
Improving CER building 
Getting rid of the R² tyranny 

Building a CER with the median 
 

When you get – in a practical situation – more information than the 
number of unknowns, the problem of how to combine this information is 
certainly the most important one you face for applying mathematics to 
natural philosophy1. 

Karl Friedrich Gauss. 1809. 

 

When the cost estimator possesses costs (or any other attribute, such as the schedules) for a set 
of products related to the same "family", his main concern is to answer the fundamental question : "how 
can I use this information to estimate the cost (or the attribute) for any new product belonging to the same 
family ?". 

If we are dealing with cost – as I will do in this paper – I assume that these costs have already 
been normalized, using all necessary tools. 

I also assume that the search for the influential variables2 (the variables – or "cost drivers" – 
which really influence the cost) has been done. Several techniques, so such as the Cp statistic or the partial 
regressions, allow to do so. 

We know that products belonging to the same family differ by these variables, such as the size, 
the material, etc… depending on the products you are interested in. Therefore I intend to use these 
variables to "explain" the cost differences between the products. 

"Using the same information" means I intend to remain at the same level of the WBS as it was 
for the products of my data base. This means that detailed – or, as the adjective is sometimes used, 
analytic – cost estimating is not considered here. 

Basically there are two ways to answer answering the fundamental question : parametric and 
non-parametric. These approaches are completely different. 

Parametric means : "I want to use a given type of formula to represent the relationship between 
the cost and the variables". This type of formula can be linear – or additive – such as  

 
which includes some parameters (called here α, β, γ, …) which will be used to adjust the of formula to the 
data. It should be noticed that this type of formula is perfectly valid : "linear" means "linear to the 
parameters", not to the variables. Another familiar type of formula is multiplicative, such as  

 

                                                      
11 using the vocabulary of the period. 
2 please do not use the word "parameter" to name these variables. Mathematically speaking – and this is the way this 
word is used in this paper – a parameter is an auxiliary variable which is used to change the behavior of a function. 
For instance the coefficients of a linear formula are called "parameters". 
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Other types of formulae can be – and are – used, these two being the most frequently selected. 

Non-parametric means : I do not want to force the relationship to be a selected one, and I don't 
even want to use any algebraic relationship (and therefore there will be no parameter to compute3). A 
typical example (widely used) is to say : I want all my estimates to be in the vicinity of the current data 
points ; of course the "vicinity" has to be defined and it can be rather complex ! 

My purpose here is not to compare these two approaches (that will done later on), but only to 
investigate the parametric one and how it can be done. 

Parametric needs therefore to make a first choice : the type of formula to be used. 

The second choice is related to the metric. What does this term mean ? We will compute the 
values of the formula parameter by adjusting them to the data points we have. Adjusting implies that we 
are able to measure the "distance" between the formula and the data points. The generally used metric – 
the one used by Gauss – is the Gaussian metric (let's call it this way), which is the squared difference 
between the cost value computed – for each data point – by the formula and the cost value stored in the 
data base. 

In his paper Gauss did not explicitly mention this metric. He just said that it is a custom4 (yes, 
just a custom !) that, if a quantity is obtained by several observations, the arithmetic average is generally 
considered as the most likely value of this quantity. And it is not difficult to demonstrate that this implies 
the use of the Gaussian metric. Suppose we have a distribution of the n measurements (x1, x2, …) of a 
given quantity. We need a value that could replace, for some other computations, this distribution. In order 
to find it, we would like to obtain a value (generally called the center of the distribution), let's call it μ, 
which would be as close as possible to all the values of this distribution. To do so, we have to define what 
we mean by "close" ! Here comes the need for a metric ; using the Gaussian metric we decide that the 

distance between measurements xi and xj will be given by . Therefore now, the value μ we want 
to compute will have to minimize the sum 

 

Minimizing the derivative on μ, you will immediately see that . This is exactly Gauss' choice. 

Using this metric (do not forget it is a choice) Gauss demonstrated that the distribution, which he 
called φ(Δ), of the errors5 – between real observations and true values which should be observed – must 
follow the law 

 
where h is a "parameter". The "least squares method", so much used nowadays, originated from this 
discovery. It is important to know where it comes from … It is only the result of the decision to use the 
Gaussian metric to define the "center" of a distribution ! 

There are other methods used to combine information and Gauss was perfectly aware of them 
(he mentioned several times the work made by Laplace, who was not using the same metric). He just 
added that the least squares method should be preferred for the only reason that it makes computations 
easier. We must not forget that, at his time, all the computations were made manually. Therefore the 

                                                      
3 the word "non-parametric" comes from this situation. 
4 he also called it " a simple principle, generally adopted". 
5 he called them "errors" because he was dealing with astronomical observations. For a relationship between 
variables, the term "residuals" (or "unexplained variations") is certainly better. 
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question we are trying to answer in this paper is the following one : doesn't the computer allow us to use 
other, more satisfactory, metrics and computational methods ? 

From now on I will concentrate on the problems that the cost estimating community faces. These 
problems do not deal with the distribution of one variable (except for the persons who prefer to use 
"specific" costs, such as the cost per kg or pound) but with the search of a relationship between one 
variable – generally the cost – supposed to not depend on other variables. 

The least squares method has, for us, three important drawbacks : what is called the "regression", 
the sensitivity to outliers and the difficulty of using correlated variables. 

The "regression"6 is very well known (so well known that the least squares method is often 
called "regression analysis") and I mentioned it in a previous paper. It isn't the case for its consequences. 
The fact is that, if observations are a little scattered, the least squares algorithm underestimates the cost of 
large products (products larger than the average) and overestimates the cost of small products, because 
this algorithm "regresses" the estimated cost towards the average cost ; the more the observations are 
scattered, the more the estimates regress … As the observed costs are generally rather scattered, this is a 
very serious drawback as I do not see why cost should regress towards the average cost ! 

The sensitivity to outliers is also familiar to most cost estimators. Its origin comes from what is 
called the "breakdown". The breakdown of an estimator is the smallest proportion of the data that, if we 
change them, can have an arbitrary large effect on the estimated value of this estimator. The Gaussian 
metric produces values which have a very low breakdown ; for instance the arithmetic average has a 
breakdown of only 1/n : the change of only one data in a distribution can have a severe impact on its 
value. The Gaussian metric is not "robust" at all. 

Quite often we have to use several variables in order to "explain" the cost. If these variables are 
linearly correlated, the result is very poor, which means that the relationship does not really make sense 
and produces estimates with a very large confidence interval. This comes from the fact that, in order to 
compute the value of the parameters, we have to find the inverse of a matrix based on the inputs ; it is well 
known that a matrix which has two proportional columns – which is the case if two variables are linearly 
correlated – has a determinant equal to 0. 

Another drawback of the Gaussian metric (for our studies) is that it greatly favors large cost 
values. The reason is obvioud : in the cost domain (the one we are interested in here), the precision of our 
cost measurements is always known as a percentage of the figures (this is not true in other domains7 
where the accuracy of the measurements is a fix value, independent of the size of the measurements) ; it 
means that the imprecision of large costs is important compared to the ones for small costs. Consequently, 
as the Gaussian metric uses the squares of the differences, the least squares algorithm pays more attention 
to large costs than to small costs8. 

For all these reasons it seems reasonable to look for another metric which would not present 
these inconveniences. 

Let's return briefly to the concept of metric. A metric on a space E is a rule d(x,y) of E⊗E to R 
that assigns to each couple x,y a value, called the distance d(x,y) between x and y. Such a rule cannot be 
defined as you want : it has to follow the following properties9 : 

- ∀ x, y ∈ E, d(x,y) = d(y,x) 

                                                      
6 the term was coined by Francis Galton. 
7 such as the ones in which Gauss was interested. 

8 this is why some authors recommend to minimize  instead of  . 
9 for the reader who is not familiar with these notations, the first property must be read : whatever x and y belonging 
to the set E, then the distance between x and y is equal to the distance between y and x (symmetry). 
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- ∀ x, y ∈ E, d(x,y) = 0 ⇔ x = y 
- ∀ x, y, z ∈ E, d(x,z) ≤ d(x,y) + d(y,z) 

Let's investigate the property of the following metric (although Laplace did not mention it 
explicitly, I will call it here the "Laplacian metric" because he used it) : 

 
Using this metric has important two consequences : 

- the center of a distribution is not the arithmetic average anymore, but the median, which I called ν,  
- the measure of the dispersion around this center is not the standard deviation anymore but the 

quantity . 

Let's investigate the median for a distribution, which means for one variable only. Suppose you 
have a discrete set (of size n) of values . 

There are two definitions of the median : 
- the first one is well known by you : the median is the value which leaves as many points above as 

below. This definition is valid when n is odd ; when n is even, one generally takes the average of 
the two values which are in the middle of the set. 

- the second one is probably less popular : it is the value ν which minimizes the sum  

 
Notice that this definition is very similar to the definition of the arithmetic average : the only thing 
which changes is the metric. 
I demonstrated the equivalence of these two definitions of the median. 

Another comment about the median when using a continuous variable (which I still call x) : you 
know about the "normal" distribution which plays an important role when the Gaussian metric is used : 

 
which has a mean equal to μ and a standard deviation equal to σ. There is a similar law (notice that the 
metric has changed) to be used when dealing with the median ; I call it  and it is given by 
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It has a mean equal to ν and a standard deviation equal to 
τ. 

 

Let's compare these two distributions : figure 1 
displays these distributions when their mean and median 
is 0 and their dispersion 1. Notice they are rather similar, 
except that the M distribution is sharper : 
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Figure 1 

If the median is easy to define for a distribution, what can it be for a set of one "dependent" and 
several causal variables ? I will present the solution briefly in the case of one variable, but it remains true 
for several causal variables. To simplify, I will deal a linear (or additive) CER : a straight line ; but it can 
obviously also be used for a multiplicative one. Therefore we are looking for a straight line  . 

Fortunately enough, the second definition of the median will help us, but the first one will be 
used to start the discussion. 

First of all we apply the first definition in order to find all the straight lines which leave as many 
data points above as below (figure 2) : 

 

Domain 

D 

 

 

 

 

 

 

 

 

Figure 2 

We call a "domain" a part of the plane containing all the straight lines so there are as many 
points above then as there are below if the number of data points is even, and so there are as many points 

above them as there are below if the number of data points is odd. Now, using the second definition, 
we look for the line inside that domain which minimizes the sum  of the absolute values of the distances 
between all the data points. Computations show two results 

- as long as the line D remains inside the domain, then the derivative   does not change, 

- but  changes. Therefore we use this property in order to minimize the sum . Inside a domain 
there is a unique solution : the line D must "touch" one data which limits the domain upwards and 
one data which limits it downwards, as line D on Figure 2. 

We do that for all the domains and find all the lines which could be used. Among all these lines 
we select the one for which the sum  is the smallest. If several lines present – inside the limit of the 
computer – the same sum, we select the one which minimizes the confidence interval of the estimates. 

This means that this confidence interval has to be computed, but this is another subject which 
cannot be dealt with inside this paper. 

What is the result of this computation ? Starting with the same data points we first compute the 
CER given by the median : figure 4. 

Then we compute the CER given by the OLS : figure 5. 

The improvement between the results is obvious : look more specifically at the low cost figures. 
In order to quantify the improvement, we compute the sum  for both : the results are given on figure 3 ; 
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the first line gives its value for the median, whereas the 
second line gives it for the OLS. We see here that we 
improve the "fit" with the data by about 5% which is not 
negligible ! 

 

 

 

 

F
Figure 3 

It should also be noted that the R² has strictly no interest here. It is not difficult to prove that 

maximizing the R² is exactly the same as minimizing the sum of the squares . Consequently the R² 
will always be better with the OLS than with the median ; it cannot therefore be used to compare both 
approaches and the sums  are the only realistic comparisons. 

In order to compare various CERs computed with the median (for instance after removing one 
data point) another attribute – using the same metric as the median – has to be used. It is not difficult to 
create one. 

 
Figure 4. The CER computed by the median 
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Figure 5. The CER computed by the OLS 

 

As the metric used for the median computations is very robust, the result does not care at all 
about the outliers : you may have a far away outlier without changing anything. Quite obviously the value 
of the sum  will change, but the CER will not and the CER will always minimize this sum ; discussing 
about outliers then becomes obsolete. In order to change the CER, a data point should go over the line ; in 
such a case the CER is not a median anymore and must be recomputed. But this is a very small drawback 
compared to the influence of the outliers when using the Gaussian metric ! 

As there is no longer a matrix to invert, we do not care about using correlated variables. 
Furthermore there is no "regression" anymore ! 

 

Another important comment : it is often said that Gauss demonstrated that his metric was the 
best … Gauss never said so ! Being a mathematician, Gauss always mentioned his hypothesis. In the 
present case he said that his metric was the best one if you want the parameters of the CER to be linear 
functions of the data. Do we really need this hypothesis ? I do not think so … 

 

Quite obviously computing the median by hand would be very time consuming, and this is the 
reason why Gauss selected his mentioned metric. For this reason, we implemented it in our software : it is 
as fast as the OLS and … much better ! 

 

 

 

 

Pierre Foussier. Paris. March 2010. 
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