel (e.g., hardware engineers)
– Risk-based estimates are still a recent innovation at NASA 

• Need a basis for providing realistic and believable risk 
estimates

• The focus of this presentation is on these particular challenges and 
the proactive way in which the NASA estimating community is acting 
to meet them
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Challenge #1: 
Lack of Proper Analogies

• Analogy-based (aka “first-pound”) estimating methods are well 
established and have a long track record

• Analogy-based estimating methods are useful when a close analogy 
exists
– In these cases it may be the best estimating method available
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Challenge #1: 
Lack of Proper Analogies

• The best hardware analogies for much of the Constellation program are 
Apollo and Saturn
– Began development over 40 years ago

• Hardware design, materials, and manufacturing methods have 
changed

– Productivity enhancements have reduced cost over time
» Engineers have gone from using drafting tools and 

mainframes to personal computers with CAD/CAM 
software

– Ground support equipment for launch vehicles has changed 
substantially

– Budget environment is substantially different
• As a result of Sputnik and the ensuing “space race, ” Apollo was 

schedule-driven 
• Constellation is cost-driven 

– Has already suffered a one-year planned schedule slip due to 
a $500 million budget cut

– Apollo was highly dependent on advances in technology
• Not the case with Constellation

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



Challenge #1: 
Lack of Proper Analogies

Apollo Era 
Budgets

Recent NASA 
Budgets
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Challenge #1: 
Lack of Proper Analogies

• As a result of these differences analogy-based methods may be 
of limited use
– May lead to overestimation due to lack of consideration for cost

reductions due to
• Less technology development/use of more mature 

technologies
• Not accounting for improvements in productivity over time
• Substantial differences in ground support equipment and 

tooling
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Solution to Challenge #1: 
Develop and Use Multivariate CERs

• While analogy-based methods may be useful, multivariate CERs
can take into account:
– Productivity effects over time
– Technology maturity
– Heritage
– Manufacturing automation
– Programmatic factors such as funding and requirements stability
– And other factors

• For several years the NASA/Air Force Cost Model (NAFCOM) has 
included multivariate CERs
– Development has undergone several improvement cycles, 

including 2006-2007
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Multivariate CERs: 
Accounting for Productivity Effects

• One simple way to incorporate productivity effects is to directly include 
launch year as a variable in a multivariate CERs:

• Implemented in NAFCOM as an independent variable in the subsystem-
level multivariate CERs
– Based on recent research by the author and others (including Darryl 

Webb of the Aerospace Corportation), productivity improvements have 
reduced cost by 1-3% per year (holding everything else constant)
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Multivariate CERs: 
Accounting for Technology Maturity

• Substantial investments in design and development are required 
when immature technologies are selected for use in a space 
program
– May also affect manufacturing cost (e.g., Shuttle Orbiter thermal 

tiles)
• Technology maturity or “readiness” is thus an important cost driver
• Technology Readiness Level (TRL) is one way to assess technology

maturity
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Accounting for Technology Maturity –
Technology Readiness Levels

• One option is to apply Technology Readiness Level (TRL) scale strictly to 
technology

• TRL uses an integer ordinal scale, 1-9
– Level 1 Basic principles observed and reported
– Level 2 Technology concept and/or application formulated
– Level 3 Analytical and experimental critical function and/or 

characteristic proof of concept
– Level 4 Component and/or breadboard validation in laboratory 

environment
– Level 5 Component and/or breadboard validation in relevant 

environment
– Level 6 System/subsystem model or prototype demonstration in a 

relevant environment (Ground or Space)
– Level 7 System prototype demonstration in an operational (space) 

environment
– Level 8 Actual system completed and (flight) qualified through test 

and demonstration (Ground and Space)
– Level 9 Actual system (flight) proven through successful mission 

operations
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Accounting for Technology Maturity 
– Issues with TRL

• The problem with TRL is that any technology that has been 
successfully used in flight would automatically be assigned a value 
equal to 9
– For example, the first time a composite structural material was 

used successfully in a space program, composite structural 
material would be assigned a value of 9 for all subsequent flights 
of that technology

– Using TRL scale will result in too many high value TRLs and 
some very low value TRLs
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Accounting for Technology Maturity –
TMI, the TRL Alternative

• Developed a new technology maturity index (TMI) as an alternative 
to TRL

• TMI is based on TRL
– Uses 1-12 scale
– TRL as defined is a little vague, so we sharpen some of the 

definitions
– Considers amount of experience with the technology

• Flight experience
• Test experience

– Also considers application of the technology (configuration, 
space, etc.)
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TMI Flowchart
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TMI Flowchart
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TMI Research

• TMI was assessed for individual NASA missions and other 
spacecraft
– Identified key technologies for components used in attitude 

control and communications, command and data handling 
subsystems

• Memory – Tape Recorders, Solid State
• Processors
• Antenna Bands and Configurations
• Gyros
• Momentum Wheels
• Sensors
• Star Trackers
• And Many, Many Others

– Developed timelines tracing the development of each 
technology, beginning in the 1950s and earlier

– Collected and searched literally thousands of documents on 
spacecraft technologies
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Timeline Example:
Ka-band Technology

• Ka-band technology development began in the early 1970s at MIT’s 
Lincoln Labs

• Beginning with ACTS (launched in 1993), nine NASA satellites 
encompassing seven distinct development programs have 
successfully deployed Ka-band technology
– ACTS, Cassini, Deep Space 1, Mars Global Surveyor, Mars 

Observer, Mars Reconnaissance Orbiter, and TDRS-8, -9, and -
10

• Ka-band technology has also been deployed in commercial 
satellites, military satellites, and numerous foreign satellites
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Ka-band TMI Levels 
and Milestones
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• Timelines such as this have been developed for all salient avionics 
technologies used in spacecraft

• TMI has been incorporated in the multivariate CERs for avionics
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Challenge #2: 
Changes in Tooling/GSE

• Tooling and other ground support equipment (GSE) for launch 
vehicles have evolved dramatically since the Apollo era

• The image below is a Douglas booster tooling tower used in the 
manufacture of the S-IVB Saturn stage

(source http://history.nasa.gov)
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Challenge #2: 
Changes in Tooling/GSE

• Much of the manually intensive fixed infrastructure and labor-
intensive tooling have been replaced by laser-aligned tooling that is 
highly automated

• The image below is of a computer-controlled tooling fixture with 
laser-aligned rails that allow the fixture to be positioned without 
mechanical intervention

(Source http://www.apexdt.com/images/computer_controlled_handlin.jpg)
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Challenge #2: 
Changes in Tooling/GSE

• Advances in GSE and tooling technologies have resulted in 
dramatic reductions in per-pound GSE cost over time

• Note that in the graph below, each of the three eras resulted in a 
reduction in per-pound cost approximately equal to an order of 
magnitude (y-axis is log-scale)
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Challenge #2: 
Changes in Tooling/GSE

• One caveat with the previous graph is that the latest era (in the 
graph) is ground support equipment for X-vehicles, which may not 
reflect full GSE/tooling environment due to several reasons, one of 
which is the strict imposition of cost-cutting measures due to budget 
constraints and the “faster, better, cheaper” policy of the 1990s

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



Challenge #2: 
Changes in GSE/Tooling

• A traditional way to model systems-level (aka “below the line”) costs is as a 
function of hardware cost

• This is often combined with an analogy-based approach described in detail 
earlier in this presentation
– For this approach we again have the challenge of finding the right 

analogy
– Example: Ares I Upper Stage – what is the right analogy? S-IVB may be 

most similar but GSE for the two are drastically different
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Solution to Challenge #2: 
Develop Multivariate Systems-Level CERs

• The graph below is a simple  multi-variate GSE CER for launch 
vehicles and manned spacecraft:
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• Takes into account changes in GSE over time
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Multivariate Systems-Level Cost Drivers

• The changes that have affected GSE costs over the years have also had 
an effect on costs for other systems-level activities, such as integration 
and assembly, systems test operations, program management, systems 
engineering, and launch operations

• In order to more accurately assess systems-level costs, multivariate 
systems-level CERs were developed for all systems-level activities that 
take place during design and development

• Numerous cost drivers were analyzed and many significant cost drivers 
for systems-level cost were found in addition to hardware cost, including:
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Multivariate Systems-Level CERs

• Multivariate Systems-Level CERs take into account numerous 
factors that influence “below-the-line” costs

• Allow accurate estimation without relying upon an appropriate 
analogy, which may not always exist
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Challenge #3: Communicating 
Cost Estimates with Systems Personnel

• Some existing cost models are designed to estimate at the 
subsystem level
– But many engineers work at a lower level
– Subsystem-level estimates can be difficult to reconcile with 

bottoms-up estimates 
• Cannot accurately determine specific sources of differences 

– Subsystem-level estimates based on spacecraft can be 
misleading when applied to launch vehicles

• Example – electric power subsystem estimate for Ares V
– Large amount of cables (a ton of cabling, literally!), not 

typical of most EPD&C subsystems in NASA databases
– Subsystem-level multivariate CERs should not be applied to 

component-level estimates
• Results in overestimation
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Subsystem-Level CERs and 
Their Application to the Component Level

• Assume a CER equal to the square-root function (i.e.,    ), 
subsystem weight equal to 100 lbs., and two components that 
each weigh 50 lbs 

• If we estimate the subsystem cost at the subsystem level using 
the CER, the estimate is                     

• But if we apply the same CER to the two components, we obtain   
for each component

• Adding these two components together results in a subsystem-
level roll-up estimate equal to $14.14, which is 41% higher than 
the subsystem-level application of the CER 
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Subsystem-Level CERs and 
Their Application to the Component Level

• Suppose for the subsystem-level CER Cost = aWb, that there are N
distinct components, and the CER is applied to each of these N
components

• Also suppose that the subsystem weight is W0, and the weight of 
each component is equal to W0/N

• Then the estimate for each component is a(W0/N)b and the 
subsystem-level roll-up is the sum of these component estimates, 
i.e., N(a(W0/N)b)

• The ratio of the component-based estimate to the subsystem-based 
estimate is
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Subsystem-Level CERs and 
Their Application to the Component Level

• Three cases
– b > 1 => N1-b < 1

• Application of a subsystem multivariate CER to a lower level 
underestimates the cost relative the subsystem-level CER 

– b < 1 => N1-b > 1
• Application of  a subsystem-level multivariate CER to a lower level 

overestimates the cost relative to the subsystem-level CER
– b = 1 => N1-b=1 (linear case)

• The application to the lower level has no effect
• “Most” CERs have b-values less than 1, so the main concern with applying 

multivariate subsystem-level CERs at the component-level is overestimation 
– Subsystem-level CER coefficients are calculated based on subsystem-

level data which means applying subsystem-level multivariate CERs will 
result in systematic overestimation of actual costs
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Subsystem-Level CERs and 
Their Application to the Component Level

• Note that 
– The greater the number of components, the greater the  

overestimation
– The lower the equation slope, or “b-value”, the greater the 

overestimation
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Correction Factor for Subsystem-Based 
Component-Level Estimates

• Consider the general case in which a subsystem-level CER is applied at the 
component-level. Assume N components. Let pi represent the percentage 
that the ith component contributes to the total subsystem weight, where     

• The subsystem-level rollup of the N component-level estimates is then

• Apply a correction factor of          to each estimate since the sum of all the 
percentages is equal to 1

• This correction factor can be applied to multivariate CERs if there is one 
single dominant cost driver as an approximation
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Subsystem-Level CERs and 
Their Application to the Component Level

• Note that application of subsystem-level CER is NOT a problem when the 
analogy method is used

• For the analogy method, suppose there are N components, all with equal 
weights and equal costs, and that the weight of the subsystem is W0. Then 
the a-value for the subsystem-level CER is

• Since all weights and costs are equal, the a-value for each component is 

• Thus the subsystem-level roll-up of the component-level estimates is

which is the same as the subsystem-level estimate
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Solution to Challenge #3: 
Develop Component-Level CERs

• To keep from mis-applying the subsystem-level multivariate CERs, there 
are three choices
– Apply a correction factor to the subsystem-level multivariate CERs
– Calibrate subsystem-level multivariate CERs to component-level data 

(i.e., adjust the “a-value” using the analogy method technique)
– Develop CERs at the component-level, i.e., develop CERs using 

component-level data
• In 2006, MSFC embarked upon the development of component-level 

estimates for Ares launch vehicles
– Developed component-level estimates for thrust vector control and 

avionics
• Where sufficient data were available, developed component-level 

CERs
• Where 2-3 data points were available, calibrated existing 

subsystem-level multivariate CER
• Where no data were available, applied subsystem-level multivariate 

CER with a correction factor (as described)
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Development of Component-Level 
Estimates

• Developed specific spreadsheet models that enable component-level 
estimates for Ares I and Ares V launch vehicles

• Simple user interface, incorporated risk directly in the spreadsheet using 
the method of moments

• Developed 17 component-level CERs for this effort

Transponder

TransmitterTankSolar ArrayReceiverProcessor

Power 
Distribution 
and Control

Power CablesInstrumentationGyroDiplexer-
Multiplexer

ControllerCameraBatteryAntennaAmplifier
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Example of Spreadsheet-Based Model: 
Screenshot

WBS - Component 
Level Avionics for 
Ares I Upper Stage

Model Inputs

Note – All inputs and outputs in this screenshots are completely notional. 
Any resemblance to actual costs for current or past programs is purely coincidental

Model 
Outputs
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Challenge #4: Providing Realistic 
and Comprehensive Risk Estimates

• It can be easy for an analyst to overlook sources of risk and possibly 
underestimate risk

• On the other hand, it is also tempting to attempt to add every 
possible source of error, possibly leading to double- and even triple-
counting error so that risk is grossly overestimated

• For these reasons, it is desirable to have some way to check risk 
results against reality
– How much risk is enough?
– How much is too much?
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Solution to Challenge #4: 
Use Recent Cost Growth Data

• Cost risk growth data can be used as a means to check the results of risk 
analyses against reality

• These checks can be used to determine if the amount of risk in the cost risk 
analyses is too high or too low

• In 2004 Matt Schaffer of NASA HQ collected and analyzed budget data on 
cost growth for NASA missions
– Comprised 50 missions from the 1990s – present
– Cost growth ranged from -25% to +193% 
– Average cost growth was 35% 
– 76% of the missions had budget overruns

• Similar to studies by Goddard and GAO
– Data are conservative

• Does not completely account for changes in requirements and 
scope before ATP (accounting for this would reduce the reported 
cost growth for some missions, e.g., Rossi XTE)
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Cost Growth And Its Relationship 
to Cost Risk

• Cost risk is the probability of exceeding the initial estimate
• Cost growth is the actual amount that the initial estimate is exceeded
• Assumption - the initial budgets in the cost growth database are point 

estimates (no risk is included)
• By assuming that the initial estimates are point estimates, we can relate 

cost risk to cost growth
– For example, if the point estimate represents the 30th percentile 

of a cost risk distribution, then the ratio of the 70th percentile to 
the 30th percentile represents potential cost growth

• For A, B two points of a cost risk distribution (A > B), with B as an initial 
reference point, the following formula relates cost growth to cost risk
– Cost growth = A/B

• A cost growth distribution is simply the ratio of various percentiles on a cost 
risk distribution relative to an initial reference point, such as the 30th

percentile
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Cost Risk Rule of Thumb

• Assume that the 30th percentile on a cost risk S-curve represents the point estimate 
(initial estimate)

– From experience, the point estimate is typically at or below the 30th percentile
• Assume that the risk distribution is Lognormal 
• For NAFCOM estimates, the ratio of the standard deviation to the mean is typically 

between 1/3 and 1/2 of the mean
• The ratio of the 70th percentile to the 30th percentile of a lognormal is 

• When σ = aμ, it follows that

• When a = 1/3, the 70th percentile is 41% higher than the 30th percentile 
• Thus, a reasonable rule of thumb for the ratio of the 70th percentile to the point 

estimate is 1.4
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Converting Cost Risk to Cost Growth

• The derivation of the rule of thumb on the previous chart provides a 
method to convert cost risk into cost growth
– Select a reference point, and divide each percentile by the initial 

reference point
– In this analysis, it is assumed that the 30th percentile is the 

reference point
– Once the cost risk has been normalized to a cost growth curve, it 

can be directly compared to the cost growth data
– Assume that a = 1/3 for “typical” risk
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Cost Risk Reality Check 
S-Curves

• Notice how closely a “typical” NAFCOM risk distribution fits the bulk of the 
actual cost growth data
– Provides confidence that cost risk estimates produced by NAFCOM are 

realistic
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