

Weapon Design Tradeoff: Using Life Cycle Costs

Quentin Redman Sr. Manager/Engineering Fellow Cost Engineering Andrew T. Crepea Principal Systems Engineer Cost Engineering George Stratton Engineering Fellow SE Staff/Cost Engineering 2008

Copyright © 2008 Raytheon Company. All rights reserved.

Customer Success Is Our Mission is a registered trademark of Raytheon Company. Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Weapon Design Tradeoff . . . Using Life Cycle Costs

Raytheon Space and Airborne Systems

LCC: What is it?

Definition:

MIL-HDBK-259 (Navy) gives a comprehensive (if long winded) expanded definition:

"LCC is the sum total of the direct, indirect, recurring, non-recurring, and other related costs incurred, or estimated to be incurred in the design, research and development (R&D), investment, operation, maintenance, and support of a product over its life cycle, i.e. its anticipated useful life span. It is the total cost of the R&D, investment, O&S and, where applicable, disposal phases of the life cycle."

 More simply: LCC is the total cost to the customer for a program over its full life.

Includes all costs directly and indirectly attributable to the program.

"Cradle to Grave"

The Phases of the Life Cycle

LCC = RDT&E \$ + Procurement \$ + O&S \$ (+ Disposal \$)

- Phase 1: Research, Development, Test, Evaluation (RDT&E)
- Phase 2: Procurement (or Acquisition)
- Phase 3: Operations and Support (O&S)
- Phase 4: Disposal (Sometimes a subset of O&S)

LCC: Why do we use it?

By ignoring O&S and disposal costs what are you missing?

<u>System</u>	<u>% of LCC</u>
Missile ("Wooden Round")	
• RDTE	11%
 Production/Acquisition 	77%
• O&S	12%
Ship (Average)	
• RDTE	3%
 Production/Acquisition 	37%
• O&S	60%
Aircraft (F-16)	
• RDTE	2%
 Production/Acquisition 	20%
• O&S	78%
Ground Vehicle (M-2 Bradley)	
• RDTE	2%
 Production/Acquisition 	14%
• O&S	84%

Raytheon

Space and Airborne Systems

Page 5

Option evaluation

 LCC allows the evaluation of competing system proposals on the basis of total ownership cost.

LCC: How do we use it?

Improved Awareness:

- LCC allows management and stakeholders a broader and more accurate assessment of cost drivers.
- May be a first glimpse of the total cost of ownership.
- Facilitates the appropriate focus of resources to where they are needed.

Ravtheon

Space and Airborne Systems

4/29/2009 Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

LCC: How do we use it?

Improved forecasting and budgeting

- Understanding LCC allows more effective budgeting of future funds such as O&S costs and disposal costs.
- Helps prevents budgeting surprises!

Cost Strategy Support

- LCC perspective maximizes the benefit of applying strategies.
 - Cost as an Independent Variable (CAIV)
 - Design to Cost (DTC)
 - Reduced Total Ownership Cost (R-TOC)

Aircraft Procurement and O&S Costs						
ATTACK	UFAC	DoD Reimb				
A-10A	10.7	\$3,815				
BOMBER						
B001B	254.7	\$22,928				
B002A	1,041.1	\$13,294				
B052H	55.4	\$13,347				
FIGHTER						
F015A/B	29.0	\$11,220				
F015C/D	31.0	\$11,705				
F015E	32.3	\$11,781				
F016A/B	15.2	\$5,428				
F016C/D	19.5	\$4,935				
F022A	95.1	\$2,462				
TANKER						
KC010A	79.8	\$9,114				
KC135R	17.7	\$4,896				
RECON/EW						
E003A	121.2	\$8,375				
E004B	96.3	\$49,330				
E008C	251.5	\$4,037				
EC130E	28.0	\$2,985				
EC135C	41.1	\$3,106				
CARGO/TRA	NSPORT					
C005A	119.3	\$14,885				
C005B	156.8	\$10,849				
C009A	16.5	\$6,256				
C009C	21.8	\$5,775				
C012A/C/J	3.8	\$1,911				
C020A/B/C	30.5	\$3,952				
C021A	3.4	\$1,523				
C130E	12.4	\$3,830				
C130H	29.2	\$3,952				
C130J	64.0	\$2,536				
C141B	43.9	\$6,969				
HELICOPTE	र					
HH060D/E	14.1	\$3,443				
UH001N	2.6	\$1,063				
TRAINER						
T037A/B/C	1.0	\$398				
T038A	3.9	\$1,353				
T041A/C/D	0.1	\$11				
1043A	21.4	\$3,476				

UFAC = Unit Fly Away Cost FY 05 \$M D Reimb= flying hour reimbursement rate

Page 7

LCC – Phasing and Funding

Raytheon Space and Airborne Systems

051 Funds (DOD TOA)

Military Personnel O&M Procurement RDT&E Military Construction Family Housing R&M Funds Defense Wide Contingency Offsetting Receipts Trust Funds Inter-fund Transactions

Total Research, Development, Test & Evaluation

- 6.1 Basic Research
- 6.2 Applied Research
- 6.3 Advanced Technology Development
- 6.3 Advanced Component Development & Prototypes
- 6.4 System Development & Demonstration
- 6.4 RDT&E Management Support Operational Systems Development

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

4/29/2009 Page 8

Phase 1: RDT&E

RDT&E \$ = Σ (RDT&E Program Element \$)

 RDT&E consists of development costs incurred from the beginning of concept through the end of development. It may include Low Rate Initial Production (LRIP) if funded with RDT&E Dollars.

Typical cost elements include:

- Prime Mission equipment
- Design/Development Engineering
- Systems Eng/Program Management
- Data Management
- Special Tooling and Test Equipment
- Peculiar support equipment
- -ILS
- Training
- Test and Evaluation

Raytheon

Space and Airborne Systems

Phase 2: Procurement

Procurement \$ = Σ (LRIP, Production and Fielding Program Element \$)

 Procurement consists of production and deployment / fielding costs from LRIP through completion of FRP and fielding.

Typical cost elements include:

- Prime Mission equipment
- Integration, Assembly, and Test
- Special tooling and Test Equipment
- Systems Eng/Program management
- Lot Acceptance Testing
- Peculiar Support Equipment
- -1st Destination Transportation
- Initial Spares
- Warranty
- Container

Pa Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Page 10

Phase 3: O&S

O&S \$ = Σ (O&S and Disposal Program Element \$)

- Operating and Support costs include all costs of sustaining the system through the end of system operation. It includes all costs of operating and maintaining the system.
- Typical cost elements include:
 - Operator Training
 - Maintainer Training
 - O-level Maintenance
 - I-level Maintenance
 - Depot level maintenance
 - Support Equipment repair
 - Repair Transportation
 - Inventory management
 - Replenishment Spares
 - Mission Support
 - Software upgrades
 - Tech Manual Updates
 - Mission Programming

4/29/2009 Page 11

Phase 4: Disposal

- Demil/Disposal costs include all costs associated with demilitarization and disposal of the system at the end of it's useful life. These costs can be significant and should be considered early in the life cycle.
- Typical cost elements include:
 - Disassembly
 - Hazardous Material Disposal
 - Material Processing
 - Transportation
 - Documentation
 - Regulatory Compliance
- Some cost may be recouped through salvage value

Introduction to Cost Engineering Budgeting

Raytheon Space and Airborne Systems

• "Colors" of money:

- Nothing to do with the new currency issues.
- DoD/Industry slang for budget/appropriations categories.
 - Each service has its own nomenclature for the various "colors."
 - Some further subdivision possible.

	Army	Air Force	Navy
Development	2040 / RDT&E	3600 / RDT&E	1318 / RDT&E
Procurement	2035 / Ammo / MIPA	3020 Missile Procurement	1507 / WPN
Operations & Support	2020 / OMA	3400 Operations and Maintenance	1804 / O&M

DoD Appropriations by Title, including Supplementals

Raytheon Space and Airborne Systems

From GEIA 2006 Vision Conference

Raytheon **Space and Airborne Systems Trade Space Window Of Opportunity**

Page 15

Raytheon

Space and Airborne Systems

Missile Cost History

DoD Budgets on a Yearly Basis but Plans on a 5 / 6 Year Cycle

"HOW" Design to LCC IS UTILIZED

1. Determine the *customer concerns* and understand those concerns

- Explicit States cost goals or operating budgets
- Implicit Customer desire to reduce operational staffing
- Next Phase Contract contains a limited budget / funding
- Unit Production Average unit production cost (AUPC) goals
- Total Ownership Costs (TOC) Reduced total ownership costs (RTOC)
- Life Cycle Costs (LCC) must be some determine percent (normally 30%) less than the replacement system

Raytheon

Space and Airborne Systems

Page 17

2. Determine how the *competition impacts* affordability

- Marketing determines cost time to WIN the contract
- Existing inventory items with potential modification costs
- 3. Set design goals (including system cost goals and targets)
 - Top level system or architecture
 - Subsystems
 - All phases

4. Understand system requirements vs. system affordability

- Perform economic analysis
- Establish a cost as an independent variable, design to life cycle costs or design to cost program

5. Review the present estimates against goals often and *react* appropriately and expediently

Planning the Analysis

- Identify ground rules and assumptions
 - Any assumptions that will bound, constrain, or otherwise impact the analysis.
 - Life cycle/ horizon
 - Base year dollars
 - Production units
 - Schedule
 - Performance constraints

- Identify ground rules and assumptions cont.
 - Estimate resources required and reporting schedule

DURCE DATA					
Acquisition Scenario			From ASP Study (Can also Use Therm		
Development (EMD)	See Cost Distribution Model)		Enter total anticipated production qua		
Total ADM Protype Quantity	1.5	3	= Years in ADM Phase		
Total SDD Protype Quantity	4	4	= Years in SDD Phase		
SDD Production Occurs From	2007	2011	4		
Production					
Total Production Quantity	344		Enter total anticipated production qua		
Production Occurs From	2012	2027	15 Years over which		
Production Rate (Yearly even)	22.93		Average Quantity Built Each Year		
O&S			Used Therman's model to calculate the		
Years Operational	10		Estimated Fielded (Operational) Years		
Years from Production to IOC	2		Must be 1 or greater! Includes 1st yea		
Net Years of O&S Costs	26		0.692 = Cost factor for e		
Fielding	2.5%		Used Therman's model to calculate the		
Annual Sustainment (O&S)	9.0%		Used Therman's model to calculate the		
Economics					
Constant Year Dollars	2002		Model is built using 2002 dollars		
Overhead rates (Composite)	50%		Used to calculate all non HW direct co		
Learning Curve					
Labor	0.90	-0.152003093			
Commerical Items (diodes)	0.92	-0.120294234	Also used in Cost Distribution model		
Material & Purchased Parts	0.95	-0.074000581			
Production Parts	0.89	-0.168122759			

Raytheon

Space and Airborne Systems

Planning the Analysis

- Determine the life cycle
 - System service life: Useful life of the system depends on what the system is.
 (i.e. aircraft 25 years, ship 50 years, missile 20 years, bridge 100 years, etc.)
 - Planning Horizon: Period of time over which all costs are estimated.
 - May not coincide or may change over time.

4/29/2009 Page 19

Raytheon

Space and Airborne Systems

Planning the Analysis

- Cost element structure (CES)
 - Estimating LCC requires breaking down the system into its cost elements and time phasing them.
 - There is no standard CES for all LCC applications due to the tremendous variation in systems and programs (aircraft, missiles, electronics, ships, infrastructure, etc)
 - The CES may be imposed as a requirement
 - The level of CES detail will depend on the system as well as the purpose of the analysis. Consider:
 - Estimation methodology Significant cost generating components.
 - Support philosophy

				Cost Element Structure				
	[D	1.000	RTDT&E Funded	Elements		
		2.000	Procuren		Concept & Tech De	velopment		
			Production	1 010	Development Engineerin	a & Planning		
3.000	Military Constru	2.010	NonRecurring	1.010	Producibility Engineering	& Planning		
3.010	Development Constructi	2.011	Initial Product	1.020	Development Tooling	j & Flaming		
3.020	Production Construction	2.012	Production Ba	1.000	Prototype Manufacturing			
3.030	Operational/Site Activat	2.013	Other NonRed	1.040	System Engineering/Pro	aram Management		
3.040	Other Military Construct	2.020	Recurring Pro	1.050	Project Management Ad	ministration		
			LRIP Producti	1.051	Othor	ministration		
4 000	Militan Porsonn	2.021	Manufacturing	1.052	System Test and Evalua	tion		
4.000		2.022	Recurring End	1.000		lion		
4.010	Maintenance	2.023	Sustaining To	1.070	Dete			
4.020	System-Specific Suppor	2.024	Quality Contro	1.080	Dala Support Fauinment			
4.000	System Engineering/Pro	2.025	Other Recurri	1.090				
4.040	Project management Ad		Rate Producti	1.091	Peculiar			
4 042	Other	2.021	Manufacturing	1.092	Common			
4.050	Replacement Personnel	2.022	Recurring End	1.100	Other DDT			
4.051	Training	2.023	Sustaining To	1.110				
4.052	Permant Change of Stat	2.024	Quality Contro		System Dev & Dem	onstration		
4.060	Other Military Personne	2.025	Other Recurri	1.010	Development Engineerin	ig & Planning		
		2.030	Engineering (1.020	Producibility Engineering	y & Planning		
5 000	Operations and	2.040	System Engin	1.030	Development Tooling			
5.010	Field Maintenance Civili	2.041	Project Mana	1.040	0 Prototype Manufacturing			
5.020	System Specific Base (2 042	Other	1.050	.050 System Engineering/Program Management			
5.030	Replensihment Depot L	2 050	System Test	1.051 Project Management Administration				
5.040	Replenishment Consum	2.060	Training	ing 1.052 Other				
5.050	Petroleum, Oil, and Lub	2 070	Data	Data 1.060 System Test and Evaluation				
5.060	End Item Supply and M	2 080	Support Equit 1.061 System Demo					
5.061	Overhaul	2.081	Peculiar 1.070 Training					
5.062	Integrated Materiel Man	2.082	Common	1.080	Data			
5.063	Supply Depot Support	2 090	Operational/S	1.090	Support Equipment			
5.064	Industrial Readiness	2 100	Fielding	1.091	Peculiar			
5.065	Demilitarization	2 101	Initial Depot-I	1.092	Common			
5.070	Transportation	2 102	Initial Consum	1.100	Development Facilities			
5.080	Software	2 103	Initial Support	1.110	Other RDT&E			
5.090	System Lest and Evalua	2 104	Transportation) (Fauin	ment to Unit)			
5.100	System Engineering/Pro	2 105	New Equipme	nt Train	ing			
5.101	Project management Ad	2 106	Contractor Lo	nistics S	Support			
5.102	Uner	2 110	Training Amm	unition/	Missiles			
5.110	Other O&M	2 120	War Reserve	Ammun	ition/Missiles			
5.120		2 130	Modifications	/				
		2 140	Other Procure	ment				
0.000	Dofonco Rucino		rations Eurod	Elomo	nto	l		
6.000		s ope	auons runu	Lienie				
6.010					4/29/	2009 Page 20		
DUCU	WERPER Tro	ining	Markaha	D 14/	www.iooooollino	oom -		

Select / Develop the Model

- Some general guidelines
 - Should be responsive to changes in design and operational scenarios.

- It should clearly incorporate all major cost drivers.
- Include clear documentation
- User friendly and should not require special programming support.
- Allow for adjustment of inflation, discounting, and learning curve where appropriate.
- Be able to compare and contrast alternatives
- Identify areas of uncertainty
- Support sensitivity analysis

HEL Weapon Cost Model - BETA #3 Release Of 5/29/02 - GLS (545-6104)							
Neters User innet Online on in Dive			Veerle diede bew 0				
Notes: User input Cells are in Blue.			Yearly diode buy Q	uantity: see r	N4		
SOURCE DATA							
Acquisition Scenario			From ASP Study (Ca	an also Use T	herman's model		
Development (EMD)	See Cost Distribut	ion Model)	Enter total anticipate	ed production	n quantity		
Total ADM Protype Quantity	1.5	3	= Years in ADM Phase	se			
Total SDD Protype Quantity	4	4	= Years in SDD Phase	se			
SDD Production Occurs From	2007	2011	4				
Production			Enter tetal antisinat				
Production Quantity	344 2012	2027	Enter total anticipate	Production	h quantity		
Production Rate (Yearly even)	22.93	2027	Average Quantity Bu	ilt Fach Year	r		
O&S			Used Therman's mo	del to calcula	te this		
Years Operational	10		Estimated Fielded (C	Operational)	fears for each u		
Years from Production to IOC	2		Must be 1 or greater	! Includes 1s	st year of produc		
Net Years of O&S Costs	26		0.692	= Cost factor	r for each avera		
Fielding	2.5%		Used Therman's mo	del to calcula	ate this		
Annual Sustainment (O&S)	9.0%		Used Therman's mo	del to calcula	ate this		
Economics	2002		Madal is built univer	2002 dollars			
Overhead rates (Composite)	2002		lised to calculate all	2002 donars	et costs		
Learning Curve	50 /6		osed to calculate all	non nw dire	00515		
Labor	0.90	-0.152003093					
Commerical Items (diodes)	0.92	-0.120294234	Also used in Cost D	istribution m	odel to calculate		
Material & Purchased Parts	0.95	-0.074000581					
Production Parts	0.89	-0.168122759					
	Specifications	Terminology	Unit Cost (\$ K)	Factors			
HMMWV Laser WS Concept Unit Production Cost			4,583.47		At 000 Usite		
Platform (Himiwww) and Shelter			125.94		At 200 Units		
HIVIIVIV V Roof/Structure		From VMADS Study	97.05		101.03		
Gyro Support		From VMADS Study	9.30 4.65		9.00 4.84		
Structure IA&T		From VMADS Study	9.99		10.40		
HEL Weapon			3,937.22				
Laser Subsystem			1,792.7				
Laser Diodes	15	KW Laser Energy Output	952.0	63.46 AL	JPC for array - \$		
2 Watt Diode Cost \$	\$1,190.00	Est. Unit Cost in low quanti	ity	\$153.50 Ur	nit cost (from intel		
Adaptive Optics - beam shaping	13.0	cm -Edge Size for Mirror	377.77	Note; this Le	ngth is hard wir		
Laser Cavity	Missing (in Adapti	ve Optics?)	Missing				
Mirore	3	Number	26.99	80 W/	eight Each in LBS		
PFM Cards	\$10.50	\$K for first unit card (T1)	319.79	108 Ni	imber of Cards (
Inter-Cavity Beam Control	Missing (In Adapti	ve Optics?)	Missing				
Structure - Laser & associated assembl	i 200.0	Lbs - Assume Steel Rails	32.44				
Diode Current Regulator	Missing (In PFM C	ards?)	Missing				
Beam Control Subsystem			1,648.22				
EO Laser Tracker	344	ATFLIR - Learning to Qty	1,088.79				
I racker	90%	% ATFLIR Cost	826.41				
niuminator - 30W	35% 75%	% ATFLIK COSt	126.65				
Video	75%	% ATFLIR Cost	85.98				
Structure	25%	% ATFLIR Cost	36.95				
Telescope	Missing (In Mirror	s?)	Missing				
Beam Steering	Missing (In Mirror	s?)	Missing				
Main Beam Director	5	Number or Mirrors	181.65	15.0 Ed	lge in cm Mirrors		
Adaptive Optics	1	Number or Mirrors	377.77	13.0 cm	n -Edge Size for N		
Beam Clean-up	Missing (In Adapti	ve Optics?)	Missing	000 1/1			
Power Subsystem	346.42	KW Power to Generate	338.99	280 KV	V Power VMADS		
System Power Generator				4.33% EI	nciency - input po		
Power Processing Unit				75% Ba	attery Recharge fa		
Power Controller Unit				1 0=	Lead Acid, 1=Ad		
Battery Subsystem (Advanced)	346	KW Stored Energy	211.58	23.09 Sc	alling Factor to a		
Power Conditioning	31%	VMADS % from 100 KW	104.69	Sc	caled from VMAD		
Coll. Supply	0%	VMADS % from 100 KW	-	Sc	caled from VMAD		
Gun Assy	0%	VMADS % from 100 KW	-	Sc	caled from VMAD		
Source Supply	31%	VMADS % from 100 KW	9.35	Sc	aled from VMAD		
Structure	31%	VMADS % from 100 KW	6.35	Sc	aled from VMAD		
Electronics Rower Conditioning IAST	31%	VIVIADS % ITOM TOU KW	0.11	Sc	aled from VMAD		

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Workshop Www. Icea aonline. Conference and the 2009 ISPA/SCEA Joint Annual Conference and the conference

LCC = RDT&E \$ + Procurement \$ + O&S \$

Sunk costs are cost already spent

Committed costs are contracted for costs not yet spent (Sunk) - Where in the cost to cancel equals or exceeds the cost to continue the effort.

Therefore, early in SDD, the LCC_a still subject to design trades is:

Design Trades are only conducted for costs which you can influence!

Possible Cost (\$) Trade Spaces Are:

- 1. Minimizing: Total LCC_a (LCC = RDT&E_a + Procurement_a + O&S_a)
- 2. Minimizing: RDT&E_a vs. PROC_a vs. O&S_a (vs. Disposal_a)
- 3. Separate Individual Pots of Money. E.g. RDT&E_a vs. RDT&E Goal, PROC_a vs. PROC Goal, and O&S_a vs. O&S Goal

Note: Disposal_a is assumed to be included within O&S_a

REMEMBER – Frequently there are Technological Answers, Budgetary Answers and Political Answers and usually they are NOT THE SAME.

OR: LCC Metric = RDT&E * (RDT&E Politics Value)
 + Procurement * (Procurement Politics Value)
 + O&S * (O&S Politics Value)

Sunk Costs are Cost already Spent plus Committed Costs.

Committed Costs are Contracted for Tasks/Costs which are not yet fully Spent (Where in the Cost to Cancel Equals or Exceeds the Cost to Continue the Effort). Therefore, Early in SDD, the LCCa Still Subject to Design Trades is:

LCCa = RDT&E \$ (Uncommitted SDD \$) + Procurement \$ + O&S \$ where Uncommitted SDD \$ = RDT&E \$ - (Sunk \$ + Committed RDT&E \$)

TRADE SPACE MATRIX – Cost Metric

Raytheon Space and Airborne Systems

Selection of the "Best Value" Alternative

Raytheon

Space and Airborne Systems

Trade Off DECISION POINT

"TRY AGAIN" (New Alternative or Adjust Existing Alternative) with Suggestions

Software is included in the "Best Value" Alternative

Raytheon Space and Airborne Systems

DECISION POINT

Trade Study Design Alternatives With Physical and Functional Characteristics

Technology, Tools, Existing Products, IR&D, etc.

Software Issues

- Functions Performed
 - Lines of code
 - Interfaces
- Coding Group Capabilities
- Environment
- Schedule
- Existing (mod/reuse/etc)

<u>Missile Alternative</u>

- Physical and Functional Characteristics
 - Size, Weight, Speed, Range, Payload, etc.
 - Functions Performed (Search, Ballistic Load, etc.)
 - Hardware Resident
 - Seeker Head
 - Propulsion, Warhead, etc.
 - Software Resident
 - Target ID, Tracker, etc.
 - HW/SW Combined
 - Position in Space (IMU and GPS)

Software Alternatives... Consider the Life Cycle

Raytheon Space and Airborne Systems

Software DECISION POINT

LCC Sensitivity Analysis Look for the Cost Driver(s)

Raytheon

Space and Airborne Systems

- Sensitivity analysis is useful for performing what-if analysis, determining how sensitive the point estimate is to changes in the cost drivers, and developing ranges of potential costs.
 - The example shown is for project FS and is a pareto of its LRU estimated failure rates and their effect upon the project LCC estimate
 - Note that while the over all LRU failure rate may be a significant driver for the systems maintenance costs and therefore its LCC estimate, this is not true for every LRU.
- A drawback of sensitivity analysis is that it looks only at the effects of changing one parameter at a time.
- In reality, many parameters could change at the same time.
- Therefore, in addition to a sensitivity analysis, an uncertainty analysis should be performed to capture the cumulative effect of additional risks.

(From GAO Cost Guide, Chapter 14)

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Page 28

Sensitivity Analysis for Project FS Pareto – TOC/LCC \$ and Phased \$

Raytheon

Space and Airborne Systems

Cost Risk and Uncertainty

- Cost risk and uncertainty refer to the fact that because a cost estimate is a forecast, there is always a chance that the actual cost will differ from the estimate.
 - lack of knowledge about the future
 - the error resulting from historical data inconsistencies, assumptions, cost estimating equations, and factors that were used to develop the estimate
 - biases get into estimating program costs and developing program schedules.
 - biases may be cognitive—often based on estimators' inexperience
 - or motivational where management intentionally reduces the estimate and/or shortens the schedule to make the project look good to stakeholders.
 - Recognizing the potential for error and deciding how best to quantify it is the purpose of risk and uncertainty analysis.

From GAO Cost Guide, Chapter 14

"You can start with erroneous assumptions, then use impeccable logic to arrive at the grand fallacy" Darrell Gieseking

do you plan

to sell it?

psychic or

something?

Risk and Uncertainty

- Risk is the chance of loss or injury. In a situation that includes favorable and unfavorable events, risk is the probability an unfavorable event occurs.
- Uncertainty is the indefiniteness about the outcome of a situation. It is assessed in cost estimate models for the purpose of estimating the risk (probability) that a specific funding level will be exceeded.
- For management to make good decisions, the program estimate must reflect the degree of uncertainty, so that a level of confidence can be given about the estimate.
- Having a range of costs around a point estimate is more useful to decision makers, because it conveys the level of confidence in achieving the most likely cost and also provides information regarding cost, schedule, and technical risks
- Point estimates are more uncertain at the beginning of a program, because less is known about its detailed requirements and opportunity for change is greater. In addition, early in a program's life cycle, only general statements can be made. As a program matures, general statements translate into clearer and more refined requirements that reduce the unknowns. However, more refined requirements often translate into additional costs, causing the distribution of potential costs to move further to the right.

From GAO Cost Guide, Chapter 14

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

the product should do

or who would use it.

us what it costs to

out the rest later.

build it, we'll figure

The S Curve (or cumulative probability curve)

- Cost estimates should be based upon variables that are specified with realistic ranges for all inputs.
- Consider far future events as having potentially a greater risk technology, or environment changes may not be known

Estimates Must Contain Ranges

Raytheon Space and Airborne Systems

It's amazing the estimates we generate on tasks we really don't yet understand..... but each side wants cost/schedule/ earned value containment (Greg Shelton, RTN Ret.)

Cost Risk and Uncertainty (2)

- DOD specifically directs that uncertainty be identified and quantified.
- The Clinger-Cohen Act requires agencies to assess and manage the risks of major information systems, including the application of the risk adjusted return on investment criterion in deciding whether to undertake particular investments.

Raytheon

Space and Airborne Systems

Document and Review Results

- Review Results
 - Ground Rules and Assumptions
 - Modeled System
 - Overall LCC
 - Cost Drivers
 - Spikes
 - Measure of Effectiveness
 - Program Risks and Uncertainties

Document

- If no one can figure out what you did, how you did it, and why you did it ----- It doesn't count!!
- *(Hard truth: The program may last longer than you)

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Page 35

Summary

LCC is the total cost to the customer for a program over its full life.

- Cost, including LCC is an engineering design parameter.
 - Total cost impact, not just initial near-term cost, must be considered
 - Each Phase (Color of Money) estimate is important!
- Early estimates are just estimates! Look at the risks and uncertainty within those estimates. Be prepared for and manage growth.
- More and more customers (especially government) are emphasizing and requiring an LCC perspective.
 - Early design efforts determine LCC. Don't wait!!!!