

LIFE CYCLE COST ANALYSIS For C4ISR SYSTEMS

June 2007

David C. Stamm, G. C. Bell MCR Federal LLC <u>dstamm@mcri.com</u> <u>gbell@mcri.com</u>

1

C4ISR Conceptual Overview

C4ISR is enabled by Communications and Data Links between CONUS/National Authorities and Theater Commands.

C4ISR Conceptual Overview

Theater Commanders (Unit of Engagement/UE) are linked to Fighting Units (Units of Action/UA)

C4ISR Functions – Joint Command Level

C3 OPERATIONS

JOINT FORCE Command and Control

Land Forces Control

Maritime Forces Control

Air Forces Control

Indications, Warnings, & Alerts

Electronic Warfare

Intelligence Coordination & Integration

Sensing & Reconnaissance Tasking

Information Interpretation & Fusion

Forces Identification & Tracking

INTELLIGENCE OPERATIONS

Enemy Order of Battle

Enemy Force Locations

Enemy Plans & Intensions

Enemy Logistics Assessment

Target Characteristics (Military/Economic)

Target Recognition

Target Effects (Military/Economics)

Security Operations

WEAPONS OF MASS DESTRUCTION OPS

Chemical Operations

Chemical Defense & Mitigation

Biological Operations

Biological Defense & Mitigation

Nuclear Operations

Nuclear Effects Mitigation

THEATER OR JOINT COMMAND LEVEL

C2BM Functions – Joint Forces

MARITIME OPERATIONS

Broad Area Maritime Surveillance

Surface to Surface Situation & Engagement

Subsurface to Surface Situation & Engagement

Naval Blockade Operations

Naval Cooperative Engagements

ASW Operations (Sub on Enemy Sub)

ASW Operations (Ship on Enemy Sub)

ASW Operations (Aircraft on Enemy Sub)

Mine Warfare

Counter Mine Warfare

Naval Fire Support (Amphibious Ops)

Amphibious Operations

Maritime Sustainment

Convoy Operations

AIR OPERATIONS

Air Sensor Operations & Reconnaissance

ATO Planning (Defensive/Offensive)

Air Defense (Air to Air)

Air Defense (Surface to Air)

Suppression of Enemy Air Defenses

Air Strike (Short Range/Long Range)

Time Critical Targeting

Close Air Support Cruise Missile Strike Cruise Missile Defense

Aerial Refuling Operations Air Unit Status/Sustainment

LAND WARFARE OPERATIONS

Maneuver & Mobility Planning

Maneuver & Mobility Execution

Direct Fire Control and Effects

Indirect Fire Control and Effects

Airborne Operations

Helicopter Operations

Rear Area Security Operations

Land Forces Sustainment

SUBORDINATE OR SERVICE COMMAND LEVEL

6

C2BM Functions – Joint Forces

SPECIAL OPERATIONS SPACE OPERATIONS **TBMD OPERATIONS Space Sensor Operations & TBM Sensor Operations & Special Reconnaissance** Reconnaissance Cueing **Direct Action/Forcible TBMD Battle Management** Space Asset Task Entry Management - C2 **TBMD Boost Phase Counter Space** Long Range Fire Control **Operations** Interceptor Management **TBMD Mid-Course Interceptor Information Warfare** Management **TBMD Terminal Interceptor**

SUBORDINATE OR SERVICE COMMAND LEVEL

Management

Logistics Support Functions

JOINT FORCE LOGISTICS

THEATER LOGISTICS

Road/Rail/Air Transport Status & Management Sustainment (Inventory Status/Reorder) POL Status & Management Host Nation Support Maintenance and Service Support

INTERTHEATER LOGISTICS

Intertheater Lift Planning Intertheater Lift Execution Aerial Port & Seaport Operations Logistics Command and Control

SUPPORT COMMAND LEVEL

C4ISR Sensor Platforms (Air) Usually Under Theater Command

C4ISR Sensors (Surface) Usually Under Theater Command

MISSILE DEFENSE

UNMANNED SURFACE SENSING

AIR DEFENSE, ARTILLERY LOCATION

C4ISR Communications Infrastructure

EFENS

THE REQUIREMENT FOR MORE BANDWIDTH (PIPE SIZE) CONTINUES TO GROW.

C4ISR Communications Infrastructure

14

EFENS **C4ISR Communications Infrastructure** MCR (Space) MILSTAR WBGF UFO

WSC-6 SATCOMM TERMINAL (SHIPS)

EFEN

C4ISR Communications Infrastructure (Surface)

TYPICAL GROUND ENTRY POINT/SATCOMM TERMINALS (GROUND UNITS)

C4ISR Network Center

- The C4ISR Network Center Includes:
 - The HARDWARE needed to support multiple command functions and operations, including work stations, digital equipment, peripheral systems, security systems, communications systems, and support installations, shelters, and auxiliary equipment.
 - The SOFTWARE needed to support complex C2 functions, Communications functions, ISR Functions, Logistics Management functions, and Simulations supported by robust IT infrastructure.
 - The HUMAN component, comprised of highly trained personnel needed to operate, manipulate, and fuse data, to create situation awareness, assess objective truth, and generate decisions and courses of action for joint forces.

C4ISR Network Center Hardware

TOPOLOGY DIAGRAM, NEEDED TO CREATE FIRST ORDER EQUIPMENT LIST OR BILL OF MATERIAL

21

MC	Ν

	NOMENCLATURE	UNIT COST	UNIT COST	MEDIAN	
ł		HIGH	LOW	COST	
-		(FY04 \$)	(FY04 \$)	(FY04 \$)	
	WORK STATIONS				
	WORK STATIONS	\$12,000	\$7,000	\$9,500	
	PC TYPE WORK STATIONS	\$3,900	\$1,250	\$2,575	
	CORE DIGITAL EQUIPMENT				
	SERVERS	\$65,000	\$32,000	\$48,500	
	PROCESSORS	\$18,500	\$11,500	\$15,000	
	MEMORY UNITS	\$23,000	\$15,500	\$19,250	
	GIGABIT STORAGE DISKS	\$1,200	\$900	\$1,050	
	CHASSIS GROUP	\$42,000	\$30,000	\$36,000	
	PERIPHERAL SYSTEMS				
	PRINTERS	\$3,000	\$950	\$1,975	
	ENCODERS/DECODERS	\$25,000	\$15,000	\$20,000	
	FIBER OPTIC MODEMS	\$10,000	\$6,500	\$8,250	
	GPS RECEIVER SYSTEM	\$20,000	\$12,000	\$16,000	
	T1 MUX GROUP	\$20,000	\$15,000	\$17,500	
	ENCRYPT CONTROLLER	\$20,000	\$15,000	\$17,500	
	ETHERNET SWITCH GROUP	\$25,000	\$14,000	\$19,500	
	ETHERNET SWITCH GROUP	\$25,000	\$14,000	\$19,500	
	ROUTER GROUP	\$15,000	\$5,000	\$10,000	
	SECURITY GROUP	¢29.000	¢19 500	¢22.250	
	STU III Tolophonos	\$20,000 \$25,000	\$10,000 \$22,000	⇒∠3,230 ¢29,500	
	STO III Telephones	\$35,000	φ22,000	\$20,500	
	GROUND ENTRY POINTS				
	ANTENNA	\$3,500,000	\$750,000	\$2,125,000	
	PEDESTAL	\$1,500,000	\$250.000	\$875.000	
	DRIVE GROUP	\$500.000	\$125.000	\$312.500	
	TRANSCEIVER GROUP	\$2,000,000	\$350,000	\$1.175.000	
	PROCESSOR	\$75,000	\$35,000	\$55,000	
	ETHERNET LAN GROUP	\$75,000	\$20,000	\$47,500	
	ETHERNET ROUTER GROUP	\$25,000	\$16,000	\$20,500	
	ENCRYPT/DECRYPT UNITS	\$75,000	\$25,000	\$50,000	
		-			

C4ISR Network Center Hardware

NOTIONAL COTS HARDWARE COST RANGES

C4ISR Network Center Hardware

NOMENCLATURE SHELTERS & AUXILARY GRP	UNIT COST HIGH (FY04 \$)	UNIT COST LOW (FY04 \$)	MEDIAN COST (FY04 \$)	
GICHNER S250 SHELTER	\$50,000	\$32,000	\$41,000	
20 kW GENERATOR SYSTEM	\$18,750	\$12,000	\$15,375	
50 kBTU ENVIRON CNTL	\$18,750	\$12,000	\$15,375	
POWER CONDITIONING	\$25,000	\$16,000	\$20,500	

NOTIONAL COTS SHELTER AND AUXILIARY GROUP HARDWARE COST RANGES

C4ISR Network Center Hardware

EFENS

C4ISR Network Center

MCR

28

LAYERS BECOME POPULATED WITH "BRICKS" REPRESENTING THE CSCIS AND CSCS TO BE DEVELOPED AND INTEGRATED.

29

C4ISR Network Center Software C2 Functions

CONCEPTUAL SIZING FOR C4ISR SOFTWARE CODES	HIGH KSLOC	LOW KSLOC	MEDIAN KSLOC	
COMMAND & CONTROL FUNCTION				
SITUATION UNDERSTANDING	900	150	525	
PLANNING & PREPARATION	1350	225	788	
BATTLE MGT & EXECUTION	600	100	350	
COLLABORATION MGT	200	35	118	
LEVEL 1 DATA FUSION	600	100	350	
PLATFORM COMM & CONTROL	300	50	175	
OTHER PLATFORM SOFTWARE	450	75	263	
C4ISR LAB SOFTWARE	300	50	175	

<u>C2 Functions:</u> At the heart of the network center's function, the C2 effort uses information from multiple data streams to create commander "situation awareness." Situation awareness encompasses the all the information elements within the objective space and over a time span that includes past, present, and a forecast of near-future status. It encompasses a full spectrum of information about friendly and enemy forces, the terrain and environment, and provides what commanders are likely to need to engage enemy forces and win. Also included in this bundle of codes are tools needed to generate detailed courses of action for subordinate units. Situation awareness is a basis for issuance of "orders" or courses of action to the joint forces.

C4ISR Network Center Software Communications Functions

CONCEPTUAL SIZING FOR C4ISR SOFTWARE CODES	HIGH KSLOC	LOW KSLOC	MEDIAN KSLOC	
COMMUNICATION FUNCTION				
JTRS SUO WAVEFORM	300	50	175	
JTRS WLAN WAVEFORM	300	50	175	
RADIO GATEWAYS	150	25	88	
IP STACK SOFTWARE	250	40	145	
NETWORK INFRASTRUCTURE	200	30	115	

Communications Functions: Communications services must be managed to insure that diverse forms of traffic and flows of information are accommodated and are secure. Diverse traffic can include intelligence links with local or in-theater sensors and various organizations responsible for providing intelligence from national sources. Traffic also includes links to local fighting and units responsible for logistics. Communications links should be robust and redundant.

C4ISR Network Center Software IT Functions

HIGH KSLOC	LOW KSLOC	MEDIAN KSLOC	
450	75	263	
300	50	175	
150	25	88	
75	15	45	
675	115	395	
150	25	88	
30	5	18	
300	50	175	
30	5	18	
375	60	218	
	HIGH KSLOC 450 300 150 75 675 150 30 300 300 300 375	HIGH LOW KSLOC KSLOC 450 75 300 50 150 25 75 15 675 115 150 25 30 5 300 50 300 50 30 5 3075 60	HIGH KSLOCLOW KSLOCMEDIAN KSLOC45075263300501751502588751545675115395150258830518300501753051837560218

IT Functions: Underlying the specific computing functions are the Information Technology (IT) utilities. These include such vital items as operating systems, memory management, HMI utilities, display and graphical utilities, middleware that creates interfaces between applications and utilities, and other IT "services" such as security management. The IT support software suite is usually a mix of COTS and peculiar code.

C4ISR Network Center Software ISR Functions

CONCEPTUAL SIZING FOR C4ISR SOFTWARE CODES	HIGH KSLOC	LOW KSLOC	MEDIAN KSLOC
ISR FUNCTION			
PLATFORM MGT	450	75	263
ISR SENSOR PLAN/TASKING	900	150	525
ISR SENSOR PRODUCT MGT	1350	225	788
ISR SENSOR INTEGRATION	450	75	263

ISR Functions: As discussed here, ISR software is primarily concerned with tasking of sensors under direct theater command and integrating the flow of national ISR information into the network center's "in-box." Features that manipulate ISR information (e.g., target recognition and discrimination) could be included here or could be part of the situation awareness function described above in C2.

C4ISR Network Center Software Embedded Logistics

CONCEPTUAL SIZING FOR C4ISR SOFTWARE CODES	HIGH	LOW	
	KSLUC	KSLUC	KSLUC
EMBEDDED LOGISTICS			
LOGISTICS MGT	600	100	350
LOGISTICS STATUS	750	125	438
EMBEDDED TRAINING - C4ISR	375	60	218
VIRTUAL TRAINING	1400	250	825
LIVE TRAINING	500	85	293
MAINTENANCE TRAINING	200	30	115
CONDUCT OF FIRE TRAINING	1000	180	590
INSTRUCTION MGT SOFTWARE	750	125	438
EMBEDDED TRNG OTHER	300	50	175

Embedded Logistics: An important part of the network center's situation awareness is represented by logistics status, flows, and the initiation of material and human resource requests to CONUS organizations responsible for acquiring and transporting these people and items to the theater force. Important examples of logistics management include the flow of munitions and fuel to the fighting units. The inventories on hand, stocks ordered, stocks in transit, location of stocks at specific times, consumption, and other status measures are rigorously tracked at the network center. These represent a template for thousands of other material items. Human resources are also tracked in terms of numbers present, numbers needed, training and readiness status, and other HR measures. The network center's logistics management functions acquire information through interfaces with large CONUS logistics software systems provided by the separate 34

C4ISR Network Center Software Simulations

CONCEPTUAL SIZING FOR C4ISR SOFTWARE CODES	HIGH	LOW	MEDIAN	
	KSLOC	KSLOC	KSLOC	
SIMULATION SOFTWARE				
AIR BATTLE SIM	500	90	295	
LARGE UNIT BATTLE SIM	2900	500	1,700	
COMMAND ORGANIZATION GRID	200	30	115	
TACTICS SIM	500	90	295	
ENEMY FORCES SIM	900	150	525	
VERTICAL MANEUVER SIM	200	30	115	
ARTILLERY & MISSILE SIM	450	75	263	
ATCOM-SLAMEM	200	30	115	
BATTLEFIELD DYNAMICS SIM	450	70	260	
SMALL UNIT BATTLE SIM	450	70	260	
ENVIRON CONDITIONS SIM	200	30	115	
FIRST ORDER ANALYSIS	450	70	260	

Simulation Software: A recent development in C4ISR network systems is the use of large and capable embedded simulations. These are used for war-gaming and training purposes but more importantly serve to evaluate alternative courses of action to allow commanders to select the best ones for the engagement. The simulations are also valuable because they allow the commanders to simulate enemy operations and alternative enemy responses to U.S. strikes. Multiple simulations are incorporated, because the different combat modes have unique dynamics, logic, and requirements

C4ISR Network Center Software Communication Functions - Details

FUNCTION	IS SLOC DATABASE		GROUND
OBJECT	NAME-FUNCTION	DOMAIN	SLOC
ISN13	Antenna Mgt	СОММ	0
P307	Cmd & Telemetry	СОММ	54400
ISN9	Collaboration Mgt	СОММ	220000
P272	Comm Interface	СОММ	72360
P210	Comm Mgt	СОММ	15608
G3	Comm Mgt	СОММ	10275
G48	Comm Mgt	СОММ	45700
P74	Delivery Mgt	СОММ	6974
P373	External Intf	СОММ	34752
ISN14	Gateways	СОММ	100000
ISN18	IP Stack SW	СОММ	150000
ISN11	JTRS Mgt 1	СОММ	200000
ISN12	JTRS Mgt 2	СОММ	200000
G28	Message Mgt	СОММ	1552
ISN25	Network Infrastructure	СОММ	25000
ISN32	Network Infrastructure	СОММ	10000
ISN16	Network Mgt	СОММ	83400
ISN19	Other Comm Sw	СОММ	0
G36	Station Acquisition	СОММ	1900
P348	Telecomm SW	СОММ	13530
G9	Telemetry Mgt	СОММ	29574
G39	Telemetry Mgt	СОММ	2771
P242	Telemetry SW	СОММ	31870
P273	Telemetry SW	СОММ	44447

EXAMPLES OF SW SIZE VARIATION FOR CODES WITH "SIMILAR" FUNCTIONALITY.

C4ISR Network Center Software Size Variation for "Similar Function"

C4ISR Network Center Software

EFENS

Network Center Support Investment

The Network Center Support Investment Includes:

- The Concept of Logistics (CONLOG) governs the scope and depth of investment in classic logistics cost elements. Since C4ISR network centers have moved away from Mil-Peculiar hardware designs and toward COTS hardware designs, there is generally more reliance on forms of Contractor Logistics Support (CLS) and less reliance on MIL-Organic maintenance and support.
- In spite of the trend toward more reliance on CLS, the military continues to stress a requirement for robust training systems and data and documentations. These components of Support Investment remain as significant contributors to Life Cycle Cost.

GSE (ORGANIC DEPOT)	15.00%	7.50%	11.25%	f(HARDWARE COST)	
GSE (CONTRACTOR DEPOT)	1.00%	0.50%	0.75%	f(HARDWARE COST)	
GSSE	0.75%	0.25%	0.50%	f(HARDWARE COST)	
DATA	5.00%	2.50%	3.75%	f(HDW & SW COST)	
TRAINING	3.00%	1.50%	2.25%	f(HDW & SW COST)	
INITIAL SPARES	20.00%	9.00%	14.50%	f(HARDWARE COST)	
SPARES (LIFETIME)	75.00%	30.00%	52.50%	f(HARDWARE COST)	

- <u>The Network Center Operation & Support Cost Includes:</u>
 - <u>Unit Level Manpower (ULM):</u> ULM includes the cost of commanders, operators, maintainers, and other support manpower assigned to the C4ISR network center operating units. Unit-level manpower can include active and reserve military, government civilian, and contractor manpower costs. The topology diagram that describes the network center layout can serve as a useful check for manpower estimates. It is reasonable to assume that 70-80% of the center's work stations would be manned on a 24/7 basis. The balance would be reserved for surges, maintenance or upgrade cycles, or for personnel training operations. Using this approach, the operator complement can be derived.
 - Command staff, security officers, organization level maintainers, and base support staff would be calculated separately and additive to the operator headcounts. Estimating the size of the unit maintenance staff, usually involves separate projections for preventive (scheduled) and corrective (unscheduled) maintenance actions.

COMMAND SHIP - NOTIONAL STAFF

COMMAND STAFF	OFFICERS	=	2	ENLISTED =	6
OPS STAFF	OFFICERS	=	83	ENLISTED =	57
STDS/EVAL TEAM	OFFICERS	=	1	ENLISTED =	6
TRAINING STAFF	OFFICERS	=	1	ENLISTED =	7
MAINTENANCE				ENLISTED =	42
TOTAL MILITARY PERSONNEL			87		118

O&S - ULM

Network Center Operation & Support Cost

Typical Reliability Values

Communications Equipment	MTBF (Hours)
Ground Radio	5,000-20,000
Portable Ground Radio	1,000-3,000
Airborne Radio	500-10,000
Ground Jammer	500-2,000

Computer Equipment MTBF (Hours)

Ground Computer	1,000-5,000
Ground Monochrome Display	15,000-25,000
Ground Color Display	2,500-7,500
Ground Hard Disk Drive	5,000-20,000
Ground Tape Storage Unit	2,500-5,000
Ground Printer	2,000-8,000
Ground Modem	20,000-50,000

Miscellaneous Equipment	MTBF (Hours)
Ground Power Supply	10,000-50,000

O&S – ULM: USE FAILURE EVENTS AND MTTR DATA TO FORECAST MAINTENANCE MANNING AND D-LVL REPAIR ACTIVITIES.

- <u>The Network Center Operation & Support Cost Also Includes:</u>
 - Operations Costs (OC): OC includes the cost of unit operating material (e.g., fuel and training munitions), unit support services, and unit travel. OC excludes all maintenance and repair material. Of possible importance for mobile C4ISR network centers is a requirement to generate electricity using POL fueled generating systems.

- <u>The Network Center Operation & Support Cost Also Includes:</u>
 - <u>Non-Operating Unit Maintenance (NOUM):</u> Includes the cost of all maintenance other than maintenance manpower assigned to operating units. For hardware, this includes organic depot level maintenance and contractor maintenance support. The cost of depot maintenance should be linked to the reliability parameters of the equipments and the frequency of failure events. Failure events produce either a repair action (with associated labor costs and transportation expenses) or a condemnation followed by a replacement item outlay.
 - For software, this includes correction of software deficiencies and upgrades that are planned within the original scope of the system's performance envelope and requirements. As an average, software maintenance can affect between 3% and 8% of the software SLOC per year. C4ISR systems are specially impacted by this, because of dynamic changes in system platforms and interfaces, requirements for HMI performance, threat characteristics, and advances in C4ISR practices. Apart from the large initial investment in C4ISR software, we encounter a true affordability challenge with maintaining the software suite over an extended life cycle.

- <u>The Network Center Operation & Support Cost Also Includes:</u>
 - <u>Sustaining Support & Investment (SS&I)</u>: These costs include contractor technical support, maintenance of a Government program office and a host of special infrastructure support costs including Defense Systems Information Agency (DISA) connectivity fees.
 - Also included are COTS software license fees, utility costs for fixed sites, commercial telephonic and satellite communications fees, leases and facility related costs, and hazardous materials disposal costs. Also included are operations costs for help desks and mega-centers, needed when the C4ISR network has centers throughout the theater and significant numbers of users and organizations are linked.
 - Some types of SS&I costs are not universally applicable; they are present where needed and in accordance with the operational scenario and configuration specified for the C4ISR network center under study.

- <u>The Network Center Operation & Support Cost Also Includes:</u>
 - Continuing System Improvements (CSI): This cost includes evolutionary insertion of new hardware and software technology to keep the system operating and operationally current. Included here are new or expanded capabilities, new interfaces with emerging national C4ISR systems, new ISR platform nodes, and so forth. Here again, we encounter a true affordability challenge keeping the C4ISR network center technically current and responsive to threat changes and technology shifts over an extended life cycle.
 - After the system achieves an IOC milestone, CSI can amount to between 5% and 20% of PME/SW investment per year for hardware upgrades and new software applications.

- <u>The Network Center Operation & Support Cost Also Includes:</u>
 - Indirect Support: These costs cover support activities that are general in nature and cannot be directly attributed to the C4ISR network system. Indirect support includes such items as change of stations expenses, medical benefits for military staff, personnel recruitment and basic skill training, and others.

Missile Defense Agency C4ISR

- <u>MDA C4ISR Essentials Layered Defense, Managed Engagements:</u>
 - MDA C4ISR performs an essential role of Command, Control, and Battle Management (C2BM), using appropriate information obtained from national sources. The system is always "on" (24/7), and higher readiness states and alerts are initiated when national assets observe threatening activities conducted by hostile nations.
 - <u>Positioning and Cueing of MDA Assets:</u> In times of alert or crisis, MDA positions interceptor platforms to assure a robust response to threats. MDA also provides channels for direct sensor-to-shooter connectivity or centralized shooter cueing.
 - Layered Engagement Management: A missile defense engagement takes place as discrete phases, using a number of interceptor systems operating from different localities. The MDA C4ISR center observes the engagement at different stages, assesses success based upon continuous sensor tracking, helps to identify target objects of interest, and manages hand-off of the battle from boost phase to mid-course to terminal phase interceptor systems.

- <u>C4ISR Hardware:</u>
 - Since COTS plays a significant role in hardware cost, it is useful to acquire and maintain a library of catalogs from IT and communications equipment suppliers.
- <u>C4ISR Software (Peculiar):</u>
 - We can never have enough analogy data for code sizing. Where possible, organize software databases by function and by echelon.
- COTS Software:
 - The Government uses COTS software when it is a cost effective alternative to developing new military peculiar code. Initial license fees and recurring/annual renewals can become large LCC outlays. Collect and maintain a database for COTS fees.

<u>C4ISR Support Investment:</u>

 An important trade involves long term logistic support of COTS hardware vs. replacement via tech refresh or a "life-time" buy scheme. All flavors have been tried, with varying degrees of success.

C4ISR O&S Phase:

- Justification of Operational Staff manning should be based upon a decomposition of functions. Maintenance manning at the unit should be driven by the number of projected failure events (MTBF) and mean time to repair efforts (MTTR) based upon a pull-and-replace concept.
- Annual software maintenance cost is a large driver, and where possible should be based upon documented experience. Software maintenance databases should be developed to support C4ISR O&S cost estimating.

References

References

- [1] <u>AOC Weapon System Block 10 Baseline Systems List</u>, 31 May 2001, USAF (Air Combat Command, Air Force Material Command).
- [2] <u>Measuring the Effects of Network-Centric Warfare, Volume 1</u>, 28 April 1999, Booz, Allen & Hamilton.
- [3] Cebrowski, Arthur and Gartska, John, <u>Network Centric Warfare: Its Origin</u> and Future, Naval Institute Proceedings, 1997.
- [4] <u>Realizing the Potential of C4I, Fundamental Changes</u>, National Research Council, National Academy Press, Washington, D.C., 1999.
- [5] Bell, G.C., <u>Ob</u>servations and Notes, Proprietary Cost Analysis Studies, <u>Future Comba</u>t System (FCS), 2004.
- [6] Bell, G.C., <u>Observations and Notes</u>, Proprietary Cost Analysis Studies, <u>USAF Air Operations Center (AOC)</u>, 2004.

[10] Bell, G.C., Observations and Notes, Proprietary Cost Analysis Studies, USMC C2PC Software System, 2005.