Air Force Cost Analysis Agency Army Cost & Economics

# I Need Your Cost Estimate for a 10 Year Project... by Next Week

A Case Study in Broad System Analysis: DoD Spectrum Reallocation Feasibility Study, 1755-1850 MHz





2

## Momentum From Industry & Response from Government

The wireless industry is putting pressure on the federal government to make more spectrum available. An example of the advertising campaign by the CTIA (Cellular Telecommunications Industrial Association) follows:

> http://www.ctia.org/media/index.cfm/AID/12071 (view video segment)

Presidential Memo June 2010 directed Dept of Commerce (NTIA) to Collaborate with the FCC to

- meet 500 MHz requirement
- develop a specific Plan and Timetable

Air Force Cost Analysis Agency



3

## **Public Release of Results**

- All the quantitative information for this report comes from either:
  - Department of Commerce (DoC) report: <u>An Assessment of the Viability of Accommodating Wireless Broadband in the 1755-1850 MHz Band</u>, dated 27 Mar 2012, which is available to the public at the following website: <u>www.ntia.doc.gov</u>
  - Other publicly available information (as cited)
- Data contained in the Department of Defense (DoD) reports that formed the basis for the DoC report are currently not approved for public release, and as such are not included in this presentation



## Past Wireless Spectrum Auctions



- Auction revenue is driven by:
  - Demographics: Size and makeup of the consumer population in the geographic area affected
  - Amount of contiguous spectrum
  - Propagation characteristics of the band

| Auction | Frequency<br>Band (MHz) | Total<br>MHz | Year | Revenue<br>In Billions |
|---------|-------------------------|--------------|------|------------------------|
| PCS     | 1900                    | 90           | 1995 | \$17                   |
| PCS     | 1900                    | 30           | 1996 | \$2                    |
| AWS1    | 1700                    | 90           | 2006 | \$14                   |
| 700     | 700                     | 52           | 2008 | \$19                   |

### Anticipate approx. \$30 B potential revenue from 1755-1850 band based on historical data above

Air Force Cost Analysis Agency

## Signal Propagation Characteristics



- Signal propagation distance decreases with increasing radio frequency (MHz)
- Signal power density is decreases with distance by the inverse square law: 1/r<sup>2</sup> (doubling the distance reduces signal power density to 1/4)
- Possible mitigation steps:
  - Directional (Gimbaled) antenna vs. Omni directional antenna
  - Increase antenna height
  - Increase transmission power (Size & Weight impact)



# **Signal Propagation Example**



Cell Phone Tower in Columbus Georgia <u>Constants</u>: 120' tower, 100 W transmission power





500 MHz



1000 MHz



## 2000 MHz









## Estimated Cost to Relocate Federal Operations from 1755-1850 MHz

|                                        | Estimated  |
|----------------------------------------|------------|
| Operation                              | Cost (\$M) |
| Fixed Point-to-Point Microwave         | 186        |
| Military Tactical Radio Relay          | 160        |
| Air Combat Training System             | 4,500      |
| Precision Guided Munitions             | 518        |
| Tracking, Telemetry, and Commanding    | 2,350      |
| Aeronautical Mobile Telemetry          | 3,140      |
| Video Surveillance                     | 5,097      |
| Unmanned Aerial Systems                | 1,511      |
| Other DOD Systems                      | 364        |
| Total (\$M) [See Note]                 | 17,826     |
| ······································ |            |

Note: This total estimated cost to vacate the entire 1755-1850 MHz band includes the cost to relocate from the 1755-1780 MHz band; it does not include implementation and administration costs for DOD, which it estimates at \$272M for vacating the 1755-1850 MHz band.



## **Challenging Timeline**

Number of Days Each Organization Had to Prepare a Deliverable 119,22% 180,33% Dept of Commerce DoD Spectrum Offices Military Dept Cost Agencies Dept of Defense 40,7% 14,3% **First Estimate from Final Estimate** the services from the DoD 190, 35%

| Date      | Action                                                  | Lead Organization           |
|-----------|---------------------------------------------------------|-----------------------------|
| 1-Oct-10  | Fast Track Evaluation of Spectrum bands                 | Dept of Commerce            |
| 28-Jan-11 | DoC identified 1755-1850 as the first band for analysis | Dept of Commerce            |
| 9-Mar-11  | Finalize band relocation choices for study              | DoD Spectrum Offices        |
| 23-Mar-11 | Intial estimates due from the military services to DoD  | Military Dept Cost Agencies |
| 29-Sep-11 | Summary of DoD Relocation Estimates sent to DoC         | Dept of Defense             |
| 27-Mar-12 | DoC releases its report                                 | Dept of Commerce            |

#### Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Armv

Economics

# Why Spectrum Management is Becoming a Big Issue:

## **Increased Number of Devices Using the Spectrum**

1975 Table of Frequency Allocations



## **Increased Bandwidth Requirement of these devices...**

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

9

## Spectrum Requirements for Mobile Broadband

10

| Technology                                                    | Year Introduced in<br>the US        | Generation   | Typical Downlink<br>Speed      | Typical Channel<br>Size |
|---------------------------------------------------------------|-------------------------------------|--------------|--------------------------------|-------------------------|
| Advanced Mobile Phone<br>System (AMPS)                        | 1983                                | 1G - Analog  | Voice only. No data            | .03 MHz                 |
| Ground System Mobile (GSM)                                    | 1993                                | 2G - Digital | Voice + Text Messaging         | .05 MHz                 |
| Enhanced Data rates for GSM<br>Evolution (EDGE)               | 1999                                | Pre-3G       | .0714 Mbps                     | .2 MHz                  |
| Universal Mobile<br>Telecommunications System<br>(UMTS)       | 1999                                | 3G           | .2 to .3 Mbps                  | 5 MHz                   |
| High Speed Packet Access<br>(HSPA+)                           | 2007 (T-Mobile)                     | 4G*          | 1.9 -8.8 Mbps                  | 5 MHz                   |
| Worldwide Interoperability<br>for Microwave Access<br>(WiMAX) | 2008 (Clearwire /<br>Sprint Nextel) | 4G*          | Up to 40 Mbps                  | 20 MHz                  |
| Long Term Evolution (LTE)                                     | 2010 (Verizon)<br>2011 (AT&T)       | 4G*          | 5.9 - 21.5 Mbps                | 1.4 -20 MHz             |
| LTE Advanced /<br>WiMAX Update                                | Not yet introduced                  | 4G           | Theoretical up to 1500<br>Mbps | 40 -100 MHz             |

\*Different companies are marketing their technologies as "4G," although they do not yet meet the 100 Mps requirement of the 4G standard for <u>high mobility</u> communications (i.e. – from moving vehicles such as cars)

Presented at the 2012 SCEA/ISPA 96 http://www.iceaaonline.com





11

## Projected Wireless Data Consumption

• Average data consumption projections from three industry analysts show an increase of 35 times from the 2009 levels



Source: FCC Technical Paper # 6





- Evaluate the feasibility and cost of relocating <u>all DOD and Federal</u> <u>systems</u> from 1755-1850 MHz in 10 years
- Evaluate the feasibility and cost of vacating the bottom 25 MHz (1755-1780) in 5 years <u>as a initial step</u> towards vacating the entire band



#### **Critical Assumptions:**

- 1) Comparable spectrum will be made available
- 2) System Relocation proceeds *after* receipt of funding

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

12

#### Air Force Cost Analysis Agency

## **Affected Systems**



 Precision Guided Munitions Point to Point Microwave Systems High Resolution Video Land Mobile Robotic Video Software Defined Radios •Electronic Warfare Tactical Radio Relay Air Combat Training System Aeronautical Mobile Telemetry Satellite Operations Small Unmanned Aerial Systems











## General Overview of Cost Approaches



- The cost agencies for each of the military services used a different approach to accomplish the study task
  - Employed the entire skill-set of estimating techniques and knowledge level
  - Initially assumed all capabilities would have to be relocated above 5 GHz as a first cut "worst case" scenario
  - Pros & Cons to each of the various approaches

# **Army Approach & Techniques**



- A large backlash from DoD occurred when the estimate was significantly higher than what they expected
- As the study progressed, the initial cost analysis was refined by including cost estimates prepared by program offices that used parametric and engineering techniques
- The refined cost estimates gained greater acceptance with assistance from the military operations and acquisition communities



## **Army Insights & Lessons Learned**

• Insights

Agency

- When an initial "rough order of magnitude" estimate is required, it's easier to assume worst case conditions and develop a cost estimate that may be on the high end than to do otherwise
- Lessons Learned
  - Direct input from the users of the systems being estimated (in our case, the warfighter) is essential when defending the estimate

## Air Force Approach & Techniques

- Very hands-on, worked closely with affected groups, shared detailed information
  - Met early with operations, acquisition, spectrum, user groups and the cost agency to map-out the issue and determine SMEs
  - Continued to closely coordinate between the smaller SME groups
- Co-developed and/or reviewed estimates with program offices, user groups and acquisition organizations to ensure no gaps
  - Critical as not all AF systems have program offices or formal acquisition support

Air Force Cost Analysis Agency

## Air Force Insights & Lessons Learned



- Insights
  - Regular meetings between Service Cost Agencies ensured there was no double-counting or missing Joint service programs
- Lessons Learned
  - Support from Senior Leadership is <u>essential</u>;
     especially in a time-crunched environment
  - Subordinate commands cannot task their parent organization; task protocol must be observed



## **Path Forward for Analysis**





Joint coordination between technical & program personnel done for each system
Comprehensive analysis of <u>all systems together</u> still needs to be done
OSD and the services will have to commit more resources to the analysis