A Cost Control methodology designed to apply for defense acquisition of South Korea.

2007. 4. 9

PRIGENT Corporation

Contents

CAIV Process for Korea

I. CAIV Introduction

Cost as an Independent Variable

CAIV Concepts

□ xxx Engine Development Program

CAIV Definiton

<u>COST...</u>

- □ The C stands for Cost
- Take into account the entire LCC when conducting CAIV trades
- CAIV trades make cost estimating and analysis more important
 - Traditionally neglected costs such as O&S and indirect costs require more attention
 - To facilitate CAIV trades, cost models must be related to relevant design parameters

...as An Independent Variable

- Captures the essential idea that cost must now be an input to the design process, not an output
- "An" is an important reminder that cost is only one consideration, along with performance and schedule
 - Risk will affect all three
- "Independent Variable"
 - Cost is not a "controlled" variable

Why CAIV?

CAIV is an Umbrella *Strategy* for Managing Life Cycle Costs as a Key Design Parameter

II. CAIV Process for Korea

CAIV Process for Korea

1. RFP/Proposal

- □ Management by CAIV process
 - Inform CAIV plan
 - RFP for CAIV plan
 - > Cost Analysis and Reports
 - > Cost vs Performance Trade-off
 - > System Implementation Plan
 - **O** Cost Management Reports
 - > UPC estimating and analysis reports
 - > LCC estimation and analysis reports
 - Scoring methods for CAIV plan
 - O CAIV results usage plan

2. EBS (Estimating Breakdown Structure)

EBS (Estimating Breakdown Structure)

- Cost Structure composed of CWBS
- Hardware and Software
- KHP EBS example

	EI	Туре	Etc	
1.	KHP Helicopt	er Program	Assembly	
1.1	Basic Helicop	ter	Assembly	
1.1.2.1	Rotor	Assembly	Assembly	
1.1.2.1.1	M	lain Rotor Blade	Mechanical	
1.1.2.1.2	M	lain Rotor Hub	"	
1.1.2.1.3	M	lain Rotor Control	"	
1.1.2.1.4	Ta	ail Rotor Blade	"	
1.1.2.1.5	Ta	ail Rotor Hub	"	
1.1.2.1.6	Ta	ail Rotor Control	"	
1.1.2.1.7	R	otor Integ. and Test	Integ./Test	

3. Target Cost Setting (1)

System Target Cost (PRICE Model)

• Setting Target Cost using PRICE Model

				EBS		уре	Tar	oet Esti	mates	
1.	K	HP	He	elicopter Program	As	Basic Estimate	Iai	get LSti	mates	
1.1	B	asio	сΗ	elicopter	As	Cost Summary	LM Totals KMH Utility Vi 6 6:53 오제 (PRI	LM Production ersion ICE Estimating Suite	LM Develop	oment
1.1.2.1			R	otor Assembly	As	System Cost Summary Program Cost Engineering	Costs ir Development	n (KRW100000000 Production	Constant 604) Total Cost	
1.1.2.1.				Main Rotor Blade	Me	Draft Design System	493.4 1793.6 184.5	38.2 146.5	531.8 1940.1 184.5	
1.1.2.1.				Main Rotor Hub		Proj. Mgmt. Data SubTotal(ENG) HW/SW Int Cost	426.5 110.0 3008.0 [48.5]	1967.9 691.3 2844.0	2394.5 801.3 5851.9	
4.1.2.1.				Main Rotor Control		Manufacturing Production Prototype Tool Toot Eq.	- 2830.0 204.9	29860.0	29860.0 2830.0	Cost
₽.1.2.1.				Tail Rotor Blade		Purchased SubTotal(MFG) G & A / CoM	234.3 272.3 3397.3 281.5	9670.8 42094.1 1619.8	9943.1 45491.4 1901.3	
4 .1.2.1.				Tail Rotor Hub		Fee / Profit Total Cost Total (Thruput)	601.8 7288.6 6245.9	4190.2 50748.1 0.0	4792.0 58036.8 6245.9	
₽.1.2.1.				Tail Rotor Control		Total w/Thruput Schedule Start First Item S Finish	13534.5 Oct 04 [48] Sep 08 [28] Jan 11 [76]	50748.1 Jan 10 [37] Jan 13 [147] Apr 25 [184]	64282	
Ψ.1.2.1. 7				Rotor Integ. and Test	Int	System Weight System Series MTBF H System Quantity	12226.44 S Irs 2.775 L 299 T	System VVS Jnit Sys Cost Fotal Prod Cost/QT	11573.0) 149.1 169.7)	Cost

Estimating Breakdown Structure

3. Target Cost Setting (2)

System Target Cost (Engineering Method)

• Setting Target Cost using Engineering Methods

3. Target Cost Setting (3)

□ Target Cost Allocation

- Allocate System target cost to sub assembly component
- Set allocated target cost to design constraint

3. Target Cost Setting (4)

- LCC (Life Cycle Cost)
 - O Hardware Life Cycle Cost
 - O Cost Categories
 - Development Cost
 - Production Cost

Mission Equipment, Initial Spares, Common Support Equipment

Operation & Support Cost

Spares, Maintenance Cost, Contractor Support,

Store, Transportation

3. Target Cost Setting (5)

- TOC (Total Ownership Cost)
 - System Total Ownership Cost
 - Cost Categories
 - Development Cost
 - Procurement Cost
 - Mission Equipment, Modification, Common Support Equipment,
 - Replenishment Spares, Initial Spares, etc.
 - Construction Cost
 - > Operation & Support Cost
 - Mission Personnel, Organization Spares, Intermediate Maintenance, Depot Maintenance, Contractor Support, Indirect Supprot, etc.

4. Cost Management Plan (1)

Cost Control Item

• Criteria

 \succ WBS 3 or 4 level components

> Domestic developments items

O KHP examples

4. Cost Management Plan (2)

CAIV Management Chart

• Cost Management Planning

5. Contracts (1)

□ CAIV Contracts (KHP examples)

- Major contractor and sub contractor have to adopt CAIV (Cost as An Independent Variable) for effectively managing KHP program.
- Major Contractor have to submit UPC, LCC and TOC Target using PRICE models or Engineering methods to KHP PMO in 2 months after contracting.
- After approval of target costs, Major contractor have to submit cost management reports every six months before preliminary design and every quarters after then.

5. Contracts (2)

□ CAIV Contracts (KHP examples)

Schedule	X	X+1	X+2	X+3	X+4
Limits	30%	20%	10%	5%	0%

- Major contractor have to submit problem analysis reports if the current estimates of UPC, LCC and TOC exceeds the annual limits in the above table.
- KHP PMD could modify the procurement method and request engineering changes if the target cost is not to satisfy.

6. IBR and Approval (1)

□ Target Cost Negotiation

• Negotiating target cost after reviewing that of validity.

6. IBR and Approval (2)

Target Cost Reports

O Unit Production Cost

Program :		Co	mpany :	Schedule :		
WBS	Title	QTYNHA UPC Target		Total Production Cost	Ratio	

6. IBR and Approval (3)

Target Cost Reports

• Life Cycle Cost

Program :		Co	mpany :	Schedule :		
WBS	Title	QTYNHA LCC Target		Total LCC Cost	Ratio	

6. IBR and Approval (4)

Target Cost Reports

O Total Ownership Cost

Program :	Company :	Schedu	le :
	Categories	Target	Ratio
	Development Cost		
Total	Procurement Cost		
Cost	Construction Cost		
	Operation & Support Cost		
	Total		

7. Cost/Performance Trade-off a

Trade-off study on design alternatives

7. Cost/Performance Trade-off (2)

□ Cost vs. Performance Trade-off

Selection of optimal solution by trade-off study

8. Cost Analysis

□ Monthly/Quarterly Cost Estimates

	EBS			e	Cost	Estimat	es	
1.	KH	P Helicopter Program	Assem	1 1 Basic Estima	ate	Lotinat		
1.1	Bas	ic Helicopter	Assem	Cost Summary	LM Totals KMH Utility V	LM Production	LM Developmen	nt
1.1.2.1		Rotor Assembly	Assem	근 3월14월 System Cost Summ Program Cost Ecclosering	nary Costs i Development	n (KRW100000000 C Production	Constant 604) Total Cost	
1.1.2.1.		Main Rotor Blade	Mechai	Draft Design System	493.4 1793.6 184.5	38.2 146.5 -	531.6 1940.1 184.5	
1.1.2.1.		Main Rotor Hub	"	Proj. Mgmt. Data SubTotal(ENG)	426.5 110.0 3008.0	1967.9 691.3 2844.0	2394.5 801.3 5851.9	
4.1.2.1.		Main Rotor Control	"	Manufacturing Production Prototype	2830.0	29860.0	29860.0 2830.0	Cost
₽.1.2.1.		Tail Rotor Blade	"	Tool Test Eq. Purchased SubTotal(MFG) G & A / CoM	294.9 272.3 3397.3 281.5	2563.4 9670.8 42094.1 1619.8	2858.3 9943.1 45491.4 1901.3	
4 .1.2.1.		Tail Rotor Hub	"	Fee / Profit Total Cost Total (Thruput)	601.8 7288.6 6245.9	4190.2 50748.1 0.0	4792.0 58036.8 6245.9	
₽.1.2.1.		Tail Rotor Control	"	Total w/Thruput Schedule Start First Item	13534.5 Oct 04 [48] Sep 08 [28]	50748.1 Jan 10 [37] Jan 13 [147]	64282.7 🥖	
Φ.1.2.1. 7		Rotor Integ. and Test	Integ./	Finish System Weight System Series MTI System Quantity	3an 11 [76] 12226.44 3 BF Hrs 2.775 1 299 1	Apr 25 [164] System WS Unit Sys Cost Total Prod Cost/QTY	11573.04 149.11 169.73	Cost Estimates

Estimating Breakdown Structure

9. Reports Submission (1)

Cost Management Reports

O Unit Production Report

Program :		Company :			Schedule :		
Program M	Ianager :		Uni	t Production	Cost		
Title	Target Cost	Current Estimates	Variation	Variation Ratio		Risk Status	

9. Reports Submission (2)

Cost Management Reports

O Life Cycle Cost Report

Program :		Company :			Schedule :		
Program M	Ianager :		Life Cycle Cost				
Title	Target Cost	Current Estimates	Variation	Variation Ratio		Risk Status	

9. Reports Submission (3)

Cost Management Reports

O Total Ownership Cost Report

Program :	Comp	oany :	Schedule :		
Program Manager :		Total Own	ership Cost		
Target Cost	Current Estimates	urrent Estimates Variation		Risk Status	

9. Reports Submission (4)

□ Problem Analysis Report of UPC/LCC/TOC

Schedule	X	X+1	X+2	X+3	X+4
Limits	30%	20%	10%	5%	0%

• Program :			⊙Day :			
•Company :			• Program Manager :			
Target Cost Current Estimates			Variation	Variation Ratio		
0	Problem :					
0	Counterplan :					

10. Data Accumulation

- Database Accumulation of Reports
 - Storing all of the cost database during the development
 - ≻ Proposal, prototype and production
 - O Managing the historical cost data
 - Prototype/Production historical data
 - Using the cost data for estimating cost of similar system
 - ► Nominal UPC/LCC/TCC estimates of new system
 - > Using the cost data for estimating target cost of new system

11. Early Warning and Control

□ Bullseye Chart

• Unit Production Cost vs. Total Ownership Cost

III. Conclusions

Conclusions

CAV process is necessary for guaranteeing the economic efficiency after completing

CAIV process for Korea is designed for reforming the

Korea defense acquisition system

CAV process managing unit production cost, life cycle cost and operation & support cost has to be adapted during development

Further Information

PRIGENT Corporation

> Website : http://www.prigent.co.kr

➤ Telephone : +82-42-603-5885

➢ Facsimile : +82-42 - 603 - 5886

E-mail : cape@prigent.co.kr

The success of projects are never just happened ...

make plan, do analysis & manage them

New system is ready for your successful projects.

Thank You

www.prigent.co.kr