

tCost Control methodology designed to apply for defense acquisition of South Korea.

2007. 4. 9

PRIGENT Corporation

Contents

CAIV Introduction

CAIV Process for Korea

Conclusion

I. CAIV Introduction

Cost as an Independent Variable

CAIV Concepts

$\square \mathrm{xxx}$ Engine Development Program

CAIV Definiton

COST...

- The C stands for Cost
- Take into account the entire LCC when conducting CAIV trades
- CAIV trades make cost estimating and analysis more important
O Traditionally neglected costs such as O\&S and indirect costs require more attention
O To facilitate CAIV trades, cost models must be related to relevant design parameters

...as An Independent Variable

\square Captures the essential idea that cost must now be an input to the design process, not an output
"An" is an important reminder that cost is only one consideration, along with performance and schedule

O Risk will affect all three
[] "Independent Variable"
O Cost is not a "controlled" variable

Why CAIV?

CAIV is an Umbrella Strategy for Managing Life Cycle Costs as a Key Design Parameter

CAIV is a Philosophy, Not a Technique

II. CAIV Process for Korea

CAIV Process for Korea

1. RFP/Proposal

\square Management by CAIV process
O Inform CAIV plan
O RFP for CAIV plan
$>$ Cost Analysis and Reports
$>$ Cost vs Performance Trade-off
$>$ System Implementation Plan
O Cost Management Reports
$>$ UPC estimating and analysis reports
$>$ LCC estimation and analysis reports
O Scoring methods for CAIV plan
O CAIV results usage plan

2. EBS (Estimating Breakdown Struc \quad re)

\square EBS (Estimating Breakdown Structure)
O Cost Structure composed of CWBS
O Hardware and Software
O KHP EBS example

EBS			Type	Etc
1.	KHP Helicopter Program		Assembly	
1.1	Basic Helicopter		Assembly	
1.1 .2 .1		Rotor Assembly	Assembly	
1.1 .2 .1 .1			Main Rotor Blade	Mechanical
1.1 .2 .1 .2			Main Rotor Hub	$"$
1.1 .2 .1 .3			Main Rotor Control	$"$
1.1 .2 .1 .4			Tail Rotor Blade	$"$
1.1 .2 .1 .5			Tail Rotor Hub	$"$
1.1 .2 .1 .6			Tail Rotor Control	$"$
1.1 .2 .1 .7			Rotor Integ. and Test	Integ./Test

3. Target Cost Setting

\square System Target Cost (PRICEModel)
O Setting Target Cost using PRICE Model

3. Target Cost Setting

(コ)

\square System Target Cost (Engineering Method)

O Setting Target Cost using Engineering Methods

3. Target Cost Setting (3)

\square Target Cost Allocation

O Allocate System target cost to sub assembly component
O Set allocated target cost to design constraint

3. Target Cost Setting (4)

\square LCC (Life Cycle Cost)
O Hardware Life Cycle Cost
O Cost Categories
Development Cost
$>$ Production Cost
Mission Equipment, Initial Spares, Common Support Equipment
$>$ Operation \& Support Cost
Spares, Maintenance Cost, Contractor Support,
Store, Transportation

3. Target Cost Setting (5)

\square TOC (Total Ownership Cost)
O System Total Ownership Cost
O Cost Categories
$>$ Development Cost
$>$ Procurement Cost
Mission Equipment, Modification, Common Support Equipment,
Replenishment Spares, Initial Spares, etc.
Construction Cost
Operation \& Support Cost
Mission Personnel, Organization Spares, Intermediate Maintenance, Depot Maintenance, Contractor Support, Indirect Supprot, etc.

4. Cost Management Plan (1)

- Cost Control Item

O Criteria
$>$ WBS 3 or 4 level components
$>$ Domestic developments items

KHP examples

KAI	41 items including Forward airframe
KARI	23 Items including Main Rotor
ADD	24 Items including U/VHF-AM
Total	98 Items

4. Cost Management Plan (e)

\square CAIV Management Chart

O Cost Management Planning

5. Contracts (1)

\square CAIV Contracts (KHP examples)

O Major contractor and sub contractor have to adopt CAIV (Cost as An Independent Variable) for effectively managing KHP program.

O Major Contractor have to submit UPC, LCC and TOC Target using PRICE models or Engineering methods to KHP PMO in 2 months after contracting.

O After approval of target costs, Major contractor have to submit cost management reports every six months before preliminary design and every quarters after then.

5. Contracts (2)

\square CAIV Contracts (KHP examples)

Schedule	X	$\mathrm{X}+1$	$\mathrm{X}+2$	$\mathrm{X}+3$	$\mathrm{X}+4$
Limits	30%	20%	10%	5%	0%

O Major contractor have to submit problem analysis reports if the current estimates of UPC, LCC and TOC exceeds the annual limits in the above table.

O KHP PMD could modify the procurement method and request engineering changes if the target cost is not to satisfy.

6. IBR and Approval (1)

\square Target Cost Negotiation

O Negotiating target cost after reviewing that of validity.

6. IBR and Approval (e)

\square Target Cost Reports
O Unit Production Cost

Program :		Company :		Schedule :	
WBS	Title	QTYNHA	UPC Target	Total Production Cost	Ratio

6. IBR and Approval

\square Target Cost Reports
O Life Cycle Cost

Program :		Company :		Schedule :	
WBS	Title	QTYNHA	LCC Target	Total LCC Cost	Ratio

6. IBR and Approval

```
(4)
```

\square Target Cost Reports
O Total Ownership Cost

Program :	Company :	Schedule :	
	Categories	Target	Ratio
	Development Cost		
	Procurement Cost		
	Construction Cost		

7. Cost/Performance Trade - off

Trade-off study on design alternatives

7. Cost / Performance Trade - off

[Cost vs. Performance Trade-off

Selection of optimal solution by trade- off study

8. Cost Analysis

\square Monthly/Quarterly Cost Estimates

Estimating Breakdown Structure

9. Reports Submission (1)

\square Cost Management Reports

O Unit Production Report

| Program : | Company : | | | Schedule : |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Program Manager : | | Unit Production Cost | | |

9. Reports Submission (ᄅ)

\square Cost Management Reports

Life Cycle Cost Report

| Program : | Company : | | | Schedule : |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Program Manager : | | | Life Cycle Cost | |

9. Reports Submission (3)

\square Cost Management Reports

O Total Ownership Cost Report

Program :	Company :		Schedule :	
Program Manager :		Total Ownership Cost		
Target Cost	Current Estimates	Variation	Variation Ratio	Risk Status

9. Reports Submission (4)

\square Problem Analysis Report of UPC/LCC/TOC

Schedule	X	$X+1$	$X+2$	$X+3$	$X+4$
Limits	30%	20%	10%	5%	0%

oProgram :	oDay :	
oCompany :	oProgram Manager :	
Target Cost	Current Estimates	Variation
		Variation Ratio
oProblem :		

10. Data Accumulation

\square Database Accumulation of Reports
O Storing all of the cost database during the development
$>$ Proposal, prototype and production
O Managing the historical cost data
$>$ Prototype/Production historical data
O Using the cost data for estimating cost of similar system
$>$ Nominal UPC/LCC/TOC estimates of new system
$>$ Using the cost data for estimating target cost of new system

11. Early Warning and Contro

\square Bullseye Chart
O Unit Production Cost vs. Total Ownership Cost

III. Conclusions

Conclusions

\square CAIV process is necessary for guaranteeing the economic efficiency after completing
-CAIV process for Korea is designed for reforming the Korea defense acquisition system
\square CAIV process managing unit production cost, life cycle cost and operation \& support cost has to be adapted during development

Further Information

\square PRIGENT Corporation

$>$ Website : http://www.prigent.co.kr
$>$ Telephone : +82-42-603-5885
Δ Facsimile : +82-42-603-5886

- E-mail : cape@prigent.co.kr

