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Abstract
Most regression-based statistical modeling aims to derive, on the basis of historical data, an algebraic expression for 

estimating a quantity of interest, such as cost.  Such an algebraic expression is characterized by one or more “fit parameters,”
which are typically coefficients or exponents.  Once these fit parameters are determined, it is a logical next step to test for their 
accuracy by a process called “statistical inference.” The fit parameters of a cost-estimating relationship (CER) are each 
directly linked to a candidate cost driver.  The inference process may lead to some fit parameters being judged “significant”
and others “not significant,” where “significance” refers to the extent to which their respective associated cost drivers impact 
the cost estimates made using the CER.  Cost drivers associated with fit parameters that are judged to be not significant can 
(and should) be removed from the algebraic expression for the CER without sacrificing any estimating capability.  
Furthermore, the ability to remove insignificant cost drivers from a CER can be valuable, because fewer fit parameters means 
more degrees of freedom, and that can be important when only a small number of data points is available.  Thus it is important 
to be able to eliminate the insignificant cost drivers from a CER.

Because of the strict mathematical assumptions underlying  ordinary least squares (OLS) linear regression, explicit 
formulas for fit parameters, significance testing and confidence bounds can be established.  However, if any of the OLS 
assumptions do not apply, inferences based on those formulas are unreliable.  This situation has led cost analysts to understand
the need for general-error regression.  Up to now, analysts have been concerned primarily with the quality of the estimating 
process itself, and have been ignoring the need to assess the significance of the fit parameters and cost drivers.  Recently, 
however, researchers have begun to slowly realize this shortcoming and have started to explore avenues for filling the gap. In a
paper entitled, “A Distribution-Free Measure of the Significance of CER Regression Fit Parameters Established Using General 
Error Regression Methods,” (Journal of Cost Analysis and Parametrics, Vol. 2, Issue 1, Summer 2009, pages 7-22), T.P. 
Anderson proposed some “heuristic” techniques of assessing the significance of the fit parameters.

Anderson calls his method heuristic, because it is not determined by strict mathematical calculations.  Instead, we will 
apply bootstrap sampling, a method that can approximate the mathematics of statistical inference procedures and that was 
recently applied to the case of prediction bounds for CERs derived by general-error regression, another situation where 
explicit formulas exist for OLS CERs but not for general-error CERs.  (See the briefing by S.A. Book, “Prediction Bounds for 
General-Error-Regression CERs,” 39th Annual DoDCAS, Williamsburg VA, 14-17 February.)  The bootstrap is a data-based 
method that does not require any OLS-like distributional assumptions or explicit formulas.  In this paper, we specifically look 
at constructing approximate bootstrap-based statistical tests to assess the significance of CER fit parameters and their 
associated cost drivers, allowing conclusions to be drawn regarding which candidate cost drivers are significant and which are 
not.
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Introduction
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• In Ordinary Least Squares (OLS) regression, there exist 
formulas for making inferences about the regression 
coefficients and independent variables (cost drivers), 
evaluating their statistical significance 

• Details can be found in most introductory statistical 
textbooks – [Ref. 1] for example

Both parameters (β0 and 
β1) in this case were found  

to be significant at 
significance level α = 0.05

y = 0.57x + 13.186
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A Caveat

• However, if any of the strict assumptions of OLS are 
violated, these and other inferences from OLS 
formulas become unreliable

• This has led to the need and growing popularity of 
General Error Regression Methods (GERM)

• Despite the growing use of GERM, it seems most 
analysts have been ignoring the issue of the need to 
determine the significance of the parameters and 
cost drivers

• T.P. Anderson has been doing work on addressing 
this very shortcoming through something he calls 
the “SIG Test” – [Ref. 2]
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General Regression
• General Regression refers to a method of establishing a 

regression relationship that is either
– Nonlinear (such as exponential, power or square)
– A linear form that violates one or more of the OLS assumptions 

(such as possessing multiplicative or non-normally distributed 
errors)

• It is not realistic to expect one expression to be sufficient for 
inferences about the parameters/cost drivers or predictions for 
every regression form, and in fact such formulas are not 
available for general regression

• The Bootstrap has been suggested as a method for 
approximating inference procedures

• We will specifically look at constructing bootstrap-derived 
approximate hypothesis tests to examine the significance of 
the estimated CER parameters and the linked cost driver
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Introduction to the Bootstrap

• Bootstrapping involves resampling with replacement 
from sample data numerous times in order to 
generate an empirical distribution of a statistic 

• It is a data-based simulation method that is used for 
making statistical inferences

• It is a distribution-free method that has no need for 
any distributional assumptions or analytic formulas

• This freedom allows the use of the bootstrap in 
situations where traditional theory fails to provide an 
answer
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Basic Bootstrap Illustration 
(Sample Mean)

• Suppose our sample is (2, 5, 4, 9, 8, 4, 3), with the 
sample mean,  

• 1st Bootstrap sample = (4, 9, 8, 3, 3, 2, 2),
• 2nd Bootstrap sample = (4, 3, 3, 9, 8, 3, 8),
• … 10,000th Bootstrap sample = (3, 2, 2, 2, 3, 8, 5),

5
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Bootstrap Methods

• The bootstrap is a family of methods, many variants 
of which are available, and, depending on the 
problem at hand, some are more relevant than 
others

• One such bootstrap technique is called the 
Bootstrap-t (also called “Percentile-t”) method
– It is a valuable bootstrap technique for constructing 

hypothesis tests, structured very similarly to classical 
hypothesis tests

– This method estimates the error distribution directly from 
the data, therefore there is no need to make assumptions 
about the underlying error distribution

– The first step for the bootstrap-t is to construct a “t-like”
table based on the data
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Example 1 Dataset

Weight (X) Cost (Y) f(x) Residual   
e = Y - f(x)

210 5 5.902 -0.902
290 7 6.620 0.380
350 6 7.158 -1.158
480 11 8.325 2.675
490 8 8.414 -0.414
730 11 10.568 0.432
780 12 11.016 0.984
850 8 11.644 -3.644
920 15 12.273 2.727

1010 12 13.080 -1.080

Result of OLS regression
f(x) = 4.018 + 0.00897x
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Graph of Example 1
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Before Bootstrap-t

• We are interested in assessing the statistical 
significance of the fit parameters 

and
and the cost driver Weight (x)

• Bootstrapping of the data is done by resampling the 
residuals from the regression model (Full details of 
this process can be found in [Ref. 5, pp. 111-112], 
but will be touched on in the next slide)

• Let’s say 500 iterations are run, then the result will 
be 500 “new” equations based on these 500 
bootstrap resamples

 4.018 ˆ
0 =β 0.00897 1̂ =β
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Bootstrap Residuals

• Instead of resampling the data as in the ‘Basic 
Bootstrap Illustration’ on Chart 8, fit a regression 
model to the original data and resample the 
residuals

• Add those resampled residuals to the estimated y 
values to get the bootstrap samples (or multiply 
them by the estimated y values if the model has 
multiplicative error)

• Then regression equations are fit to each bootstrap 
sample

• Now, back to the construction of the “t-like” table
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Bootstrap Pivoting

• First we will standardize the      s using the 
approximate pivot (where the particular statistic of 
interest, say      or     , is substituted for    ):

where:
is the θ bootstrap coefficient estimate from the bth

bootstrap sample,
is the coefficient estimate from the original sample,
is the standard error (SE) of θ from the bth bootstrap 

sample
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Double Bootstrap

• When no formula for the SE of θ exists, one can use 
the “double bootstrap” to approximate the SE

• The double bootstrap involves resampling from each 
bootstrap resample R times

• Bootstrapping the bootstrap sample is a way to 
investigate the variability in the bootstrap sample 
(just as bootstrapping the original sample does for 
the original sample)

• For example, if the sample is bootstrapped 500 (B) 
times and each bootstrap sample is resampled 500 
(R) times, we need to draw a total of 500 x 500 = 
250,000 samples

© 2010 MCR, LLC 15
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A Look at the Double Bootstrap

© 2010 MCR, LLC 16

• Let the original sample be:

• Then an example of a bootstrap sample is:

• And then bootstrapping that bootstrap sample 
gives the double bootstrap sample:

• How can this be used to approximate the SE of θ?

* * * *
7 10 8 7 6 10 6 6 9 4 1 2 10X   (x , x , x , x , x , x , x , x , x , x ) (x , x , , x )= = K

** ** ** **
7 4 4 4 6 10 6 10 6 10 1 2 10X   (x , x , x , x , x , x , x , x , x , x ) (x , x , , x )= = K

1 2 10X (x , x , , x )= K
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Bootstrap Standard Error (σ*)

• The SE for any coefficient can be approximated 
using the bootstrap by: 

where        is the parameter estimate for the rth

bootstrap resample from the bth bootstrap sample, 
and
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Bootstrap Standard Error of β0

• In the case of β0, the SE can be approximated by:

where
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Constructing the “t-like” Table

• The result is that the     s are distributed as a 
standardized bootstrap distribution of the estimator 
(based on slides 14, 17, and 18)

• These values are then rank-ordered from smallest to 
largest

• Then they are listed in a “t-like” table form (different 
tables for both      and     ) 

• These tables can be utilized in a similar way as the 
standard t-table

• The next slide will display an example of how the 
tables are established

*
bt

0β̂ 1̂β
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Quick tb* Calculation for 
Example 1

b σ* t b *
1 4.257 1.802 0.133
2 2.990 1.459 -0.705
3 5.668 1.421 1.161
4 3.645 1.724 -0.216
5 2.746 0.952 -1.335
6 3.136 1.109 -0.795
7 4.036 1.102 0.016
8 5.699 1.736 0.969
9 4.340 1.514 0.213
10 3.429 1.693 -0.348… … … …

500 2.047 1.524 -1.293

*
0β̂

• Let B = 500 and R = 500
• Recall that 4.018ˆ

0 =β *
ˆ

0
*

]5[,0
5

]5[,0
ˆ

)ˆˆ(
*

β
σ

ββ −
=t
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Setting Up SE(β0) of the 5th

Bootstrap Sample
• Why is the bootstrap approximation to the SE of β0

for the 5th bootstrap sample = 0.952?
• Suppose the 5th Bootstrap Sample is:

(with the associated x values) Giving               

• Using the double bootstrap, the first resample of the 
bootstrap sample might be:

giving
• Repeat this R times (500 times in this case)

14.064) 11.858, 14.372, 12, 9.488, 8.795, 7.91, 7.59, 5.462, 4.822,(* =Y

12.666) 12.653, 10.564, 10.602, 9.488, 8.795, 7.166, 6.078, 9.347, 6.334,(** =Y

[ ] [ ] 2.746ˆˆ *
5,0

*
,0 == ββ b

[ ] [ ] 4.879ˆˆ **
1,5,0

**
,,0 == ββ rb
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Calculating SE(β0) of the 5th

Bootstrap Sample
• Based on the equations in slides 17 and 18:

so that

[ ]
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Formulas for SE(β0) of the 5th

Bootstrap Sample
• However, formulas exist to calculate the SE of β0 in 

this OLS case

where
and

• Had we chosen to utilize them instead of 
approximating using the bootstrap, then SE( ) =  
0.868, reasonably close to our bootstrap result of 
0.952
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Hypothesis Test

• Now we have “t-like” tables, so suppose we want to 
test:

H0: 
HA:

• Based on standard theory, the T-value used in a 
standard hypothesis test is:

• Using that idea and what was introduced earlier, a 
“T-like” value can be calculated using the bootstrap:

0θ̂θ =
0θ̂θ ≠

θσ
θθ

ˆ

ˆˆ
0−

=T

*
0*

ˆ

ˆˆ

θσ
θθ −

=T
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P-Value

• Definition: 
• This expression can be approximated by:

where B = number of bootstrap runs, and θ is the 
coefficient (cost driver) being tested

• If p-valueθ ≤ α, we can reject the null hypothesis (H0) 
at significance level α and conclude that                  

• Thus our coefficient and associated cost driver are 
significant at the prescribed α value
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Summary Overview of Example 1

xy 10 ββ +=

• B = 500 and R = 500
• Testing the two coefficients β0 and β1 where                   

:
H0: H0: 
Ha: Ha:

• The Bootstrap approximates the SE of the original 
sample in order to calculate T*, and the double 
bootstrap approximates the SE of each bootstrap 
sample

0
0

0

0

≠
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Example 1: Classical 
Hypothesis Tests

Coefficients Standard Error t Stat P-value
β 0 4.0177 1.5909 2.5254 0.0355
β 1 0.0090 0.0024 3.7630 0.0055

© 2010 MCR, LLC 27

• Based on the classical methods of constructing the 
hypothesis tests, both β0 and β1 are significant at 
significance level α = 0.05:
• β0 has p-value = 0.0355 
• β1 has p-value = 0.0055 
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Example 1: Bootstrap for 
Testing β0

Fit parameter = 4.018
σ* of parameter = 1.446

T* = 2.778
p-value = 0.002

• Of the 500 values in the “t-like” table, the 
absolute value of only one of them was found 
to be greater than T* (approximate p-value = 
1/500 = 0.002)

• Thus we can reject the null hypothesis at 
significance level α = 0.05

• Therefore β0 is significant at α value 0.05, just 
as in the classical theory

778.2
446.1

0018.4* =
−

=T
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Example 1: Bootstrap for 
Testing β1

Fit parameter = 0.00897
σ* of parameter = 0.0021

T* = 4.299
p-value = 0

• The results above give us an approximate p-
value = 0/500 = 0

• Thus we can reject the null hypothesis at 
significance level α = 0.05

• This shows that β1 is significant at α value 
0.05, just as in the classical theory
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Example 1: P-value Comparison

Classical 
Theory

Bootstrap 
Theory

β 0 0.0355 0.002
β 1 0.0055 0

• We have reached similar conclusions using the 
bootstrap approach for the OLS linear regression 
example

• However, the bootstrap approach apparently shows the 
fit parameters to be “more” significant 

• Why would the bootstrap result be more significant?
• Recall that the standard error (σ*) for β0 based on the 

bootstrap was 1.446 (Chart 28), while, based on the 
classical equation, it was 1.591 (Chart 27)

© 2010 MCR, LLC 30
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Optimistic P-values

• Statistical research has shown that the bootstrap is 
typically optimistic (meaning it favors rejecting the 
null hypothesis) in small sample sizes, because it 
tends to underestimate the error rate [Ref. 8]

• This effect is apparent in the lower p-values 
associated with the bootstrap, implying that the fit 
parameters (and corresponding cost drivers) are 
judged to be more significant than what the classical 
theory says

• One suggestion to partially help correct for this is to 
make an adjustment to the residuals (see next chart)
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OLS Residual Modification

• It is known that [Ref. 8], where 
the “leverage” of xi is defined as:

• The raw residuals can therefore be modified in order 
that they have a constant variance:

)1()( 2
ii he −= σvar
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Implementing OLS-Adjusted 
Residuals

• Then we define the adjusted residuals 
(errors) as

• This definition ensures that the average of 
the adjusted residuals is zero (i.e., estimates 
of the points in the data base are unbiased)

• Now use the adjusted residuals in the 
resampling bootstrap process (described on 
Chart 13) and the double bootstrap process 
(if necessary)

• Then implement the bootstrap-t just as 
before

rradje ii −=)(
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Reexamination of Example 1: 
P-value Comparison 

Classical 
Theory

Bootstrap 
Theory

Bootstrap Theory 
(Modified Residuals)

β 0 0.0355 0.002 0.034
β 1 0.0055 0 0

• The p-values coming from the bootstrap theory 
with modified residuals are closer to the 
classical theory (approximate p-value = 17/500 = 
0.034)

• This shows the coefficients to be significant at 
an α valuesimilar to that of the classical theory

• This appears to help correct for some of the 
inherent optimism of the bootstrap

© 2010 MCR, LLC 34
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General-Regression Residual 
Modification

• However, in non-OLS regression should the 
adjustment be the same?

• One simple suggested residual modification is to 
use the average leverage [Ref. 4] 

• This leads to adjusting the raw residuals by:

(this adjustment can also be used for OLS cases)
• However, more appropriate adjustments may exist

n
h 211 −=−

n

er i
i 21 −
=
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Example 2 Dataset

X Y f(x) Y - f(x)

4 -0.3 0.838 -1.138
9 1.8 1.834 -0.034

10 0.5 2.033 -1.533
14 2.3 2.830 -0.530
12 2.0 2.431 -0.431
22 3.4 4.423 -1.023
1 -0.5 0.241 -0.741
3 1.0 0.639 0.361
8 1.9 1.635 0.265
5 0.5 1.037 -0.537
6 2.5 1.236 1.214

10 2.9 2.033 0.867
11 4.4 2.232 2.118
16 3.7 3.228 0.472
13 3.3 2.630 0.670

Result of OLS regression
f(x) = 0.0413 + 0.1992x
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Graph of Example 2
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Example 2: Classical Theory

Coefficients Standard Error t Stat P-value
β 0 0.0413 0.5468 0.0756 0.9409
β 1 0.1992 0.0499 3.9920 0.0015

• Based on the classical methods of constructing 
the hypothesis tests, β0 was found to be 
insignificant

• β0 has a p-value = 0.9409 
• β1 has a p-value = 0.0015 
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Example 2: Testing β0 Using 
Bootstrap

fit parameter = 0.041341
σ* of parameter = 0.501267

T* = 0.082473
p-value = 0.938124

fit parameter = 0.041341
σ* of parameter = 0.515104

T* = 0.080257
p-value = 0.94012

• Let B = 501 and R = 500, using modified residuals
• Resampling the standard residuals gave the 

absolute value of 470 of the values greater then T* 
(470/501 = 0.938), while the modified gave 471 
greater then T* (471/ 501 = 0.94012)

• As sample size increases, modification of residuals 
turns out to be not as crucial

• Bootstrap theory compares well with classical 
theory in this case, showing β0 to be highly 
insignificant 

Standard Residuals Resampled: Modified Residuals Resampled:

© 2010 MCR, LLC 39
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Example 3

Weight (X) Cost (Y) f(x) Y / f(x)

86507 120000 226942.59 0.529
6974 110000 100208.57 1.098
2562 88000 72396.92 1.216
33919 200000 167462.15 1.194
14800 100000 127934.92 0.782
48375 110000 187917.94 0.585
72360 380000 214160.64 1.774

154378 260000 273887.90 0.949
88718 180000 228809.56 0.787
13929 130000 125440.46 1.036

Result of Zero Percentage Bias, Minimum Percentage 
Error (ZMPE) regression
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f(x) = 5664.7 x 0.3246
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Graph of Example 3
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Overview of Example 3

1
0

ββ xy =
• From the graph on the previous chart, the CER 

appears to be of the power form,                , with 
multiplicative error

• Let B = 400 and R = 200
• Testing the two parameters ( β0 and β1):

H0: H0: 
Ha: Ha:

• Notice that the null hypothesis β0 = 1 (not β0 = 0) 
is being tested 

• This is due to the fact that β0 is a multiplier and 
does not effect the functional form if it equals 1 
(and, if so, is insignificant)

1
1

0

0

≠
=

β
β

0
0

1

1

≠
=

β
β
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Bootstrap: Testing β0

fit parameter = 5664.678
σ* of parameter = 5030.367

T* = 1.125898
p-value = 0.18

fit parameter = 5664.678
σ* of parameter = 12576.82

T* = 0.450406
p-value = 0.415

126.1
367.5030

17.56641ˆ
*

)(

0*

0

=
−

=
−

=
βσ

βT

• These calculations give us an approximate p-value = 
0.18 (unmodified) and p-value = 0.415 (modified)

• Thus we cannot reject the null hypothesis, showing 
that β0 is not significant at α = 0.05

• Therefore is weight not a significant cost driver?
** ‘Modified Residuals’ are modified by the method suggested on chart 35

Standard Residuals Resampled: Modified Residuals Resampled**:

45.0
82.12576

17.56641ˆ
*

)(

0*

0

=
−

=
−

=
βσ

βT
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Bootstrap: Testing β1

fit parameter = 0.324635
σ* of parameter = 0.065985

T* = 4.919831
p-value = 0.0025

92.4
06599.0
3246.00ˆ

*
)(

1*

1

==
−

=
βσ

βT

fit parameter = 0.324635
σ* of parameter = 0.101231

T* = 3.206876
p-value = 0.0225

• These calculations give us an approximate p-value = 
0.0025 (unmodified) and p-value = 0.0225 (modified)

• In either case, we can reject the null hypothesis, which 
shows that β1 is significant at an α value of 0.05
** ‘Modified Residuals’ are modified by the method suggested on chart 35

Standard Residuals Resampled: Modified Residuals Resampled**:

207.3
1012.0
3246.00ˆ

*
)(

1*

1

==
−

=
βσ

βT
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Another Form
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• Since only one of the coefficients was found to be 
significant, we should try a different equation form, 
such as:

• Bootstrapping is run again, showing that both these 
parameters are significant at an α value of 0.05, and, 
given this relationship, weight is a significant cost 
driver

1.05
0 x86211.51 +=+= ββ xy
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SIG Test

• T.P. Anderson [Ref. 2] has been exploring this same 
problem

• There are some similar characteristics of both the 
SIG test and the bootstrap approach
– Anderson intended to examine the “significance” of fit 

parameters independent of the underlying error distribution
– His “SIG Test” works on any functional form
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Example 4: Data From 
Reference [2]

AUC ($K) Weight Qty Perf Type
$124 209 3 5.2 0
$126 106 4 16.7 0
$105 35 10 9.2 0
$337 255 6 9.6 0
$281 206 7 2.9 0
$131 109 12 4.9 0
$155 120 2 12.7 0
$46 27 5 3.4 0
$224 286 1 9.8 0
$233 257 4 36.8 0
$357 134 4 21.1 1
$240 149 5 3.3 1
$97 10 44 5.0 1
$134 32 1 25.9 1
$149 46 18 5.5 1
$422 253 4 18.3 1
$262 81 20 13.7 1
$126 37 18 4.7 1
$152 28 18 6.8 1
$331 183 2 5.6 1
$204 24 37 2.7 1
$59 6 20 6.5 1
$134 46 4 1.1 1
$232 108 3 20.8 1
$48 5 28 3.2 1
$281 80 28 11.7 1
$272 149 9 1.2 1
$142 39 8 8.8 1

• CER has a multiplicative 
error term

• Coefficients are found to 
be the following:

a = -79.65
b = 31.35
c = 0.366
d = 0.109
e = 0.0576
f = 1.44

AUC = a+b(Wt)c(Qt)d(Perf)ef(Type)

© 2010 MCR, LLC 47

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



What Do the SIG Test
Results Mean?

• Details can be found in [Ref. 2]
• Anderson ran through the SIG test for all 6 

parameters
• The author suggests the rule of thumb that if 

the |SIGMean| or |SIGSPE| is less then 5% and 
the SIGTotal (defined in [Ref. 2]) is less then 
10%, then the parameter and its 
corresponding cost driver are “insignificant”

• However, regarding the interpretation of the 
results of his test, he states, “This is still an 
open question, subject to interpretation, and 
more research is needed in order to answer 
it.”
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Anderson’s Results from SIG 
Test

Parameter Full CER Minus 'a ' Minus 'b ' Minus 'c ' Minus 'd ' Minus 'e' Minus 'f'
a -79.65 0.00 42.62 151.96 -59.99 -69.32 -58.03
b 31.35 3.33 1.00 9.03 40.37 31.60 38.25
c 0.37 0.67 0.86 0.00 0.35 0.39 0.35
d 0.11 0.23 0.24 -0.37 0.00 0.09 0.12
e 0.06 0.13 0.09 0.56 0.01 0.00 0.06

f 1.44 1.89 2.20 3.60 1.52 1.47 1.00
245.08 266.68 240.51 179.69 215.70 235.55 246.32

SIGMean 8.81% -1.86% -26.68% -11.99% -3.89% 0.51%
SPE 21.36% 24.44% 24.70% 52.71% 26.04% 22.51% 32.21%
SIGSPE 14.42% 15.63% 146.74% 21.92% 5.37% 50.79%
SIGTotal 23.23% 17.49% 173.42% 33.91% 9.26% 51.30%

)(xfY

• The only parameter found to be insignificant is e
• |SIGMean| is less then 5%, and SIGTotal is less 

then 10%
• |SIGMean|s of both b and f are less then 5%, but 

SIGTotal is far greater then 10%; therefore not all 
the “requirements” for insignificance are met
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Nullifying Coefficient a

Parameter Full CER Trial 1 Trial 2 Trial 3 Trial 4
a -79.65 0.00 0.00 0.00 0.00
b 31.35 26.36 1.65 2.57 3.33
c 0.37 0.39 0.75 0.69 0.67
d 0.11 0.01 0.32 0.27 0.23
e 0.06 -0.01 0.20 0.16 0.13
f 1.44 1.44 2.03 1.96 1.89

245.08 204.71 300.25 278.22 266.68
SIGMean -16.47% 22.51% 13.52% 8.81%
SPE 21.36% 29.33% 30.26% 26.27% 24.44%
SIGSPE 37.28% 41.67% 22.97% 14.42%
SIGTotal 53.76% 64.18% 36.50% 23.23%

)(xfY

• Various seed values for Excel Solver give 
different SIGMean and SIGTotal values

• However, despite some weaknesses, the SIG 
test is a very quick and easy way to begin to 
examine the significance of CER fit parameters 
and cost drivers
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Bootstrapping Example 4

Fit 
Parameters

Approximate 
p-value 

(Unmodified)

Approximate p-
value (Modified)

a 0 0
b 0 0.0020
c 0 0
d 0.0081 0
e 0.1215 0.1883
f 0.0061 0.0020
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• Going back to the bootstrap approach to evaluate the 
significance of the CER fit parameters of Example 4, set 
B = 494 and R = 200

• All parameters but e turn out to be significant

• Thus, the cost driver ‘Performance (Perf)’ can be 
concluded to be insignificant
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Bootstrap: Testing Coefficient e

parameter = 0.057603
SE of parameter* = 0.03873

T* = 1.487302
p-value = 0.121457

parameter = 0.057603
SE of parameter* = 0.043065

T* = 1.337584
p-value = 0.188259

• These results give an approximate p-value = 60/494 = 
0.1215 (unmodified) or an approximate p-value =  
93/494 = 0.1883 (modified)

• Thus we cannot reject the null hypothesis, supporting 
the result of the SIG test

• This example provides the ability to describe the 
probability that random sampling would give similar 
results

** ‘Modified Residuals’ are modified by the method suggested on chart 35

Standard Residuals Resampled: Modified Residuals Resampled**:
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Drawbacks of the Bootstrap

• One notable weakness is that running a 
large number of simulations can be time-
consuming
– Solution: Initially perform a small number of bootstrap runs
– If results are close to your desired value threshold (α), you 

can do more runs to determine a more “accurate” result

• Also, keep in mind that higher levels of 
confidence require percentiles in the tails 
of the distribution of the “t-like” table, 
where bootstrap approximations may not 
be as adequate – although they seemed to 
perform well at a significance level of 0.05
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Summary

• The bootstrap is applicable no matter the CER form, 
and it also doesn’t make any assumptions about the 
error distribution

• It appears to have performed well in OLS examples
• Bootstrap conclusions about the statistical 

inferences can be mapped to results reached by OLS 
methods, thus tracking to the results of classical 
theory

• Once OLS tracking was established, the bootstrap 
approach was applied to a few non-OLS examples
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Conclusions

• The bootstrap approach to hypothesis testing is 
another method that can be utilized in determining 
the significance of fit parameters and their 
corresponding cost drivers

• The bootstrap approach offers more statistical rigor 
than the SIG Test by allowing approximations to 
statistical probabilities

• What remains inconclusive is the nature of a more 
appropriate adjustment to the residuals
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Acronyms

• CER = Cost Estimating Relationship
• GERM = General Error Regression Method
• OLS = Ordinary Least Squares
• SE = Standard Error
• SIG = Significance
• ZMPE = Zero Percentage Bias, Minimum 

Percentage Error
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