

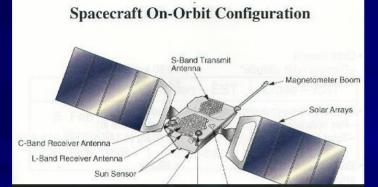
Innovative Procurement Approach for Satellites Constellations on Institutional Market

Presented by: H. Joumier Head of ESA Cost Engineering European Space Agency- ESTEC Noordwijk – The Netherlands

08th-11th June 2010

O ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Why Innovative approach required on Institutional Market?

Setting up a satellite constellation is project:


- Large (costly and lengthy)
- Complex (global, system layer over multi satellites management)
- Risky (size, technical performances, serial production)
- Strong difference in business focus between private and institutional market
- Constellations have characteristics compared to single satellite projects that may be further exploited:
 - A single satellite failure will normally cause smooth and limited degradation of the service
 - More flexible procurement schemes can be envisaged

Few examples from the Commercial Market

08th-11th June 2010

Sources: www.spaceantech.com

Wikipedia

08th-11th June 2010

Contract Award

In orbit delivery

scope

life time

Contractor	Space System/Loral	
Payload	S and L Band	
Platform	LS-400	
Dry Mass	400 kg	
Life time	7.5 years	
	Constellation	
48	satellites	
8	orbital planes	
4	spares in orbit	
52	deg inclination	
1410	km altitude	
	Business	
Service	mobile satellite voice and data	
FCC filed	1995	
Initial Investment	1800 MUSD	
	Company's history	
Globalstar LP	1991	
Globalstar LLC	2003	
Globalstar Inc.	2006	
	Main adverse events	
Loss 12 satellites laun	ch failure	1998
Bankruptcy		2002
fast degrading S Band	amplifiers	2007
	GLOBALSTAR NG	
Initial Investment	661 MUSD	
Contractor	Thales Alenia Space	

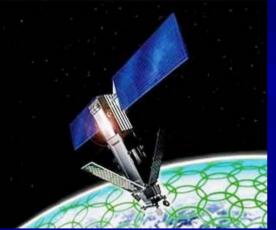
2007

48 satellites

15 years 2010 (expected)

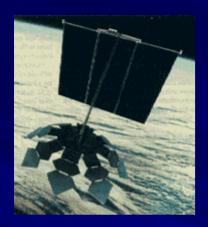
GLOBALSTAR

Satellites



Iridium

Source: Wikipedia


	IRIDIUM	onine.com				
	Satellites					
Contracto	r Lockheed Martin					
Payload	L Band					
ILS	Ka band					
Platform	LM-700					
Dry Mass	689 kg					
Life time	5 to 8 years					
	Constellation					
	66 satellites					
	6 orbital planes					
	6 spares in orbit					
86.4 deg inclination						
781 km altitude						
	Business					
Service	global voice and paging					
FCC filed	2001					
service started	N/A					
Initial Investmen						
	Company's history					
Teledesic LLC						
	Main adverse events					
Loss 3 first satell	1997					
Wrong injection	1997					
Bankruptcy		1999				

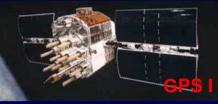
IRIDIUM NEXT						
	Satel	ellites				
Contractor	Contractor Competition result in 2010					
Payload	L Band	nd				
ILS	Ka ban	nd				
Host Payload	TBD)				
Platform	?					
Dry Mass	?	kg				
Life time		? years				

08th-11th June 2010

Teledesic (Cancelled)

Sources: Wikipedia

	TELEDESIC				
	Satellites				
Contractor	Boeing				
Payload	Ka Band				
ILS	Ka Band or optical				
Platform					
Dry Mass	? kg				
Life time	10 years				
	Constellation				
840	satellites (initial)				
288 satellites (scaled-down)					
21 orbital planes (initial)					
12 orbital planes (scaled-down)					
3	spares in orbit (scaled-down				
98.2	deg inclination				
700	km altitude (initial)				
1400 km altitude (scaled-down)					
Business					
Service	broadband internet				
FCC filed	1997				
Initial Investment	9000 MUSD				
Со	mpany's history				
Teledesic LLC					
	n adverse events				
Project interruption	1st October	2002			



Two examples from the Institutional Market

08th-11th June 2010

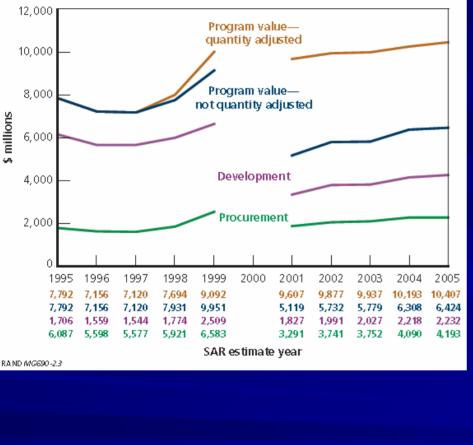
GPS/NAVSTAR

Launch		Satellite launches				Currently in orbit
Block	Period	Suc- cess	Fail- ure	In prep- aration	Plan- ned	and healthy
1	1978–1985	10	1	0	0	0
Ш	1989–1990	9	0	0	0	0
IIA	1990–1997	19	0	0	0	11 of the 19 launched
IIR	1997–2004	12	1	0	0	12 of the 13 launched
IIR-M	2005–2009	8	0	0	0	7 of the 8 launched
IIF	2010-2011	0	0	10	0	0
IIIA	2014–?	0	0	0	12	0
IIIB		0	0	0	8	0
IIIC		0	0	0	16	0
-	Total	<mark>58</mark>	2	10	36	30

(Last update: 29 December 2009)

PRN 01 from Block IIR-M is unhealthy

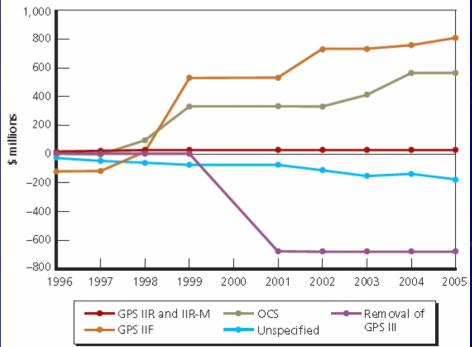
PRN 25 from Block IIA is unhealthy


See the GPS almanac 🕼. For a more complete list, see list of GPS satellite launches

	Block 1	Block II	Block IIA	Block IIR	Block IIR-N	Block IIF	Block IIIA
	Rockwell	Rockwell	Rockwell	LM	LM	Boeing	LM
Nb Sat	12	9	19	12	8	12	12
Weight(kg)	450	840	840	1080	2032	1545	TBD

Source: wikipedia

A Ten-Year Look at SAR Cost Estimates for GPS Development and Procurement

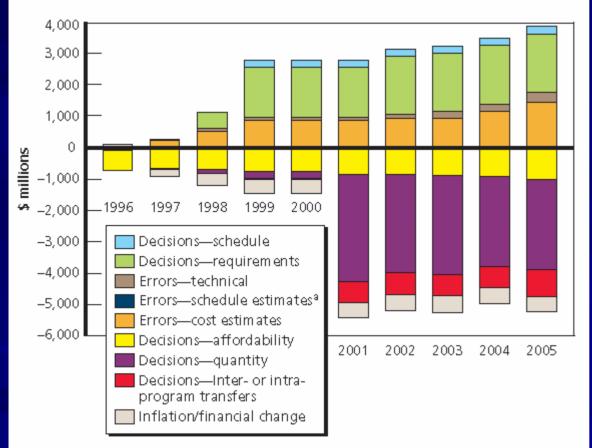


Extracts from Rand MG690

Improving the Cost Estimation of Space Systems

Available at: www.rand.org/pubs/

Cumulative Development Cost Variance, by Program Segment over Time


08th-11th June 2010

ISPA/SCEA Annual Con RAND M GE90-2.4

GPS Cost growth

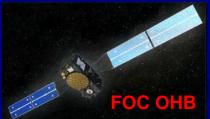
Cumulative Variances in GPS Development and Procurement over Time Using RAND Methodology

Extracts from Rand MG690

Improving the Cost Estimation of Space Systems

Available at: www.rand.org/pubs/

^aQuantities are either zero or too small to show. RAND MG690-2.6



	GIOVE-A	GIOVE-B	IOV	FOC 1st batch	FOC rem.
Nb Sat	1	1	4	14	TBD
Weight (kg)	602	525	640	TBD	TBD
Contractor	SSTL	ESNI	Astrium	OHB/SSTL	TBD
Life time	2 years	2 years	12 years	12 years	TBD
Launched	2005	2008	2011?	2012-13?	TBD

Source: http://space.skyrocket.de

08th-11th June 2010

O ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Galileo cost and schedule growth

GALILEO COST ESTIMATES

	Original cost estimate in million euro (COM(2000)750)	Updated cost estimate in million euro (COM(2007)261 and ESA documents)
Definition phase	80	80
Development and validation phase	1 100	2 100
Deployment	2 150	3 400
Total	3 330 (of which 1 800 million to be borne by the public)'	5 580 (all to be borne by the public sector)"

Annual operating costs, including constellation replacement, were estimated at 220 million euro

** Availability payments (fixed part) for operating cost, maintenance and replenishment debt interest until 2030 are estimated at 5 300 million euro.

Special Report No 7/2009 - Management of the Galileo programme's development and validation phase

- Galileo Operational Phase was originally foreseen for 2008
- The report mention a foreseen date 2013

Extracts from the European Court of Auditors 2007

Available at: www.eca.europa.eu

08th-11th June 2010

Dealing with difficulties

Inherent complexity of constellations

- All constellations encountered major problems
 - Development
 - Deployment
 - Operational service
- Serial production
 - Late occurrence of Equipment generic failure
 - due to inappropriate material and unsettled processes to be avoided (e.g. Globalstar Solar Arrays). Late event means direct impact on critical path.
- Several multiple launches required.
 - This creates a high risk on launch failure with potential severe cost and schedule drift before reaching full operational capability. Globalstar lost 14 satellites)
- Serial production has a strong appeal for equipment suppliers in a market dominated by single of a kind projects.

Price Dumping, excessive risk taking, bankruptcy risk

- The development of the infrastructure can hardly be amortized in a business plan but profitable Users applications can be developed once the system in place and maintained
 - Global positioning system
 - Search and Rescue
- Development contractors do not have strong interest to reach constellation operational stage
 - The business is in the development
 - Single contractor procurement is prone to significant schedule delays and cost growth

The trade-off elements

Single offer vs. open competition Development cost Schedule Learning curve factor

Learning curve factor effect

Commercial market

- Minimise capital expenditure
- Reach operational stage the soonest
- Industry will get organised to benefit from full learning effect

Institutional Market

 Learning curve factor is part of the negotiation
 Monopoly situations usually leads to high values for negotiated learning factor

Dual Production Lines

Principle

- Place two independent contracts instead of one up to final delivery of the whole constellation in orbit
- Place orders per batches

Pros

- Reinstate competition all along the procurement cycle including during production
 - Better containment of cost and schedule
- Limit technical and programmatic risks
 - Mitigate generic equipment level technical risks
 - Avoid single point failure on single integration line

Cons

 2 developments to pay for. The larger the constellation is, the more marginal becomes the non recurring costs.

Questions?

 How many satellites in the constellation before the Dual Production becomes the cost effective solution?

Organising batches

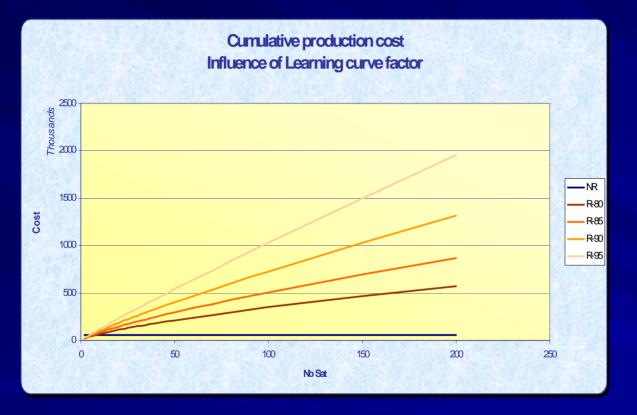
Batches to be placed according to Constellation configuration.

- Number of orbital planes
- Number of satellites per orbital plane
- Possibly optimizing number of satellites per launcher
- Each batch is open to competition
- Smoother and more flexible than GPS procurement per block, although GPS already beneficiate from multiple suppliers market condition.

Risk mitigation effect

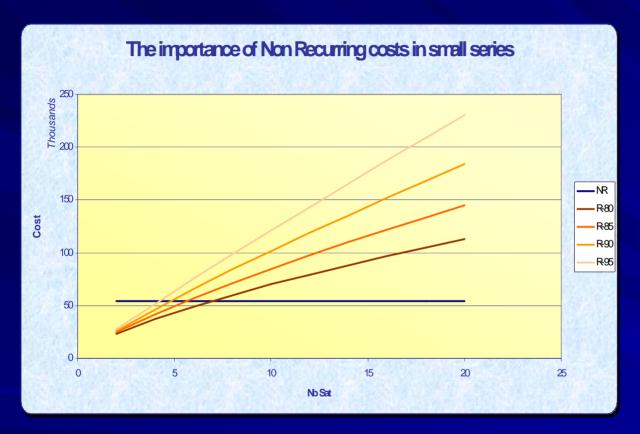
- Satellite Integration is on critical path
- Major global disruption of Integration plant will have significant on cost/schedule containment. This could be due to
 - Natural disaster such as Earthquakes
 - Strikes
 - Sabotage/Terrorism
 - Etc...
- Fully Independent Integration plants will efficiently mitigate the risk

2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com


Institutional Market - Simulation case

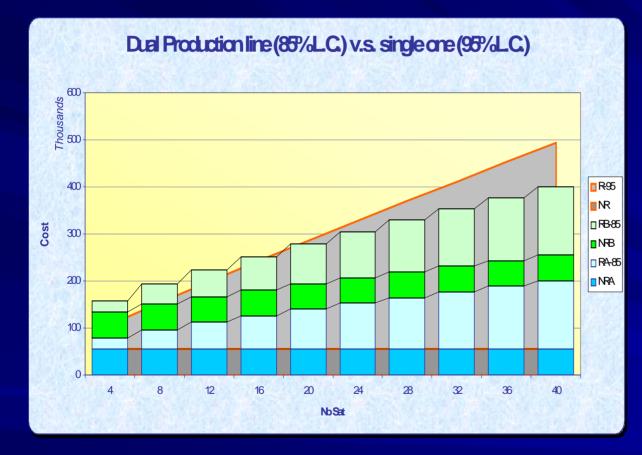
Comparing two solutions

- Single procurement
 - Once awarded many changes expected on non recurring activities with inflation impact on recurring costs
 - Negotiated learning curve factor expected not better than 95%
 - High cost and schedule growth
- Two parallel contracts for dual production lines.
 "Race" conditions attract focus on the recurring production i.e. where the big money is. Contractor is expected to work according to optimised industrialisation process so the Learning curve factor is expected to be in the range of 85%



0 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com The influence of the Learning Curve Factor

- Large constellation case
 - The non recurring costs become marginal. All the focus is on the recurring costs
 - Dual source production lines becomes the obvious choice
 - Learning curve factor becomes the most sensitive cost driving parameter. For a constellation of 200 satellites the cost almost quadruple when L.C. factor varies from 80% to 95%



- The case of small constellations
 - The development cost is not neglect able
 - Need to study when dual sources production lines becomes attractive

The Trade-Off

- Comparison single v.s. double souces
 - The break even appears to be for 16 satellites
 - The schedule risk factor is not considered in this analysis nor the AIT risk.
 When doing so the breakeven is down to around 10 satellites

Conclusions

- Cost and schedule efficiency of constellation projects can be improved by setting up competitive production lines
- Overall procurement becomes cheaper in the case of dual procurement for constellations made of around 12 satellites and beyond.
 - Specific study is required when in the range 8 to 16 satellites. It depends on:
 - The magnitude of non recurring costs
 - Requirements stability
 - Inherent complexity
 - Heritage

Achievable learning rate factor