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Abstract 
 
This paper proposes another use for learning curves, namely the scheduling of 
production operations.  This is not entirely a new idea, but it is usually not formally 
implemented in the planning of production operations.  Learning curves alone can’t 
do this planning job effectively, but when combined with other appropriate, relatively 
simple logic, the result can be an automated scheduling process that predicts not 
only the cost of each produced item, but also the dates when production of each 
item will start and finish, plus a spread of labor hours and material costs by month, 
or even by week, if desired.               
 
The method can be applied to multiple production lots of arbitrary size, making it 
useful for many situations, including block production, simultaneous production at 
multiple facilities, and LRIP/FRP situations.  In this paper, we demonstrate the 
process by showing methods for use of learning curves to schedule production in 
three planning modes: 
 
• Constant effort, with the same labor hours expended in each time period 
• Uniform rate, with the same production quantity in each time period 
• Ramp-up, beginning at zero rate and accelerating linearly to a maximum rate. 
 
User input is minimal.  For each production lot, the user specifies production 
quantity, start date, finish date, learning curve theory and slope, mode of scheduling, 
and information about transfer of learning from a previous lot, if appropriate.  
 
Introduction 
 
Currently, Galorath’s SEER-H hardware model requires users to enter production 
quantities by year.  While this provides a rough idea of the timing of production 
costs, some users would like to see cost flow more accurately defined.  That is the 
principal motivation for the methods described in this paper.  They will appear this 
year (2007) in the release of SEER-H version 7.1. 
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Traditional learning curve theory underlies the methods to be described.  Some 
ancillary calculations extend the basic capability provided by the learning curve 
math.  This is done without requiring exhaustive (and exhausting!) user input.  The 
methods automatically adjust production concurrency to account for user imposed 
overall duration of production, whether that be long or short. 
 
The current SEER-H model treats all of production as a single lot, albeit it can be 
partitioned into annual quantities.  In the new approach, the user can create any 
number of production lots, each with its own learning slope, average labor rate, start 
date and finish date.  Lot to lot transfer of learning, full or partial, is accommodated.  
The multi-lot structure readily deals with low rate initial production/full rate 
productions situations, production in more than one factory, and block production 
situations. 
 
In creating these improvements to SEER-H, several issues were encountered and 
dealt with.  One is the issue of production concurrency, that is, the number of units 
being produced at one time.  Concurrency has considerable importance because it 
affects not only the demand for labor but also the demand for tooling, facilities, and 
capital equipment. 
 
Other issues relate to material purchases.  Two common industry practices, 
currently unaccounted for in SEER-H, are the application of learning to material 
purchases, and the advance procurement of material, usually known as long lead 
procurement. 
 
Another issue dealt with is breaks in learning.  Whiled not a major problem in many 
projects, it happens often enough that we decided to address it.   
 
Production Concurrency 
 
In the revisions being created, the model user is required to set a date for start and 
finish of each lot, as well as a learning slope and a production quantity.  In doing 
this, the user may, unaware, establish a concurrency of production (e.g., multiple 
production lines, or labor resource overload) that the factory cannot accommodate.  
To guard against this possibility, we have developed an empirical equation that 
SEER-H will use to help the user set start and finish dates realistically.  The equation 
is: 
 
 (1 ) BD Q N MQ= + −  
 
In this equation: 
 
• D = approximate duration of production, months 
• Q = user defined production quantity 
• N = user estimated average number of units in production at one time (i.e., 

concurrency) 
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• M = user estimated time in months to produce unit #1 
• B = learning curve natural slope 
 
The concurrency issue is important because it bears on the peak touch labor staffing 
requirement, tooling required, factory floor space required, and related matters.  An 
estimate of the concurrency required can be obtained by solving the above equation 
for N: 
 

 1 B

DN Q
MQ

= + −  

 
Example:  Suppose that you want to build Q= 15 units of an item in D = 12 months, 
and the learning slope is assumed to be 87% (B = -0.2 by the usual formula).1  You 
estimate the time required to build the first unit as M = 1.5 months.  Thus: 
 

 0.2

121 15 2.25 units in production concurrently
(1.5)(15)

N −= + − =  

 
A reasonable conclusion from this result is that the staffing needs to support 2.25 
units on average in production, but the facilities and tooling may need to support 
building three units concurrently. 
 

Figure 1
Duration vs. Concurrency (10 Units Produced; 87% Learning Slope)
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Figure 1 illustrates a use of this math.  The plot shows total duration of production in 
months versus concurrency for production of ten units.  The time required to build 
the first unit ranges for one to six months with an 87% learning slope. 
 

                                            
1 B = log(S/100)/log(2) where S is the slope in percent.  
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Modes of Scheduling Production 
 
The best way to schedule production can change with circumstances.  Currently, we 
plan to provide for three “modes” of scheduling, although we are still considering 
inclusion of other modes.  The three modes currently planned are: 
 
• Uniform rate 
• Constant effort 
• Linear ramp-up 
 
As the name implies, in the uniform rate mode, units come off the production line at 
equal intervals of time.  The labor effort required per unit is highest for the first unit 
and gradually decreases as learning occurs.   
 
In the constant effort mode, the same number of labor hours is worked each month.  
Due to learning, the production rate gradually increases. 
 
In the linear ramp-up mode, the production rate is initially zero, but it accelerates 
sufficiently in a linear manner to achieve the required production quantity in the 
allotted time.  The linear ramp-up scheduling approach is sometimes used in low 
rate initial production (LRIP). 
 
Conventional learning curve mathematics underlies all three scheduling modes.  
Specialized ancillary math differentiates them, as will be demonstrated shortly. 
 
The demonstrations will be based on the unit theory of learning.  Later, the 
difference in using the cumulative average theory will be explained. 
 
Uniform Rate Mode 
 
For the uniform rate mode, we want units to finish production at equal intervals of 
time.  Specific inputs required of the model user for each lot are: 
 
• Start date, TS 
• Finish date, TF 
• Production quantity, Q 
• Labor learning slope, S% 
• Average unit makespan, UM (average months required to build each unit) 
 
Following are the steps we use to calculate the production scheduling and cost flow 
details: 
 
Step 1:  SEER-H calculates first unit labor hours, H1, based on user input 
parameters. 
 
Step 2:  Calculate the production overall duration in calendar days: 
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 DD TF TS= −  
 
Step 3: Convert unit makespan from months to calendar days.  (See the Appendix.) 
 

*30.4375UM UM=  
 
(round to nearest day – 30.4375 is the average number of days in a solar month) 
 
Step 4: Calculate the natural learning slope, B. 
  

 log( % /100)
log(2)
SB =  

 
(both logarithms must be to the same base, but it can be any base) 
 
Step 5: Calculate the labor hours for each unit produced, Hq, from q = 1 to Q. 
 
 1

B
qH H q=  

 
Step 6: Calculate the total labor hours for all units to be produced, HT: 
  

 
1

Q

q
q

HT H
=

= ∑  

 
Step 7:  Calculate the finish time of each unit, Tq, also the beginning time, tq, and the 
labor hours spread by months.  (Note: there can be concurrency of production, with 
more than one unit being produced at the same time.  The algorithm establishes the 
necessary concurrency automatically.) 
 
Finish time of each unit: 
  
 1T TS UM= +  
  

 1  (q 1)
1q q

DD UMT T
Q−
−

= + ≠
−

 

 
Start time of each unit: 
 

1t TS=  
 
  (q 1)q qt T UM= − ≠  
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Note that Tq and tq generally are not integers.  For details of calculation of labor 
hours spread by month, we present now a fully worked example. 
 
Example:  A company wants to produce a lot of 6 units of a product, with starting 
date November 15, 2006 and finishing date May 20, 2007.  The first unit labor hours 
estimated by SEER-H are 3,975.  The planned learning slope is 87%.  The unit 
makespan of production for each unit is estimated at 1.5 months.  Produce a 
production schedule and labor spread by the method described above. 
 
Step 1: Obtain the first unit hours from SEER-H, H1.   (3,975) 
  
Step 2: Calculate the production duration in calendar days, DD. 
  
 DD TF TS= −  
 
Using the method in the Appendix, the two dates are separated by 186 calendar 
days; DD = 186. 
   
Step 3: Convert the unit makespan from calendar months to calendar days: 
  
 1.5*30.4375 46 daysUM = =  
 
(rounded to nearest day) 
 
Step 4: Calculate the natural learning slope, B. 
  

 log( % /100) log(87 /100) 0.2
log(2) log(2)
SB = = = −  

 
Step 5: Calculate the labor hours for each unit produced, Hq, from q = 1 to Q. 
 
 1

B
qH H q=  

 
Unit Hours

1 3975 
2 3460 
3 3191 
4 3012 
5 2881 
6 2778 

 
Step 6: Calculate the total hours for all units to be produced, HT: 
 

1

Q

q
q

HT H
=

= ∑  
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Summing the table above yields HT = 19,297 hours. 
 
Step 7:  Calculate the finish time of each unit, Tq, also the start time, tq, and the 
hours spread by months.   
 
Finish time of each unit: 
 
 1T TS UM= +  
 

 1  (q 1)
1q q

DD UMT T
Q−
−

= + ≠
−

 

 
Start time of each unit: 
 
 1t TS=  
 
  (q 1)q qt T UM= − ≠  
 
Finish time of first unit: 
 

November 15, 2006 + (186-46)/(6-1) = December 31, 2006 
 

Finish time of second unit: 
 

T2 = December 31, 2006 + 28 = January 28, 2007 
 

Finish time of third unit: 
 

T3 = January 28, 2007 + 28 = February 25, 2007 
 

Finish time of fourth unit: 
 

T4 = February 25, 2007 + 28 = March 25, 2007 
 
Finish time of fifth unit: 
 

T5 = March 25th, 2007 + 28 = April 22, 2007 
 

Finish time of sixth unit: 
 

T6 = April 22, 2007 + 28 = May 20, 2007 
 

Now we continue by finding the begin dates of each unit. 
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Begin time of first unit: 
 

t1 = November 15, 2006 
 

Begin time of second unit: 
 

t2 = January 28, 2007 – 46 = December 13, 2006 
 

Begin time of third unit: 
 

t3 = February 25, 2007 – 46 = January 10, 2007 
 

Begin time of fourth unit: 
 

t4 = March 25, 2007 – 46 = February 7, 2007 
 

Begin time of fifth unit: 
 

April 22, 2007 – 46 = March 7, 2007 
 

Begin time of sixth unit: 
 

May 20, 2007 – 46 = April 4, 2007 
 

Here is a complete tabulation of the start and finish dates: 
 

Unit Start Finish 
1 11/15/2006 12/31/2006
2 12/13/2006 1/28/2007 
3 1/10/2007 2/25/2007 
4 2/7/2007 3/25/2007 
5 3/7/2007 4/22/2007 
6 4/4/2007 5/20/2007 

 
(A report capability similar to the above is planned for SEER-H v7.1.)  
 
The 3,975 hours for unit #1 are allocated to the months in which that unit is 
produced.  Production of this unit occurs in November and December, 2006.  
Between these two dates there are 46 days, of which 31 are in December and 15 
are in November.  The allocation to November is (15/46)(3975) = 1,296.  The 
remainder is allocated to December: 2,679.  Proceeding in this manner, we can build 
the following allocation table (note the concurrency of production – on average about 
1.17 units are in production at one time according to the concurrency algorithm 
previously given, but the peak is two units): 
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Unit NOV DEC JAN FEB MAR APR MAY Totals 
1 1296 2679      3975 
2  1429 2031     3460 
3   1526 1665    3191 
4    1441 1571   3012 
5     1566 1315  2881 
6      1631 1147 2778 

Totals 1296 4108 3557 3106 3137 2946 1147 19297 
 
(A report capability similar to the above is planned for SEER-H v7.1.) 
 
Plotting the above hours versus months yields the following: 
 

Constant Effort Mode 
 
In the constant effort 
approach to production 
scheduling, the same number 
of labor hours is expended in 
each month.  The problem is 
to determine how many units 
can be built in each month for 
those hours, given that the 
workers become more 
efficient each month due to 

learning.  Each month, the number of units built is larger than the month before. 
 
When dealing with cumulative hours for a number of production units, the unit 
learning theory is non-linear and complex, and exact closed form calculations are 
not feasible.  Accordingly, we will use an approach called the Hungry Algorithm, plus 
some reasonable approximations, to arrive at allocations of labor hours by month 
and start and finish dates for each production item.  
 
User inputs required for each production lot are as follows.  Note that the Unit 
Makespan required for the Uniform Rate method of planning is not required here, 
because the unit makespan for constant effort is variable.  . 
 
• Start Date, TS  
• Finish Date, TF  
• Production Quantity, N 
• Learning Slope % (Labor), S% 
 
Step 1: SEER-H calculates first unit labor hours, H1, based on user input 
parameters.  
    
Step 2: Calculate the production overall duration in calendar days, DD. 

Figure 2 -- Example Labor Hours Spread 
by Month Constant Rate
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 DD TF TS= −  
 
Step 3: Calculate the number of months production will run, to the nearest tenth of a 
month, DM. 

 
30.4375

DDDM =  

 
Step 4: Calculate the natural learning slope, B. 
  

 log( % /100)
log(2)
SB =  

 
Step 5: Calculate the labor hours for each unit produced, Hq, from q = 1 to Q. 
 
 1

B
qH H q=  

 
Step 6: Calculate the total labor hours for all units to be produced, HT: 
  

 
1

Q

q
q

HT H
=

= ∑  

 
Step 7:  Using the “Hungry Algorithm,” allocate hours for production of each unit.2  
From the result determine the begin and completion times of each unit, tq and Tq.  
This is best illustrated by example. 
 
Note: there can be concurrency of production, with more than one unit in production 
at the same time.  The Hungry Algorithm establishes the necessary concurrency 
automatically.  The less total time allowed by the model user for production, the 
more the concurrency.  For many products, a high level of concurrency requires 
multiple production lines or stations, or multiple work shifts.   
 
 Example:  To fully illustrate the method, the following problem is solved in detail.  A 
company wants to produce 10 units of a product in the period TS = January 5, 2008 
to TF = June 14, 2008.  First unit hours are H1 = 1,150, and the learning slope is S% 
= 87%.  Allocate the hours by month using the Hungry Algorithm and determine a 
start and a finish time for each unit. 
 
Step 1: SEER-H calculates the first unit hours (1,150) 
 
Step 2: Calculate the production overall duration in calendar days 
 
 DD TF TS= −  
                                            
2 See worked example below.   
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The dates given are separated by 161 days.  DD = 161.  (See the Appendix.) 
 
Step 3: Calculate the number of months production will run, to the nearest tenth of a 
month. 
 
 / 30.4375 161/ 30.4375 5.3 monthsDM DD= = =  
 
Step 4: Calculate the natural learning slope. 
 

 log( % /100) log(87 /100) 0.2
log(2) log(2)
SB = = = −  

 
Step 5: Calculate the labor hours for each unit produced. 
 
 1

B
qH H q=  

 
Unit Hours 

1 1150 
2 1001 
3 923 
4 872 
5 833 
6 804 
7 779 
8 759 
9 741 

10 726 
 
Step 6: Calculate the total labor hours for all units to be produced. 
  

 
1

Q

q
q

HT H
=

= ∑  

 
The summation of the hours in the above table is 8,588. 
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Months & Month Fractions   Hungry Algorithm 

January February March April May June   
Unit Hours 0.8407 1 1 1 1 0.46 Totals 

1 1150 1150           1150 
2 1001 212 789         1001 
3 923   831 92       923 
4 872     872       872 
5 833     656 177     833 
6 804       804     804 
7 779       639 140   779 
8 759         759   759 
9 741         721 20 741 
10 726           726 726 

Totals 8588 1362 1620 1620 1620 1620 746 8588 
 
Step 7:  Using the “Hungry Algorithm,” allocate hours for production of each unit. 
From the result determine the begin and completion times of each unit, tq and Tq.  
This is best illustrated by example (see table above, discussion below). 
 
The constant burn rate is 8,588 hours / 5.3 months = 1,620 labor hours per month.  
We build the table shown above, appropriately accounting for fractional months.   
 
The working of the Hungry Algorithm is fairly obvious.  Starting with unit #1 in 
January, we enter into each cell as many hours as possible, without violating either 
the row or the column constraints.  For example, in the unit #1 January cell, we can 
enter the total hours required to do unit #1.  But 212 hours are still available for unit 
#2, so those are also entered.  But unit #2 requires 789 additional hours, so we put 
those in February.  Continuing in this manner, we spread all of the required hours 
across the 5.3 month period of performance. 
 
Although the Hungry Algorithm defines the month each unit begins and ends, it does 
not define the day in the month.  Therefore there are options as to how to do this.  
What we decided to do is assume that each unit, in numerical order, occupies the 
full labor force, until it is completed.  Then the labor force moves on to the next unit.  
This approach is computationally simple and reasonably realistic.    
 

For example, in March we have the situation shown at left.  March 
has 31 days,  We assume that unit #3, which started in February, 
requires 92/1620 = 5.7% or 1.8 of those 31 days.  It is therefore 
completed on March 2.   
 
Unit #4 requires 872/1620 = 53.8% of those days, with a 

Unit # Hours 
3 92 
4 872 
5 656 

Total 1,620 
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cumulative of 59.5%.  It starts on the same day that unit #2 is completed, and 
finishes on March 19.  Unit #5 starts the same day that unit #4 finishes, and is 
completed in April.3 
 
Linear Ramp-Up Mode 
 
In the linear ramp-up mode of scheduling, the production rate increases linearly from 
zero at t = 0 to some Rmax at t = D.  D is the user specified duration for lot production 
in months.  The user also specifies Q, the total quantity to be produced in the period 
D.  We have R = at, a linear function of time, t, with the constant a to be determined. 
 

 
2

0 0 2
D D aDQ Rdt atdt= = =∫ ∫  

 
Hence, a = 2Q/D2 and R = 2Qt/D2.  When t = D, R = Rmax = 2Q/D, so if (say) Q = 10 
units and D = 10 months, Rmax = 2 units/month. 
 
At any intermediate time t, the quantity produced is q: 
 

 
2

2 20

2t Qt Qtq dt
D D

= =∫  

 
The cumulative time to produce the qth unit is: 
 

 q
qt D
Q

=  

 
Let H1 = labor hours to build unit #1, as estimated by SEER-H.  Hours to build any 
subsequent unit q are: 
 
 1

B
qH H q=  

 
where 
 

 log( % /100)
log(2)
SB =  

 

                                            
3 We decided as a design ground rule not to take into account weekends and holidays.  To do this 
would complicate the model and would require additional features that permit users to set the days 
when work is not done in their organizations.  This means that our results are approximate dates, but 
we deemed this to be a reasonable limitation for a parametric cost model, where timing of cost flow is 
the main objective, as opposed to a detailed production scheduling model..  
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and S% = learning slope in percent.  We can pair up the cumulative hours to build 
units 1 through n, and also the cumulative time required to build them.  At this point, 
an example problem is useful to illustrate the method.  
 

Example:  A company wants to build five units 
of their GIZMO in low rate initial production.  
The period of performance is eight months.  
The first unit hours are estimated at 2,000.  
They want to use the ramp-up scheduling 
mode.  Work out the production schedule and 

the labor hours distribution 
by month (procedures for 
determining start and finish 
dates have been 
demonstrated in the previous 
two examples and will not be 
repeated here.) 
 
From previous examples we 
know that B = -0.2 for an 
87% slope, a slope we will 
again assume.  Also, D = 8 
months, Q = 5 units, and H1 

= 2,000 hours.  A table nearby indicates labor hours and cumulative labor hours by 
unit.  These were calculated using the unit theory equation Hq = H1qB.   
 
The table also shows the elapsed months to complete each unit using the equation 
tq = D*sqrt(q/Q), starting at t = 0, and also includes the cumulative hours.  A cross 
plot of the cumulative hours and the elapsed months is shown above. 
 
The cross plot can easily be regressed to find a relationship between elapsed 
months and cumulative hours.  Because the underlying mathematics is all power 
law, the regression should seek a power law fit.  The regression equation for this 
particular data is shown in the plot.  The regression is automated in SEER-H v7.1. 
 

At left is a table of labor hours allocated by month using 
this equation.  To correct small curve fit errors, the data 
has been normalized to have the correct total (8,312 
hours).   
 
Note that with the 87% learning rate we have used, the 
decrease in labor usage due to learning is more than 
offset by the increase in production rate, so that the 
build up in labor required per month is fairly steep.  The 
labor build up is of course less severe if the production 

makespan is increased beyond eight months. 

Unit, n Months Hours Cum Hrs
1 3.58 2000 2000 
2 5.06 1741 3741 
3 6.20 1605 5347 
4 7.16 1516 6862 
5 8.00 1450 8312 

Month 
Cum 

Hours 
Cum 

Norm Hrs 
1 210 209 
2 718 714 
3 1472 1463 
4 2450 2435 
5 3638 3616 
6 5025 4994 
7 6602 6561 
8 8363 8312 

Figure 3 -- Cumulative Labor Hours vs. Elapsed 
Months
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Note also the rather long period of time to build the first unit (3.58 months).  This is 
much longer than the time required for any other unit.  The 5th unit requires only 0.84 
months.  This is characteristic of ramp schedules.  The initial rate is zero, and the 
labor force is initially small, so the initial unit takes a while to get organized.  
 
Using another equation from above, the maximum production rate reached at the 
end of the ramp is: 
 

Rmax = 2Q/D = (2)(5)/(8) = 1.25 units/month 
 

The ramp approach will assume minimal concurrency, that is, unit #2 will start when  
unit #1 is finished, unit #3 will start when unit #2 is finished, etc.  The rationale is that 
the rapid build up and possible limitations of tooling, floor space, etc. will often make 
any significant concurrency infeasible in linear ramp up production. 
 
Revisions Needed for Cumulative Average Theory 
 
The analysis for the cumulative average theory is the same as in the previous 
sections with the exception that the equation Hq = H1qB is replaced by the equation 
Hq = H1[q1+B – (q-1)1+B].     

 
Treatment of Production Material Costs 
 
No changes are contemplated in the way SEER-H estimates production material 
cost, but we do have in mind two changes in the way material costs are handled.  
One change is to allow users to apply learning theory to material costs, a common 
industry practice.  Another is to allow users more realistic ways to spread material 
costs. 
 
Learning slopes for material are usually on the order of 95%, and the savings 
realized typically does not represent nearly as large a part of the project funding as 
is the case for labor hours learning.  For that reason, we will use only one theory of 
learning for material.  For reasons of mathematical convenience, we will use the 
cumulative average theory only.  If the user universally elects to use the unit theory, 
this introduces some error, but it is small.  
 
Material for a work element will be considered as (possibly) having two parts.  One 
part is bought more or less concurrently as production proceeds, on essentially a 
“just in time” basis.  The other part is long lead-time material that must be ordered 
well in advance of production, perhaps as early as the Detail Design phase of 
development.  These two parts will be designated, respectively, concurrent material 
and long-lead material.   
 
Only concurrent material will have learning applied.  Long-lead material is assumed 
not to benefit from learning savings. 
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By default, all material costs calculated by SEER-H for a work element are assumed 
to be concurrent with production.  Long-lead material is assumed to be zero in cost 
unless the user makes specific provision it.  To make provision for it, the user must 
specify, of the total units to be produced, how many units will require long lead 
material.  For example, if 10 units are to be produced, and the user specifies that 
three will require long lead procurement, then SEER-H will calculate the material 
cost for the total build of 10 units, then will take 3/10th of that amount, and designate 
it as long-lead material.  By default, that buy will be placed in a month midway 
between Preliminary Design Review (PDR) and Critical Design Review (CDR).4  
However, the user can change the timing of this advance buy. 
 
After adjustment for learning, assuming that the user has specified that material 
learning takes place, the remaining material cost will be allocated to concurrent 
material.  Assume that the material cost as calculated by SEER-H is M, and that the 
amount allocated to long-lead is m.  Then the total concurrent material for production 
quantity Q is CQ = M-m.   
 
According to the cumulative average theory, the cumulative material cost at any 
intermediate quantity q is given by: 
 

 
1 B

q Q
qC C
Q

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
As usual, B represents the natural slope of the user assigned learning curve. 
 
The timing rule for cost flow of concurrent material is as follows:  For each work 
element built, its concurrent material cost is charged in the same month the unit 
starts production. 
 
Loss of Learning 
 
If one production lot follows another, all prior learning may apply to the successor lot, 
none of it may apply, or part of it may apply.  If all of it applies, the learning 
calculations continue from one lot to the next as though they were all one lot, 
although in the second lot the learning slope could be different.  If none of it applies, 
the successor lot learning simply starts over with unit one. 

 
By default, SEER-H assumes that each lot begins with no prior learning.  This 
assumption will hold unless the user specifies that there has been prior learning.  A 
named predecessor lot is assumed to be the source of that learning.  Once that is 

                                            
4 In addition to the changes described in this paper, SEER-H v7.1 will also estimate the points in time 
for each work element when Preliminary Design Review and Critical Design Review can occur. 
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done, an issue that immediately arises is whether all of the prior learning is to be 
credited to the successor lot, or only part of it.  The user must make this choice. 
 
Normally, if the successor lot follows closely in time behind the predecessor lot, or 
perhaps slightly overlaps it, and both lots are being built at the same site by the 
same people, it is reasonable for the user to declare a full transfer of learning from 
one lot to the next.  Otherwise, it is likely that some learning has been lost, and that 
will increase the costs (and may modify the timing) of the successor lot.  If the user 
declares that any learning at all has been lost, the user shall be presented with what 
is called an Anderlohr analysis, so named after the industrial engineer who invented 
it. 
 
First, we examine the case where the user specifies that no learning is lost.  In that 
case, all production units simply follow the learning curve already established by the 
predecessor lot.  However, the user may change the slope in the successor lot, but 
may not switch from one learning theory to the other.5  The user may, however, 
change from one production planning mode to another.  For example, the 
predecessor lot may follow the ramp-up mode, while its successor lot follows the 
constant effort mode.  And of course, each lot may have a different production 
quantity and even a different average labor rate.  
 
If the user states that some of the learning is lost between the predecessor and the 
successor, then the Anderlohr process is invoked to determine just how large the 
loss is.  The increase in cost of the successor is a strong function of the amount of 
the learning loss, and the loss can be considerable. 
 
The Anderlohr method begins with an analysis of the learning content of the 
predecessor lot.  It continues with analysis of how that affects the successor lot.  We 
will give a worked example of how those analyses are done based on the 
assumption that the predecessor lot used the unit theory.  That will be followed with 
an explanation of what is done differently if the predecessor lot used the cumulative 
average theory.  (Recall that the user is required to use the same learning theory in 
both the predecessor and the successor lots.) 
 
Unit Theory Andelohr Example.  Suppose that the predecessor lot had production 
quantity Q = 20 units, first unit hours H1 = 1000, and learning slope S% = 90%.  
Using the usual equation, we find that B = -0.152.6  If we calculate the hours for the 
20th (final) unit of the predecessor lot, we find: 
 
 0.152

20 1000(20) 634H −= =  
 

                                            
5 Users who want to use a segmented learning curve can do so by declaring a new lot at the quantity 
where they want the slope to change. 
6 B = log(S$/100)/log(2) 
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We started with 1,000 hours for the first unit, and reduced that to 634 hours for the 
final unit.  We define learning accomplished (LA) as the difference between these 
numbers: 
 
 1000 634 366 hoursLA = − =  
 
LA measures learning gained.  To measure learning lost, Andelohr uses five loss 
factors, expressed as subjectively assigned percentages (here we arbitrarily assign 
percentages to each factor, to be used in the subsequent example): 
 
• Personnel loss of learning – 14% 
• Supervisory loss of learning – 20% 
• Continuity loss of learning – 18% 
• Methods loss of learning – 1% 
• Tooling loss of learning – 1% 
 
We average these subjectively assigned percentages to obtain 10.8%.7   
 
Since LA = 366 hours and 10.8% of that has been deemed lost, the loss amount is 
(10.8%)(366) = 40 hours.  Had no loss occurred, the hours for the next unit would 
have been:8 
 
 0.152 0.152

21 20 (21/ 20) 634(21/ 20) 629.3 hoursH H − −= = =  
  
With no loss of learning, 629.3 hours would be the first unit hours for the successor 
lot.  But due to the loss of learning, we add the lost 40 hours to this to obtain a 
starting position of 629.3 + 40 = 669.3 hours. 
 
Somewhere back in the predecessor lot was a hypothetical “unit” that required 669.3 
hours.  This almost certainly is not an integer (whole) numbered unit.  It is most likely 
a fractionally numbered unit with a unit number like 3.85, or maybe 4.12.  In other 
words, it’s some whole numbered unit, plus a fraction of the next unit. 

                                            
7 This is equivalent to assigning each of the five factors an equal weight.  Anderlohr, in his original 
paper, suggested that it might be desirable to weight them differently if there was reason to do so.  In 
SEER-H v7.1 we shall assume equal weights, as opposed to asking the user to assign possibly 
different weights for each percentage. 
8 Actually, “unit #21” is unit #1 of the successor lot.  If one lot follows another with no loss of learning, 
in order to keep the math straight the units of the successor lot must be renumbered in the 
calculations, continuing the numbering sequence of the predecessor lot.  We will refer to this practice 
as “pseudo numbering.”  As will be seen shortly, a slightly different form of pseudo numbering is 
required when there is loss of learning.    
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The reason why we want to find this unit number is 
because Anderlohr’s method starts the learning in the 
successor lot all over again from that point.  If the 
number is say, 3.85, the pseudo numbering in the 
successor lot would be 3.85, 4.85, 5.85, etc. 
 
How do we find this unit number?  Designate the 
unknown unit number as k.  We know that: 
 

1( /1)B
kH H k=  

 
Solving this equation for k: 
 

1/ 1/ 0.152

1

669 14.07
1000

B

kHk
H

−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Hence, whatever planning mode the user has applied 
to the successor lot, it is applied not to the original lot 
numbers 1, 2, 3, etc., but to the pseudo lot numbers 
14.07, 15.07, 16.07, etc. 
 
At left is a detailed, unit by unit calculation of this 
example.  Note that for units 1 through 20, before the 
break, the actual unit numbers are used in the 
calculation.  From Unit #21 on, after the break, the 
pseudo numbers are used.  Figure 4 shows the effect 
of the break. 
 
Cumulative Average Theory Anderlohr Example.  The 

cumulative average theory 
replaces Hq = H1qB with Hq = 
H1[q1+b – (q-1)1+B]. The 
calculation for k is messier.  It 
requires an iterative solution of: 
 

1 1/1

1

[ ( 1) ]B BkHk k
H

+ += + −  

 
This is done by entering an 
initial guess for k on the right 
and solving for k on the left.  
That value is then entered on 
the right and a new solution is 
obtained.  This continues until 

Actual Pseudo Unit Hours 
1 NA 1000.00 
2 NA 900.00 
3 NA 846.21 
4 NA 810.00 
5 NA 782.99 
6 NA 761.59 
7 NA 743.95 
8 NA 729.00 
9 NA 716.06 
10 NA 704.69 
11 NA 694.55 
12 NA 685.43 
13 NA 677.14 
14 NA 669.55 
15 NA 662.57 
16 NA 656.10 
17 NA 650.08 
18 NA 644.46 
19 NA 639.18 
20 NA 634.22 
21 14.07114 669.04 
22 15.07114 662.09 
23 16.07114 655.66 
24 17.07114 649.67 
25 18.07114 644.07 
26 19.07114 638.82 
27 20.07114 633.88 
28 21.07114 629.21 
29 22.07114 624.79 
30 23.07114 620.60 

Figure 4 -- Example of Loss of 
Learning
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the answer is the same to a satisfactory precision.  A good initial guess for k is the 
number of units in the predecessor lot divided by 2.   

 

Appendix --  Rules for Converting Time Spans to Calendar Dates & 
Vice Versa 

 

The SEER-H v7.1 scheduling system is not intended to be used for precise 
scheduling of work activities to include such features as weekends, holidays, 
multiple shifts, plant shutdown periods, irregular shifts, etc.  When SEER-H 
estimates an activity duration of, say, 7.6 months, it means that the project is 
expected to last 7.6 average months, calendar time, without regard to peculiarities of 
the work days in a given month.   
 
In the average solar year there are (very closely) 365.25 days, and exactly 12 
months.  The average month therefore has 30.4375 days, to a sufficently high level 
of precision.  Accordingly, if SEER-H estimates 7.6 months, as an example, the 
number of calendar days will be (7.6)(30.4375) = 231, rounded to the nearest 
integer, using the usual arithmetic rounding convention.  The end date 
corresponding to any stated begin date shall be counted off on the calendar, with 
each month given its usual number of days, with 28 days allowed for February.  The 
first day of the count shall be the user stated start day. 
 
Example: SEER-H estimates an activity as 7.6 months.  The corresponding number 
of days is 231.  The user has stated that January 15 is the start date.  What is the 
end date? 
 
We list here the number of days in each calendar month: 
 
January -- 31 
February -- 28 (leap year and end of century effects ignored) 
March -- 31 
April -- 30 
May -- 31 
June -- 30 
July -- 31 
August -- 31 
September -- 30 
October -- 31 
November -- 30 
December – 31 
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Of the 231 days duration, these are the numbers of 
days consumed by each calendar month, and the 
cumulative sum of these.  The end date is therefore 
September 2, (at end of business).   
 

 

 

 
 

 
 

Month Days Cum Days 
January 17 17 
February 28 45 

March 31 76 
April 30 106 
May 31 137 
June 30 167 
July 31 198 

August 31 229 
September 2 231 
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