2009 ISPA/SCEA Professional Development & Training Workshop 2 – 5 June 2009

A Method for Estimating the Cost of Advanced Radar Systems at the Subsystem and Component Level

> Paul Grim Deputy Director MDA/DOE paul.grim@mda.mil

Dave Stamm & Greg Bell MCR Federal LLC <u>dstamm@mcri.com</u> <u>gbell@mcri.com</u>

Approved for Public Release 09-MDA-4487 (15 APR 09)

1

PROBLEM & MODEL ORIGINS

RADAR COST MODELING

- DEVELOPMENT (SDD) PHASE
- PRODUCTION PHASE
- BTL and SUPPORT INVESTMENTS

MDA/DOBE RADAR MODEL - CONCLUSIONS

Radar Missions & Applications

- Surveillance & Reconnaissance Search & Detection Track Development and Management Clutter Rejection
 - Target Identification & Moving Target Indication
- Fire Control
 - Track Development and Management Target Illumination Target Identification
 - Discrimination
- Navigation
 - Doppler Measurement Scene Matching
 - Terrain & Obstacle Avoidance
 - Weather
- Others

New Component Technologies

<u>NEW SUBSTRATE MATERIALS (GaN and Others) OFFER</u> <u>AFFORDABLE PERFORMANCE IMPROVEMENTS</u>

Enhanced Radar Front End Performance

PHASED ARRAY AGILITY & SENSITIVITY

- Multiple Independent Beams (Steerable, with Frequency Agility) - Wide Field of View - Adaptive High Sensitivity Radar Beams

- Independent Fan Beams for HPOI Horizon Search

Enhanced Radar Front End Performance

IMPROVING PHASED ARRAY GAIN AND AGILITY

 Increased Radar Power through use of High Value GaN Based T/R modules.

 Transmitted and Received RF Signals are distributed to and from the array via large numbers of affordable (low cost) components: o face elements o splitter assemblies o phase shifters

Enhanced Radar Front End Performance

NETWORKED ARRAYS, MULTISTATIC ARRAYS

Radar Cost Analysis Challenge – Design Reuse and Upgrades

DEFEN.

Radar Parametric Cost Model

- DEVELOPED BY G. BELL AND PAUL GRIM IN 2007 AND 2008 FOR USE ON SPECIAL RADAR CONCEPT STUDIES & PROGRAMS.
- THE MODEL IS NEW AND IS CURRENTLY BEING REFINED. THREE VERSIONS EXIST:
 - Modular Radars
 - Dish and Corporate Feed Array Radars
 - Fighter Radars
- THE MODEL IS A <u>PARAMETRIC</u> MODEL WITH CERS, FACTORS, AND DEFAULT VALUES THAT ARE USED TO ESTIMATE LCC ELEMENTS, INCLUDING DEVELOPMENT, PRODUCTION, SUPPORT, AND O&S COSTS.
- PARAMETRIC METHODS (Examples):
 - COST1 = f(Peak Power)

COST2 = f(ESLOC)

COST3 = f(Qty Modules/Elements)

COST5 = f(Power Density)

COST6 = f(Frequency GHz)

Elements) and Others

COST4 = f(Aperture SQM)

<u>Simple</u> Set of Technical Cost Drivers – We know these basic values on the front end

Radar Cost Model – Notional WBS

11/17/2008

PRIME MISSION EQUIPMENT

- 1.1 Modular Pedestal, Mount, Gimbal
- 1.2 Dish & Planar Antenna & Mount
- 1.3 Radome
- 1.4 T/R Modules
- 1.5 Transmitter
- 1.6 Receiver & Receiver/Exciter
- 1.7 Signal Processor
- 1.8 Data Processor
- 1.9 Displays & Controls
- 1.10 Power & Cooling Systems
- 1.11 Misc Systems & Provisions
- 1.12 Software
- 1.13 Integration, Assy, Chkout

RADAR COMMON ELEMENTS

- 2.1 System Engineering
- 2.2 Program Management
- 2.3 System Test & Evaluation
- 2.4 Support Equipment
- 2.5 Training
- 2.6 Data
- 2.7 Spares
- 2.8 Other System Level
- 2.9 Construction

MODULAR	DISH	FIGHTER
X		
	Х	X
X	Х	
X		
	Х	X
X		
X	Х	X
X	Х	X
X	Х	X
X	Х	X
X	Х	X
X	X	X
X	X	X

X	Х	X
Х	Х	X
Х	Х	X
Х	Х	X
X	Х	X
Х	Х	X
Х	Х	X
X	Х	X
Х	Х	

Cost Model Description

- Populated with historical data from over 21 DoD radar programs
- Prime Mission Equipment (PME) CERs provide development and production cost dollars for radar system components, based on K-SLOC, physical and performance drivers.
- Below the Line (BTL) Costs: A series of factors are used to provide system integration (SEPM. IACO, ST&E) and logistics commodities as a function of PME dollars.
- Analyst inputs: Complexity adjustment factors are provided, allowing the analyst to capture percent new design, number of units previously built, logistic concept adjustments, and other sensitivities.
- Model generates constant dollar cost for development and production at the component and systems level and integrates them into a parametric cost estimate.
- Over 60 CERs are available in RPCM.

Some Model Sources

 "TR-00-01B-01, Ship and Ground Based Radar Model," Technomics, Inc., Horak and Harder, 2002.

• "CR964, T/R Module Cost Estimating Model, Tecolote Research, Inc., Thomas, Arnold, Schaefer, 1998.

• "CR536, Updated T/R Module Cost Estimating Formulae, Tecolote Research, Inc., Higdon and Arnold, 1996.

• "Radar Hardware Cost Estimating Relationships Database -Production," SAIC, Maksimowski, Roberts, Shelton, 1995.

• "TM-180, Radar Cost – Development," Tecolote Research, Inc., Dwyer, Frederick, Kielpinski, Sjovold, and Van Hoomissen, 1985.

• "TM-228, Radar Cost Book – Production," Tecolote Research, Inc., Frederick, Horak, Waller, 1984.

• Cost Performance Reports (CPRs) for numerous MDA and DoD radars.

And Many Others ...

Research Procedure – Raw Data

RADAR X	COSTS IN CONSTANT FY88 M\$					
Total Cost	58260.3		AAABN Receiver/Exciter	4634.0		
AAA Radar	44861.5					
AAAA Antenna	28306.8		Signal Processor	7549.0		
AAABA Elements	1348.6		AAABM Signal Proc	7424.5		
AAABJ Module P/S	1774.6		AAABL RCL Mod	124.5		
AAABB Tx Beam Frmg	1061.8		Radar Control	4371.8	Da	
AAABC Rc Beam Frmg	1643.5		AAAAB Synchronizer	57.4	Ra	
AAABD RF Monitor	372.0		AAABR Cooling Monitor	0.0		
AAABE Array Gap Drv	462.1		AAABO Freq Time Stds	168.8		
AAABF Sub Array Drv	429.3		AAABP Intercnnections	412.9		
AAABH Array Wiring	801.3		AAFA Displays Hdw	2300.6		
AAABG Array Mech	3113.3		AAFB Displays SW	1432.1		
AAABI Solid S Module	16782.5		Data Processor	13398.8		
AAABK Beam Steering	517.8		AADBA CDC Data Proc	12140.4		
			AADBD Computer Mods	1258.4		
AAABM Tx (see SS Mod)	0.0		External Communications	0.0		
			Platform Stabilization	0.0		

Raw Cost Data Set

Radar Y

Operating Frequency, GHz		5.5
No. Stabilization Dimensions in	1	
Frontal Area of Antenna, ft ²	4.8 M^2	52
Average Radiated Power, in Kw		10
Peak Radiated Power, in Kw		540
No. Parallel Signal Channels in	Receiver	8
Max Pulse Compression Ratio in	n Sig Proc	775
No. Phase Shifters		5400
Average Power per PhaseShifte	r, in watts	2

Raw Technical Data Set

Raw data was organized in accordance with customer and contractor policies in place at the time of performance.

Research Procedure – Normalized Data

	Raw Cost Data	a Set		1953	
DEVEI	LOPMENT - Contractor Cost Level	۲ FY 80 \$ in M	DEVELOPMENT FY 01 \$ in M	Г	COST (L
1.1.1	Development Engineering	\$52.870	\$108.624		Radar
1.1.2	PEP	\$0.000	\$0.000		Antenna
1.1.3	Tooling	\$17.520	\$35.996		Transmi
1.1.4	Prototype Manufacturing (6 ea)	\$55.740			Receive
1.1.5	Data	\$2.400	\$4.931		Exciter
1.1.6	Sys Test & Evaluation	\$8.400	\$17.258	PME	Signal F
1.1.7	Sys Engr/Project Mgmt	\$35.290	\$72.505		Data Pro
1.1.8	Training	\$0.400	\$0.822		Radar C
1.1.9	Facilities	\$0.000	\$0.000		Softwar
1.1.10	Software	\$5.680	\$11.670		Other
1.1.11	Disposal	\$0.000	\$0.000		Sumn
1.1.12	Other	\$0.000	\$0.000		Systems
T	otal	\$178.300	\$251.805		Progran

	COST (LESS FEE)	DEVELOPMENT COST FY01 M\$
	Radar	
	Antenna	\$31.501
	Transmitter	\$12.383
	Receiver	\$9.559
	Exciter	\$10.319
	Signal Processor	\$8.907
	Data Processor	\$7.332
	Radar Controller	\$2.444
	Software Development	\$11.670
	Other	\$26.178
	Summed Total PME	\$120.294
	Systems Engineering	\$47.128
	Program Management	\$25.377
,	Systems Test & Evaluation	\$17.258
	GSE	\$35.996
	Training	\$0.822
	Data	\$4.931
	Spares	\$0.000
	Other	\$0.000
	System Wraps Sum	\$131.511
	Program Total	\$251.805

Normalization of Radar data requires three steps:

- 1) organizing (as far as possible) the raw data to conform to the desired WBS.
- 2) parsing the data to overcome missing details using analogies and expert opinion.
- 3) adjustment of cost to a constant dollar framework using inflation factors.

BTL

Analogies: Normalized Development Cost Data **AUXILIARY SYSTEMS** LOGISTICS & SUPPORT ANTENNA 7.37% **INVESTMENTS** IACO DEVELOPMENT 6.42% 9.33% 2.36% **COOLING & ELECTRICAL** SYSTEM TEST & GRP T/R MODULE/ **EVALUATION** 1.67% 3.52% 12.56% **RCVR-EXCITER** 1.44% **MS&P EQUIPMENT** 0.98% **SIMS & DEV SUPPORT SW** 0.67% SIGNAL PROCESSOR 0.23% DATA PROCESSOR 0.06% RADOME 0.02% CONTROLS 0.02% **OPERATIONAL** SW SUITE 17% SYS ENGINEERING & **PROGRAM MGT TYPICAL** 36.76% RADAR DEVELOPMENT COST 17 *Typical Modular Radar Development Cost Data Set*

Typical Modular Radar TFU Production Cost Data Set

Expert Opinion: Normalized Cost Data

Using an expert panel to parse cost data into lower WBS elements is a dangerous strategy, but sometimes it is the only way forward. No matter how experienced the panel is, be prepared to encounter and deal with outliers and anomalies.

Research Procedure – Aggregated Data

Technical Characteristics	ABRDR_1	ABRDR_2	ABRDR_3	ABRDR_4	ABRDR_5	ABRDR_6	ABRDR_7
Туре	Area	Surveillance,	Early Warning	Fire Control &	Fire Control &	Fire Control &	Fire Control &
Platform	Aircraft	Aircraft	Aircraft	Aircraft	Aircraft	Aircraft	Aircraft
No. of Faces	1	1	1	1	1	1	1
Antenna Type	Yagi Array	Planar Array	SWG Array	Dish	Dish	Dish	Dish
No. of Elements	42	400	1,820				
Aperture	5.57 m^2	27.31 m^2	12.54 m^2	0.65 m^2	0.65 m^2	0.36 m^2	0.30 m^2
Frequency	.43 GHz	9.5 GHz	3.3 GHz	9.4 GHz	9.4 GHz	9.4 GHz	9.4 GHz
Band	UHF Band	X Band	S Band	X Band	X Band	X Band	X Band
Peak Power	500.00 KW	500.00 KW	1000.00 KW	10.00 KW	3.50 KW	1.50 KW	15.40 KW
Avg Power							
Duty Cycle							
Effective Range	300 NM	250 NM	300 NM	300 NM	300 NM	300 NM	300 NM
Weight Data	ABRDR_1	ABRDR_2	ABRDR_3	ABRDR_4	ABRDR_5	ABRDR_6	ABRDR_7
Total Weight (LBS)	11636 lbs	23454 lbs	22121 lbs	974 lbs	687 lbs	483 lbs	377 lbs
Antenna (W Beam Steering)	580 lbs	2768 lbs		184 lbs	110 lbs	81 lbs	61 lbs
Transmitter	1476 lbs	1056 lbs		134 lbs	175 lbs	113 lbs	69 lbs
Receiver/Exciter	1170 lbs	807 lbs		181 lbs	57 lbs	46 lbs	63 lbs
Signal Processor				98 lbs	68 lbs	54 lbs	21 lbs
Data Processor	747 lbs	3929 lbs	2382 lbs	69 lbs	43 lbs	44 lbs	63 lbs
Control Unit	1286 lbs	5967 lbs	3230 lbs	65 lbs	20 lbs	20 lbs	2 lbs
Power Supply Group	528 lbs	2010 lbs		80 lbs	36 lbs	0 lbs	
Cooling Group	520 lbs	334 lbs					
Communication Nav Ident Group	1611 lbs	2858 lbs	6595 lbs				
Radar Test & Maint PNL Group	192 lbs	249 lbs	249 lbs				
IFF Group			1061 lbs				
Surveillance Radar			8604 lbs				
Other	3527 lbs	3475 lbs					
SLOC	175,000	200,300	60,000	65,000	18,000	110,000	30,000

Typical Radar Technical Data Set

Research Procedure – Aggregated Data

Development Cost							
FY01 M\$ - W/O Fee	SBRDR_1	SBRDR_2	SBRDR_3	SBRDR_4	SBRDR_5	SBRDR_6	SBRDR_7
RADAR PME							
ANTENNA	\$12.979	\$2.788	\$29.947	\$48.215	\$5.987	\$8.878	\$14.735
TR MODULE GROUP	\$0.000	\$0.000	\$5.285	\$0.000	\$0.000	\$0.000	\$0.000
TRANSMITTER	\$3.401	\$1.979	\$0.000	\$51.357	\$2.354	\$3.490	\$5.792
RECEIVER	\$1.214	\$1.303	\$0.000	\$4.860	\$1.817	\$2.694	\$4.471
EXCITER	\$0.304	\$0.326	\$0.627	\$3.508	\$1.961	\$2.908	\$4.827
SIGNAL PROCESSOR	\$1.735	\$1.171	\$1.256	\$6.431	\$1.693	\$2.510	\$4.166
DATA PROCESSOR	\$6.478	\$2.841	\$1.116	\$0.000	\$1.486	\$2.204	\$3.658
CONTROLS	\$1.099	\$1.588	\$0.419	\$0.000	\$0.372	\$0.551	\$0.915
SOFTWARE DEVELOPMENT	\$16.413	\$3.420	\$57.697	\$21.778	\$4.617	\$2.055	\$6.164
COOLING & ELECTRICAL	\$0.000	\$0.000	\$0.000	\$0.000	\$2.189	\$3.246	\$5.388
GRP A PROVISIONS	\$0.000	\$0.000	\$0.000	\$0.911	\$1.652	\$2.449	\$4.065
OTHER (COMMS)	\$0.907	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
OTHER (PLATFORM)	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
INTEGRATION ASSY CHKOUT	\$0.000	\$1.481	\$44.399	\$29.641	\$5.115	\$7.584	\$12.588
PME COST TOTAL	\$44.529	\$16.897	\$140.745	\$166.700	\$29.243	\$38.569	\$66.769
NON-PME GROUP							
SYSTEMS ENGINEERING	\$3.078	\$2.564	\$100.829	\$55.688	\$7.511	\$10.417	\$13.835
PROGRAM MANAGEMENT	\$3.015	\$1.121	\$76.894	\$29.986	\$4.045	\$5.609	\$7.450
TEST & EVALUATION	\$13.197	\$4.982	\$53.658	\$45.015	\$14.246	\$9.862	\$7.437
SUPPORT EQUIPMENT	\$0.000	\$0.000	\$2.906	\$3.088	\$4.580	\$2.671	\$0.000
TRAINING	\$0.939	\$0.480	\$0.000	\$0.822	\$0.660	\$0.616	\$0.452
DATA	\$0.496	\$0.494	\$0.000	\$17.669	\$1.020	\$6.369	\$5.198
INITIAL SPARES	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
OTHER	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
NON-PME COST TOTAL	\$20.726	\$9.640	\$234.287	\$152.269	\$32.061	\$35.544	\$34.373
	¢65.255	¢26 527	¢275.020	£218.060	¢61 204	¢74.442	£101 1 11
IOTAL DEVELOPINENT COST	\$03.233	¢20.33 <i>1</i>	\$375.U3Z	\$210.909	\$01.304	\$74.115	\$101.141

Typical Radar Development Cost Data Set

Research Procedure – Aggregated Data

TFU PRODUCTION COST							
FY01 M\$ - W/O Fee	GRNDRDR_1	GRNDRDR_2	GRNDRDR_3	GRNDRDR_4	GRNDRDR_5	GRNDRDR_6	GRNDRDR_7
RADAR PME							
ANTENNA	\$29.672	\$61.802	\$46.410	\$36.093	\$0.632	\$3.755	\$7.998
TR MODULE GROUP	\$0.000	\$142.885	\$0.000	\$55.980	\$0.000	\$0.000	\$2.526
TRANSMITTER	\$13.877	\$0.000	\$13.444	\$0.000	\$0.607	\$1.590	\$0.000
RECEIVER	\$2.825	\$10.538	\$27.942	\$0.000	\$0.200	\$0.822	\$0.000
EXCITER	\$1.521	\$0.000	\$18.628	\$5.329	\$0.133	\$0.548	\$0.252
SIGNAL PROCESSOR	\$1.476	\$12.273	\$12.544	\$1.431	\$0.776	\$0.531	\$1.551
DATA PROCESSOR	\$6.930	\$10.026	\$3.446	\$1.252	\$0.480	\$0.118	\$1.701
CONTROLS	\$1.222	\$2.254	\$1.600	\$0.894	\$0.220	\$0.154	\$1.157
SOFTWARE DEVELOPMENT	\$0.000	\$0.119	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
COOLING & ELECTRICAL	\$0.000	\$0.000	\$0.000	\$2.133	\$0.000	\$0.000	\$0.000
GRP A PROVISIONS	\$0.000	\$2.916	\$5.018	\$3.839	\$0.000	\$0.000	\$0.000
OTHER (COMMS)	\$0.595	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
OTHER (SHELTERS)	\$0.000	\$10.357	\$0.000	\$3.054	\$0.000	\$0.000	\$0.000
INTEGRATION ASSY CHKOUT	\$25.088	\$0.000	\$0.000	\$1.767	\$0.000	\$0.000	\$0.000
PME COST TOTAL	\$83.206	\$253.170	\$129.032	\$111.772	\$3.049	\$7.518	\$15.185
NON-PME GROUP							
SYSTEMS ENGINEERING	\$0.958	\$7.877	\$0.000	\$1.415	\$0.000	\$0.000	\$0.000
PROGRAM MANAGEMENT	\$1.210	\$5.753	\$0.000	\$1.158	\$0.000	\$0.000	\$0.000
TEST & EVALUATION	\$0.000	\$10.991	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
SUPPORT EQUIPMENT	\$0.000	\$2.965	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
TRAINING	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
DATA	\$0.000	\$1.302	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
INITIAL SPARES	\$0.097	\$4.561	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
OTHER	\$6.272	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000	\$0.000
NON-PME COST TOTAL	\$8.537	\$33.449	\$0.000	\$2.573	\$0.000	\$0.000	\$0.000
TOTAL TFU PRODUCTION COST	\$91.743	\$286.619	\$129.032	\$114.345	\$3.049	\$7.518	\$15.185

Typical Radar TFU Production Cost Data Set

Aggregated data is arrayed to support regression analyses.

The preferred CERs will have a coefficient of determination (R^2) greater than .70.

Base Year FY01 \$

PME DEVELOPMENT CERS	Coeff	Exponent	R^2	
ANTENNA & MOUNT (MODULAR) DEV	909581	0.35	0.744	ANT MODULAR DEV \$ = A*(ELEMENTS^B)
ANTENNA & MOUNT (DISH & PLANAR) DEV	7012740	0.64	0.983	ANT DISH PLANAR DEV \$ = A*(AP-SQM^B)
RADOME DEVELOPMENT	8745.6	0.52	0.710	RADOME DEV \$ = A*(AP-SQFT^B)
T/R MODULE DEVELOPMENT	6737647	0.42	0.700	T/R MODULE DEV \$ = A*(FREQ-GHZ^B)
TRANSMITTER (MODULAR) DEV	2064	1.00	0.720	TRNX_MODULAR DEV \$ = A*(ELEMENTS^B)
RCVR-EXCITER (MODULAR) DEV	280.3	1.00	0.650	RCVREX_MODULAR DEV \$ = A*(ELEMENTS^B)
SIG PROC (MODULAR) DEV	123627	1.00	0.510	SIG PROC_MODULAR DEV \$ = A*(AP-SQM^B)
DATA PROC (MODULAR) DEV	122908	1.00	0.720	DATA PROC_MODULAR DEV \$ = A*(AP-SQM^B)
CONTROLS (MODULAR) DEV	33718	1.00	0.700	CONTROLS_MODULAR DEV \$ = A*(AP-SQM^B)
COOLING & ELECTRICAL AUX EQ DEV	21487	1.00	0.633	COOL_ELECT DEV \$ = A*(PWR KW^B)
MISC SYSTEMS & PROVISIONS DEV	0.073	1.00	0.899	MS&P DEV \$ = A*(SUBTOTAL PME COST^B)
SOFTWARE DEV (GROUND SYSTEM)	159.4	1.00	1.000	SW (GROUND) DEV \$ = A*(ESLOC^B)
SOFTWARE DEV (MOBILE SYSTEM)	222.6	1.00	1.000	SW (MOBILE) DEV \$ = A*(ESLOC^B)
SOFTWARE DEV (AIRBORNE SYSTEM)	278.4	1.00	1.000	SW (AIRBORNE) DEV \$ = A*(ESLOC^B)
HARDWARE IACO DEV	0.165	1.00	0.707	IACO DEV \$ = A*(PME COMPONENT TOTAL \$^B)

The CERs are assembled into a typical model architecture. The CERs shown here cover development of radar Prime Mission Equipment (PME).

Base Year FY01 \$

PME PRODUCTION TFU CERS	Coeff	Exponent	R^2	
ANTENNA & MOUNT (MODULAR) TFU	1567	1.00	0.840	ANT_MODULAR DEV \$ = A*(ELEMENTS^B)
ANTENNA & MOUNT (DISH_PLANAR) TFU	432643	1.00	0.868	ANT_DISH_PLANAR DEV \$ = A*(AP-SQM^B)
RADOME TFU	51860	0.49	0.730	RADOME TFU \$ = A*(AP-SQFT^B)
T/R MODULE TFU	8391	-0.27	0.580	T/R MODULE TFU \$ = A*(FREQ-GHZ^B)
TRANSMITTER (MODULAR) TFU	80700	0.50	0.720	TRNX_MODULAR TFU \$ = A*(ELEMENTS^B)
RCVR-EXCITER (MODULAR) TFU	209.2	1.00	0.650	RCVREX_MODULAR TFU \$ = A*(ELEMENTS^B)
SIG PROC (MODULAR) TFU	90366	1.00	0.810	SIG PROC_MODULAR TFU \$ = A*(AP-SQM^B)
DATA PROC (MODULAR) TFU	52932	1.00	0.490	DATA PROC_MODULAR TFU \$ = A*(AP-SQM^B)
CONTROLS (MODULAR) TFU	21375	1.00	0.920	CONTROLS_MODULAR TFU \$ = A*(AP-SQM^B)
COOLING & ELECTRICAL AUX EQ TFU	4565	1.00	0.612	COOL_ELECT TFU \$ = A*(PWR KW^B)
MISC SYSTEMS & PROVISIONS TFU	0.051	1.00	0.944	MS&P TFU \$ = A*(SUBTOTAL PME COST^B)
HARDWARE IACO TFU	0.107	1.00	0.845	IACO TFU \$ = A*(PME COMPONENT TOTAL \$^B)

The CERs are assembled into a typical model architecture. The CERs shown here cover production theoretical first unit (TFU) for Prime Mission Equipment (PME).

The CERs are assembled into a typical model architecture. The CERs shown here cover Below the Line (BTL) or systems level and logistics costs.

The CER shown (Systems Engineering for Development Phase) is an example of an important Below the Line (BTL) or systems level cost.

In cost analysis, we sometimes wish to see how cost relates to two independent variables. In a perfect world, we should be able to create carpet plots for cost.

But in cost analysis, we often have just a few data points to work with, and they may be highly correlated among themselves. This phenomenon is called multicollinearity.

Where multicollinearity is present, the resulting coefficient values of the independent variables do not reflect the true contribution of that variable to the regressed solution.

The test for multicollinearity uses the pairwise correlation matrix. Where |R| > .70, the CER should be rejected for multicollinear influence.

Example of Multicollinearity

T/R Module Case Study

T/R MODULE TFU PRODUCTION COST (FY01 \$)										
FREQUENCY	TFU COST									
GHz	95% CIC		POWER (W)	WEIGHT						
	(FY01 \$)	BAND	PER MODULE	(LBS)						
.3565	\$12.524	UHF	322.0	3.00						
.3565	\$7.905	UHF	322.0	3.00						
5.8-6.25	\$8.732	C	6.0	1.20						
8-10	\$3,256	x	CLASSIFIED	0.40						
8-10	\$4,328	Х	CLASSIFIED	0.40						
	FREQUENCY GHz .3565 .3565 5.8-6.25 8-10 8-10	FREQUENCY TFU COST GHz 95% CIC (FY01 \$) .3565 \$12,524 .3565 \$7,905 5.8-6.25 \$8,732 8-10 \$3,256 8-10 \$4,328	FREQUENCY TFU COST GHz 95% CIC (FY01 \$) .3565 \$12,524 UHF .3565 \$7,905 UHF 5.8-6.25 \$8,732 C 8-10 \$3,256 X 8-10 \$4,328 X	FREQUENCY TFU COST GHz 95% CIC POWER (W) (FY01 \$) BAND PER MODULE .3565 \$12,524 UHF 322.0 .3565 \$7,905 UHF 322.0 .3565 \$7,905 UHF 322.0 5.8-6.25 \$8,732 C 6.0 8-10 \$3,256 X CLASSIFIED 8-10 \$4,328 X CLASSIFIED						

Example of Multicollinearity

T/R Module Case Study

Model Form: Number of Observations Used: Equation in Unit Space:		Unweighted Log-Linear model 5 TFU_COST_FY01\$ = 108098 * FREQUENCY_GHz ^ (-0.9075) * PWR_(W) ^ (-0.5376)					
Fit Measures (in Fit	Space)						
Coefficient Statistic	s Summary						
Variable Intercept FREQUENCY_GHz PWR_(W)	Coefficient 11.5908 -0.9075 -0.5376	Std Dev of Coef 1.6357 0.4241 0.3420	Beta Value -2.6486 -1.9460	T-Statistic (Coef/SD) 7.0860 -2.1396 -1.5720	Prob Not Zero 0.9807 0.8343 0.7435		
Goodness-of-Fit Sta	ntistics						
Std Error (SE) 0.3347	R-Squared 81.31%	R-Squared (Adj) 62.61%	Pearson's Corr Coef 0.9017				

Example of Multicollinearity

T/R Module Case Study

But aside from the multicollinearity problem, the relationship must make engineering sense. In this instance, cost is said to decrease as module power increases, and this violates our engineering judgment and expectations.

Typical Production Cost Build-Up

RADAR W

				COST CURV	Έ	UNITS	SLOPE B	1 + B
T	FU - PRODUCTION	1		95.0%		1 - 250	-0.0740	0.926
NOMENCLATURE	MAT COST		5	95.0%		250 - UP	-0.0740	0.926
	(FY07 M\$)							
		START	END	CURVE	(CT-END)-(CT	-START)	TOTALS	UNIT COST
PRODUCTION					. ,.			
ANTENNA	\$48.425	1	5	95.0%	\$226.010	\$0.000	\$226.010	\$45.202
RADOME	\$0.970	1	5	95.0%	\$4.527	\$0.000	\$4.527	\$0.905
T/R MODULE	\$0.003	90001	180000	95.0%	\$233.489	\$122.888	\$110.600	\$22.120
TRANSMITTER	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
RCVR-EXCITER	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
SIGNAL PROCESSOR	\$1.639	1	5	95.0%	\$7.649	\$0.000	\$7.649	\$1.530
DATA PROCESSOR	\$7.097	1	5	95.0%	\$33.122	\$0.000	\$33.122	\$6.624
CONTROLS	\$1.433	1	5	95.0%	\$6.687	\$0.000	\$6.687	\$1.337
COOLING & ELECTRICAL GRP	\$1.780	1	5	95.0%	\$8.306	\$0.000	\$8.306	\$1.661
OTHER EQUIPMENT GRP	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
CEU COST	\$2.406	1	5	95.0%	\$11.231	\$0.000	\$11.231	\$2.246
PPU COST	\$3.584	1	5	95.0%	\$16.729	\$0.000	\$16.729	\$3.346
EEU COST	\$3.446	1	5	95.0%	\$16.081	\$0.000	\$16.081	\$3.216
E&S INT & TEST COST	\$0.746	1	5	95.0%	\$3.481	\$0.000	\$3.481	\$0.696
OTHER MECHANICAL PROV	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
PRE-FAB SHELTER COST	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
CONSTRUCTION COST	\$0.000	1	5	95.0%	\$0.000	\$0.000	\$0.000	\$0.000
								_
	то	TAL PRODUC	TION RADA	R PME COST		(FY07 M\$)	\$444.422	\$88.884

RADAR Z

	COST	FEE	СОМ		TOTAL
RADAR SYSTEM POINT ESTIMATE				SET-ASIDE	
PME HARDWARE DEVELOPMENT	\$61.491	\$7.379	\$0.492	\$3.689	\$73.05
SOFTWARE DEVELOPMENT	\$16.085	\$1.930	\$0.129	\$0.965	\$19.10
PME HARDWARE PROTOTYPE	\$0.000	\$0.000	\$0.000	\$0.000	\$0.00
INTEGRATION & CHECKOUT	\$0.000	\$0.000	\$0.000	\$0.000	\$0.00
SYSTEM ENG/PROGRAM MGT	\$41.658	\$4.999	\$0.333	\$2.499	\$49.49
SYSTEM TEST & EVAL	\$21.799	\$2.616	\$0.174	\$1.308	\$25.89
TOOLING & TEST EQUIPMENT	\$13.498	\$1.620	\$0.108	\$0.810	\$16.03
PEP	\$0.000	\$0.000	\$0.000	\$0.000	\$0.00
PECULIAR GSE	\$1.253	\$0.150	\$0.010	\$0.075	\$1.48
DATA	\$0.834	\$0.100	\$0.007	\$0.050	\$0.99
TRAINING	\$0.252	\$0.030	\$0.002	\$0.015	\$0.30
SPARES	\$1.255	\$0.151	\$0.010	\$0.075	\$1.49
ENG CHANGE ORDERS	\$3.879	\$0.465	\$0.031	\$0.233	\$4.60
SUBTOTAL RADAR DEVELOPMENT	\$162.003	\$19.440	\$1.296	\$9.720	\$192.40
HARDWARE PRODUCTION UNITS	\$94.385	\$14.158	\$0.755	\$5.663	\$114.96
INTEGRATION & CHECKOUT	\$8.872	\$1.331	\$0.071	\$0.532	\$10.80
SYSTEM ENG/PROGRAM MGT	\$10.233	\$1.535	\$0.082	\$0.614	\$12.40
SYSTEM TEST & EVAL	\$7.073	\$1.061	\$0.057	\$0.424	\$8.6 [~]
TOOLING & TEST EQUIPMENT	\$8.705	\$1.306	\$0.070	\$0.522	\$10.60
PEP	\$8.932	\$1.340	\$0.071	\$0.536	\$10.87
PECULIAR GSE	\$1.668	\$0.250	\$0.013	\$0.100	\$2.03
DATA	\$1.239	\$0.186	\$0.010	\$0.074	\$1.50
TRAINING	\$0.568	\$0.085	\$0.005	\$0.034	\$0.69
SPARES	\$1.670	\$0.251	\$0.013	\$0.100	\$2.03
ENG CHANGE ORDERS	\$5.163	\$0.774	\$0.041	\$0.310	\$6.28
SUBTOTAL PRODUCTION	\$148.507	\$22.276	\$1.188	\$8.910	\$180.88

Research Procedure – Expert Interpretation

In cost analysis, expert interpretation is the art of using the tools we have to solve new problems outside our well understood technical data base.

- This can involve treating existing methods with complexity adjustments.
- This can involve additional historical investigation resulting in expansion of the models and methods to incorporate new content.
- This can involve consultation with technical SMEs, to gather their assessments and harmonize expected cost effects and impacts.

Research Procedure – Expert Interpretation

Radar Parametric Cost Model -Conclusions

Radar Cost Analyses Incorporating Component Sensitivity:

- The model facilitates estimates of derivative Radars and modification or upgrade programs for existing radars.
- The model is sensitive to software content and new technology insertion.
- The model suite includes provisions for cost spreads and escalations, and MILCON costs, including buildings, roads, substations, and other construction requirements.