Neural Network Cost Estimating Relationships

Presented At the 2010 ISPA/SCEA Conference and Training Workshop

by Edwin B. Dean Consultant designforvalue@att.net

Presentation Organization

- This presentation is a road map for using neural networks for estimating cost
- Neural networks provide an alternate means of developing cost estimating relationships (CERs)
- Software exists that allows you to create a neural network CER (NNCER) without any knowledge of mathematics
 - But an understanding of the mathematics certainly helps
 - Lippmann (1987)
 - Smith (1993)
- The presentation will address
 - Pointers to prior use of neural networks for cost analysis
 - The basics of neural networks
 - Using neural networks to develop NNCERs
 - Comparing the goodness of fit with other types of models
 - Developing adaptive NNCERs
 - Performing cost risk with NNCERs

Prior Application of Neural Networks for Cost Analysis

- The primary publications of neural networks applications for cost analysis have occurred within the Association for the Advancement of Cost Engineering International (AACEI) community
- When one searches on the AACEI library using the keyword "neural network", twenty abstracts appear
- Dean (2009)
 - Summarizes early applications of neural networks for parametric cost analysis
 - Provides two examples of neural network cost estimating relationships, and
 - Points to a number of resources for learning about neural networks

Neural Networks

- A neural network is a mathematical entity that simulates the learning capability of the brain
- It learns by approximating a set of outputs given a set of inputs
- There are many types of neural networks
- This paper only addresses the backpropagation network by
 - Werbos (1974) and
 - Rumelhart, Hinton, and Williams (1986)
- The result of the learning process is a model that predicts the desired outputs based upon a set of (input, output) data

Neural Network Architecture

- A neural network has
 - an input layer
 - one or more hidden layers
 - an output layer
- Each layer contains one or more artificial neurons
- For each hidden and output layer artificial neuron, the learning process adjusts
 - the input weights and
 - the threshold weight
 - to reduce the root mean squared output error
- The nonlinear activation function enhances the approximation capability

Training the Neural Network

- A single application of all of the data is called an epoch
- The training data set is used to train the neural network
- The test data set is used to see how well the neural network generalizes to another independent set of data
- The test data set is also used to determine the stopping point for the training
- Epochs are applied repeatedly until the inputs provide a reasonable approximation of the outputs
- Data for following examples is from the JSC 1994 Advanced Mission Model (Econ and Cyr, 1994)
- Inputs (parameters) for following examples are
 - Empty weight
 - Payload weight
 - IOC date
 - R&D quantity
 - Production quantity

Goodness of Fit

- R² is used as the goodness of fit measure for regression models
- Root mean square error is the goodness of fit measure for the backpropagation neural network
- A goodness of fit measure for different types of predictive models (Dean, 2008) is the angle between
 - the predicted data vector and
 - the actual data vector
 - which is
 - distribution-independent and
 - method-independent
- The smaller the angle the better the fit
- Based upon experience, the fit is
 - Excellent for angles between 0 and 5 degrees
 - Good for angles between 5 and 10 degrees
 - So So for angles between 10 and 15 degrees
 - Poor for angles above 15 degrees

Generalization Example

- All surface-to-air missiles in training set
- All ship-to-air missiles in test set
- Training angle = 13.84 degrees
- Test angle = 8.26 degrees
- Ship-to-air angle =8.26 degrees

Adaptive CERs

- An adaptive CER is one that ensures that a set of data points carries more weight in the model than other data points (Book, Broder, and Feldman, 2009)
- The neural network training process provides a simple way to develop an adaptive CER
- Instead of using a random set of data points in the test set, place the points for which you desire the most weight in the test data set
- Use the test data set to stop the training as the test data error curve turns up
- At that point the neural network has the least error for the data points desired to have the most weight in the manifold fitting process

Adaptive CER Example

Network Error Plot

RMS Error vs Training Time

Elle Help

4798.78

4318,90

3839.02

- 0 ×

Training Error **Testing Error**

- All surface-to-air and ship-to-air missiles in training set
- All ship-to-air missiles in test set
- Training angle = 3.44 degrees
- Test angle = 3.71 degrees

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Adaptive CER with Generalization Example

- Some surface-to air-missiles and some shipto-air missiles in training set
- Rest of surface-to-air and all ship-to-air missiles in test set
- Training angle = 5.00 degrees
- Test angle = 16.2 degrees
- Ship-to-air angle =8.14 degrees

Cost Risk Using Neural Networks

- Unfortunately, my understanding is that statistics do not yet exist analogous to regression
 - This eliminates using the uncertainty associated with the development of the CER itself
 - This is a research topic that could provide one or more excellent papers
 - Hint: the cosine of the angle is the equivalent of R for non mean-adjusted data
- The void of statistics mandates that one must use what I call push cost risk
 - In push cost risk, distributions are placed on the input parameters and are fed as inputs to the trained neural network
- When subsystems are involved, one must use push cost risk with a network of networks
 - Each subsystem has a separately trained network that is input
 - to the appropriate subsystem output summing junction or
 - to the system output summing junction
- When activities or processes are involved, one must use push cost risk with a network of networks
 - Each activity has a separately trained network that is placed at the appropriate location in a PERT/CPM type network
 - Typically, a process is a network of activities. However, a process may have a trained network
- Risk register distributions
 - may be used as training inputs or
 - may be attached to any summing junction

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Implementing Neural Network Cost Risk

- Good neural network software permits access to the weights of the trained neural network
 - Some neural network software provides C or C++ code as well as weights
 - QuikNet v2.23 by Jensen (2003) is an easy to use and inexpensive neural network software shareware download for Windows
 - It works well under Windows 2000 and Windows XP
 - It should work well under Windows 7 in XP compatibility mode
- The cost risk network of networks can be implemented
 - in a spreadsheet or
 - as code
- Regression based or other types of CERs can be integrated into the cost risk network of networks
 - For other types of CERs read Meisl (1989)

Adding Duration to Cost

- Note that a neural network may have multiple outputs
- A second output on the neural network may be used for a duration output
- If so, then cost and duration may be trained simultaneously and used simultaneously for
 - Estimating and
 - Risk

Summary

- This paper demonstrates that neural network CERs are a practical alternative to regression based means of developing CERs
- They provide a non assumption based CER derived from data
- The training process
 - is easy to use
 - provides a means of developing adaptive CERs
 - provides a means of training and simulating
 - Cost risk
 - Cost and duration risk
- A roadmap has been provided for the use of neural network CERs within the parametric cost estimating process

Resources

- AACEI. Association for the Advancement of Cost Engineering International, <u>http://www.aacei.org/</u>.
- Book. S., M. Broder, and D. Feldman (2009). "Statistical Foundations of Adaptive Cost-Estimating Relationships," Proceedings of the 2009 ISPA/SCEA Professional Development and Training Workshop, 2-5 June, Saint Louis, MO.
- Dean, E. B. (2008). "The Angle: A Goodness of Fit Metric for Cost Analysis", Proceedings of the ISPA/SCEA 2008 Joint International Conference, 12-16 May, Noordwijk, The Netherlands.
- Dean, E. B. (2009). "Parametric Cost Analysis Using Neural Networks", Proceedings of the ISPA/SCEA 2009 Professional Development and Training Workshop, 2-5 June 2009, Saint Louis, MO.
- Econ and K. Cyr (1994). Advanced Mission Cost Model, <u>http://cost.jsc.nasa.gov/AMCM.html</u>.
- Jensen, C. (2003). QuikNet v2.23, <u>http://qwiknet.home.comcast.net/~qwiknet/</u>.
- Lippmann, R. P. (1987). "An Introduction to Computing with Neural Nets", IEEE ASSP Magazine, pp. 4-22.
- Meisl, C. J. (1989). "Advanced Life Cycle Cost Modeling", *Journal of Parametrics*, Vol. 9, No. 1, January, pp.74-102.
- Rumelhart, D. E. G. E. Hinton, and R. J. Williams (1986). "Learning Representations by Back-Propagating Errors", *Nature*, 323, pp. 533-536.
- Smith, M. (1993). <u>Neural Networks for Statistical Modeling</u>, Van Nostrand Reinhold, New York.
- Werbos, P, J. (1974). <u>Beyond Regression: New Tools for Prediction and Analysis in The</u> <u>Behavioral Sciences</u>, PhD Dissertation, Harvard University, Cambridge, MA.