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Model Development Framework

Framework Applies to CER Development in Particular and Statistical 
Modeling of Empirical Data in GeneralData and Experience

Model Choice Parameter Calculation

Model Validation 
Model
Valid?

No
Model not suitable, select another model

Yes

Document Results 

Adapted from Loss Models, 3rd. Edition

This Framework Applies to CER Development in Particular and 
Mathematical Modeling in General.
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Model Choice

• Goal: Use Historical Data to Accurately Predict Cost of 
Planned Programs.

• It Is Important When Developing Models to Limit Our 
Choices, Since Given Enough Models To Choose From, 
There Will be at Least One Model That Appears to Fit the 
Data Well, but Will Not Help us Effectively Predict Future 
Cost.
– Experience is a Useful Guide in Limiting the Universe of Choices.

• In This Section, We Limit Our Choices to Statistical 
Methods (“Regression Analysis”), Nonlinear Regression, 
and Multiplicative Residuals.
– Explanations are Given for Reasons why These Choices are Made 

in the Following Charts.
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Cost Estimating Relationships

• Cost Estimating Relationships (CERs) are One Way to Discern 
Trends from Historical Data in Order to Predict the Cost of Future 
Programs.

• CER Are Developed From Historical Data Using Statistical 
Techniques Such As Regression Analysis.

– Regression Analysis Relates One or More Cost Drivers (“Independent”
Variables) to Cost (“Dependent” Variables).

• Example:

Where Weight is in Pounds (lbs.) and Cost is in Millions of US$.

– When Weight = 30,000 lbs.:

5.0Weight5.1CostEstimated ⋅=

Million260$300005.1CostEstimated 5.0 ≈⋅=
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Linear Regression

• Given an Equation of the Form

• And a Set of Data 

• The Residuals are Defined as:

• This is Also Referred to as the “Error” Term Since it is the Difference 
Between the Actual Cost and the Estimated Cost Linear Regression
Finds the “Best Fit” by Finding the Parameters a and b That Minimize 
the  Sum of the Squares of the Residuals.

bXaY +=
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Least Squares and Regression 
Analysis

• The Method of Least Squares was First Developed by the 
Mathematicians Legendre and Gauss in the Early 19th Century, Who 
Used it to Predict the Orbits of Heavenly Bodies Using Observed Data.

• Francis Galton Later Applied This Technique to Find Linear 
Predictive Relationships Between Various Phenomena, Such as the 
Relationship Between the Heights of Fathers and Sons.

– Galton Found a Positive Correlation Between These Heights But Found a 
Tendency to Return or “Regress” Toward the Average Height, Hence the 
Term “Regression Analysis.”
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Nonlinear Regression

• In the Spacecraft and Defense Industry it is More Common to See 
Nonlinear Relationships Between Cost and Cost Drivers.

• The Power Equation is Ubiquitous.

• In This Case Y Typically Represents Cost in $, But Can Also 
Represent Effort (Hours, Full-Time Equivalents).

• X typically Represents Weight or Some Other Performance 
Parameter.

• The Equation Can Also Be Modified to Accommodate Multiple Cost 
Drivers.

• The Value of the b Parameter in the Power Equation is Usually Less 
Than 1, Indicating Economies of Scale in Design and Production.

• Linear Regression is Simple - the Calculations Can be Done by 
Hand, but Nonlinear Regression Requires More Sophisticated 
Methods, Often the Use of a Computer.

baXY =
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Additive and Multiplicative Residuals

• The Residuals of the Power Equation Can Either Be Additive or 
Multiplicative.

• Additive Residuals Have the Form

• Multiplicative Residuals Have the Form

• Multiplicative Residuals Are More Appropriate for the Spacecraft
and Defense Industry in Most Applications Because of Wide 
Variations in Size, Scope, and Scale of the Systems That Are 
Estimated.

– As a Result We are Primarily Interested in the Percentage Difference 
Between Actual and Estimated Costs, Not the Absolute Difference.

• For Example, if Historical Data Ranges from $50 Million to $1 
Billion, Better to Analyze Percentage Differences.

ε+= baXY

εbaXY =
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Residuals Comparison

• The Commonly-Used Regression Techniques Considered 
in This Presentation are all Based on the Multiplicative 
Error Assumption.

Multiplicative Error

X 

Y 
Additive Error 

X 

Y 
Multiplicative Error

X 

Y 
Multiplicative Error

X 

Y 
Additive Error 

X 

Y 
Additive Error 

X 

Y 

The Focus of This Section is on Nonlinear Regression Methods for
Equations of the Form Y =aXb, With Multiplicative Residuals.
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Multiplicative Residuals

• For the Power Equation with Multiplicative Residuals, i.e.,

• The Regression Estimates Vary Based on the Variation of the 
Residual

• Also Common to Adjust This to Treat ε as a Percentage, i.e., Set

• Actual Cost = Estimate +/- Percentage of Estimate

εbaXY =

baX
Y

=ε

( )ε+= 1aXY b

Estimate
ActualEstimate

aX
YaX

b

b −
=

−
=ε
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Multiplicative Residual Example

• If the Estimate is Greater Than the Actual the Residual is Greater 
Than Zero.

• If the Estimate is Less Than the Actual the Residual is Less Than Zero.
• Note the Lack of Symmetry.

– For Estimates Above the Actual, the Maximum Value of the Residual is 1.
– For Estimates Below the Actual, the Minimum Value Has No Bound!

-1.5

-1

-0.5

0

0.5

1

Residuals for a Subsystem CER in the NASA/Air Force Cost Model (NAFCOM)
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Residuals Are Random Variables

• For a “Good” Regression Model, The Cost Drivers Explain All (or 
Most) of the Variation in the Historical Data That Can Be Explained.

– It is Typically Assumed That any Remaining Variation is Random.
• Either Due to Non-Repeatable Random Phenomena (e.g., Test 

Failures) That Are Truly Random Phenomena and Will Not Help 
Predict Future Cost, or Due to Our Ignorance.

– Statistics Has Been Called “The Science of Ignorance.”
• The Multiplicative Residuals That Represent This Unexplained 

Variation are Thus Treated as Random Variables.
• For Linear Regression, it is Assumed that the Additive Residuals are 

Normally Distributed.
• For Nonlinear Regression for CER Development, Residuals Assumed 

to Follow Normal, Lognormal, Gamma, or Treated without Making 
Such an Assumption (Non-Parametric).
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Normal Distribution

• The Most Common Probability Distribution.
• Many Random Phenomena Follow This Distribution.
• Also Called the “Bell Curve,” Noted for Its Symmetry and 

Thin Tails.
• If Cost is a Sum of Many Random Independent 

Phenomena, the Central Limit Theorem Indicates This 
May be the Appropriate Distribution.
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Lognormal Distribution

• Lognormal Distribution is a Skewed Distribution.
• If X is Lognormally Distributed, Y = ln(X) is Normally Distributed.
• Has Fatter Tails Than the Normal Distribution.
• Bounded Below by Zero, Unbounded Above. 
• If Cost is a Function is Multiplicative Factors (e.g., Test Failues Cause 

a Percentage Increase in Cost Rather Than a Fixed Amount Increase), 
then Complex Projects are Likely to be Lognormally Distributed 
(Multiplicative Analog to Central Limit Theorem).

– These Aspects Make the Lognormal Appealing for Cost Modeling.
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Gamma Distribution

• The Gamma Distribution is a Flexible Distribution.
• Can Resemble a Lognormal, Can Also Resemble an Exponential 

Distribution.
– Indeed the Gamma Distribution is the Sum of Independent Exponential 

Distributions.

• PDF is Given by:

k =1, theta = 2

k= 2, theta = 2

k = 5, theta = 1

( ) ( ) k

x

1k

k
exxf

θΓ

θ

⋅
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−

−
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Parametric Vs. Non-Parametric

• When the Data Follow an Observable Pattern, Based Either on 
Preliminary Data Analysis or Through Experience, Parametric 
Analysis is Preferred.

– Assume Residuals Follow Lognormal, Gamma, or Normal, for Example.
– For Example, NASA Cost Data are Skewed, Which Makes Intuitive Sense, 

Because Cost Cannot be Less Than Zero, but There is No Upper Limit.
• Leads to Assumption of Lognormal or Gamma Residuals.

• When the Data Do Not Follow an Observable Pattern, or There is No 
Reason to Assume an Underlying Pattern in the Data, Non-Parametric 
Analysis May Be Suitable.

– Data Sets are Small.
– No Reason to Assume Similarity with Other Data.

• However, if Non-Parametric Techniques Are Used, Must Be Careful to 
Ensure Models are Valid, Since Techniques May Be Similar Enough to 
a Parametric Technique that the Non-Parametric Version Inherits 
Some Features of the Parametric Version.
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Parametric Vs. Non-Parametric

• Another Issue with Non-Parametric Techniques is the Lack of Rich 
Techniques for Developing Confidence Intervals, Prediction Intervals, 
Covariance Matrices, and Other Useful Metrics and Methods 
Available for Parametric Models.

• Indeed, Some Statistical Techniques Do Not Exist for Nonparametric 
Problems.

– As Shown by Bahadur and Savage in Their 1956 Paper “The Nonexistence 
of Certain Statistical Procedures in Nonparametric Problems”, There Is

– No Effective Hypothesis Test for the Population Mean
– No Effective Confidence Interval for the Population Mean
– No Effective Point Estimate for the Population Mean
– No Confidence Interval Will Fit the Data Well.

• Makes Model Validation Problematic for Non-Parametric Methods.
• Note: Parametric Techniques Do Not Necessarily Involve Assuming 

the Residuals Follow a Particular Probability Distribution.
– Can Be Much Weaker, Such as Assuming a Constant Coefficient of 

Variation.
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Model Development Framework 
Parameter Calculation

Data and Experience

Model Choice Parameter Calculation

Model Validation 
Model
Valid?

No
Model not suitable, select another model

Yes

Document Results 
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Parameter Calculation

• There are Numerous Ways to Calculate the Parameters of 
a Cost-Estimating Relationship, but in This Presentation, 
We Consider One Method.

• The Method Presented, Maximum Likelihood Estimation, 
is a Widely Used Statistical Technique that Serves as a 
Unifying Framework for the Three CER Methods 
Presented.
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Maximum Likelihood Estimation

• Let A1,…, An Represent the Observed Data and X1,…,Xn Represent 
Random Variables Where Ai Results From Observing the Random 
Variable Xi.

• The Likelihood Function, Which Represents the Likelihood of 
Obtaining the Sample Results, is 

• The Maximum Likelihood Estimate of θ is the Vector That Maximizes 
the Likelihood Function.

• Maximum Likelihood Estimation is a Popular Statistical Technique.
– Major Advantage – Likelihood Function is Almost Always Available.

• The Three CER Methods Considered in This Section All Have a 
Connection to Maximum Likelihood Estimation.

• Parameter Calculation for Each of the Three CER Methods Considered 
Can be Viewed in the Context of Maximum Likelihood.

( ) ( )∏
=

==
n

1i
ii |AXPrL θθ
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Maximum Likelihood 
Lognormal Residuals

• For Yi=f(Xi,β)·ui, where 
β = vector of coefficients of the CER 
Yi = actual cost of the ith data point
Xi = vector of cost drivers for the ith data point
ui = residual of the ith data point

• Likelihood Function for Lognormal Distribution

• If we set μ = 0,  We are Estimating the Median
– The Lognormal is Used to Model the Distribution of the Residual.
– When u= 1, the Actual Matches the Estimate.
– For a Lognormal, Median = eμ = e0 = 1.

• Why the Median?
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Lognormal – The Median is the Message

• The Three Most Commonly Encountered Measures of Centrality 
are the Mean, Median, and Mode.

• Mean = “Expected Value,” For a Sample of n Data Points This is 

• Median = 50th Percentile, the Point at Which Half the Population 
is Less Than This Value, and Half is Greater.

• Mode = “Most Likely,” The Peak of the Distribution.
• For a Normal Distribution, Mean = Median = Mode.
• For a Lognormal, Mode < Median < Mean.
• For a Lognormal, The Mean is Always Greater Than the 50th

Percentile, and Can Be Any Percentile Greater Than the 50th: 
90th, 95th, etc.

• For This Reason, a Better Metric for the Center of a Lognormal is 
the Median.

– Common to Report the Median Rather Than the Mean as the 
“Average” of Skewed Data (Income, House Prices, etc.).

∑
=

n

1i

i

n
X
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Lognormal 
Mean Vs. Median Example

$0 $200 $400 $600 $800 $1,000 $1,200 $1,400

Mode = 346
Median = 499

Mean = 600
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Lognormal Maximum Likelihood Estimation of the 
Median

• From the Lognormal Likelihood Function

• We Want to Analyze This in Terms of Y=f(X,β)·u
– Since u=Y/f(X,β),

( )
( )

dUe
2U
1uUPr

u
2

0uln 2

∫
∞−

−
−

=≤ θ

πθ

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤=≤⋅=≤

f
yuPryfuPryYPr

( )( )

∫
∞−

−
=

y
2

f/yln

dye
f
1

2f/y
1

2

θ

πθ

( )( )

∫
∞−

−
=

y
2

f/yln

dye
2y
1

2

θ

πθ

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



27

Lognormal Maximum Likelihood Estimation of the 
Median (cont’d.)

• Therefore, the Likelihood Function is 

• Since the Logarithm Function is Monotonically Increasing, Can Take 
the Log of the Likelihood Function and Maximize That Instead 
(Usually Easier to Do):

– Note: We Ignore Constants as They Do Not Affect the Maximization.
• Note That This is the Same as Minimizing the Negative of this Result:
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Minimizing the Log Likelihood Function

• In Order to Minimize the Likelihood Function, First Minimize with 
Respect to θ.

– To Minimize, We Take the Partial Derivative with Respect to θ, Set Equal 
to Zero, and Solve for θ.

• Taking the Derivative Yields

• Setting Equal to Zero and Solving Yields
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Minimizing the Log Likelihood 
Function (cont’d.)

• Plugging in the Value for θ into the Log Likelihood Function Yields

• Ignoring Constants, This Becomes

• This is Equivalent to Minimizing

• This is the Least Squares of the Log of the Differences Between the 
Actuals and the Estimates.

• Notice the Similarity to Linear Regression.
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Log-Transformed Ordinary Least Squares
(LTOLS)

• What We Have Derived is a Generalization of Log-Transformed 
Ordinary Least Squares in the Context of Maximum Likelihood.

• In Log-Transformed Ordinary Least Squares, Apply a 
Logarithmic Transform to Both the Actual and the Estimated 
Costs.

• For the Power Equation Y=aXb This Transforms the Equation 
From a Nonlinear Equation to a Linear One:

• The Parameters Can Be Easily Calculated in a Spreadsheet.
• Must Remember to Transform the a Parameter.
• The Maximum Likelihood Median Estimator is More General.

– Any Equation Form May Be Used, but Unless the Log Transformed 
Equation is Linear, May Need Computer to Solve (e.g., Excel‘s Solver 
Capability).

– Nothing in the MLE Derivation Forces any Particular Functional 
Form.

( ) XlnbalnaXlnYln b +==
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Maximum Likelihood 
Normal Residuals

• For the Equation Yi=f(Xi,β)·ui , When the Residuals are Normally
Distributed, with Mean = 1 and Variance θ, the Likelihood 
Function, as Demonstrated by Lee (1997), is

• The Log-Likelihood Function is Thus
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Maximum Likelihood 
Normal Residuals

• Maximizing This Expression for θ and Then Substituting back into 
l(β,θ) Yields the Concentrated Log-Likelihood Function:

• Note this is the Same as Minimizing

• Goldberg and Tuow (1997) Note That This Method Is Very Sensitive 
to Departures From the Normally Distributed Residuals.

• If Residuals are Not Normally Distributed or Close to it, Estimates 
May Not be Robust.
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Minimum Percent Error and Maximum Likelihood

• As Noted in Goldberg and Tuow (2003), This Method is Very Similar 
to the Minimum Percent Error Method Developed by Book and 
Young (1995, 1997), Who Ignore the Final Term and Instead 
Minimize the Sum of Squared Percentage Errors.

• Minimum Percent Error Method Minimizes 

• Thus the Minimum Percent Error Method is a Pseudo-Likelihood 
Estimator in the Case of Normally Distributed Residuals.
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Minimum Percent Error
Bias Constraints

• The Minimum Percent Error (MPE) Method is Biased.
– Instead of Bias Below the Mean, the MPE Method is Biased High.

• One Way to Make the Error Term Small is to Make the Estimates Large.

• To Correct for This Book and Lao (1996) Introduced a Bias 
Constraint.

– Same Objective Function, But Now Sample Bias is Constrained to be 
Zero, That Is:

• This Method is Referred to as MPE-ZPB or ZMPE (“Zimpy”).
• Not a Parametric Method, But Similar to the Normal MLE.
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MPE-ZPB and Normal MLE

• MPE-ZPB is an Approximation of the Normal Maximum Likelihood 
Estimator.

• MPE-ZPB Objective is to Minimize:
(Subject to Zero Bias Constraint)

• Normal MLE Objective is to Minimize

• As Has Been Noted, Dominant Term is 

• Minimizing this Term is Same as Minimizing MPE-ZPB Objective Function
– Second Term in MLE Assigns a Penalty for Over-Estimating, Assures Solution is 

Asymptotically Unbiased, So it is Similar to MPE-ZPB Bias Constraint.
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MPE-ZPB and Normal MLE Example

• For the Data Displayed in the Table and Graphically Displayed in the 
Charts:

– Normal MLE Fit is 

– MPE-ZPB Fit is

Weight Cost
2 4
4 6
5 8

10 12
15 15
20 37
30 25
40 22
50 35
55 40

719.0.Wt39.2Cost.Est =

716.0.Wt41.2Cost.Est =

0

5
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40

45

0 10 20 30 40 50 60

Weight

C
os

t

Example Data

Normal MLE

ZMPE

Pow er (Example Data)

Loglinear Fit 
Shown for 
Contrast

MPE-ZPB and 
Normal MLE 

Fits are 
Coincident
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MPE-ZPB and Normal MLE

• Normal MLE and ZMPE Solutions are Very Similar Since 
they are Minimizing the Same Dominant Term and are 
Both “Unbiased.”
– MLE Solution is Asymptotically Unbiased (Unbiased for “Large”

Samples).
– MPE-ZPB Solution is Unbiased Regardless of Sample Size.

• One Advantage that MPE-ZPB has is Lack of Bias 
Regardless of Sample Size.
– Cost Estimates are Often Based on Small Samples, so MLE 

Solution may be Biased.

• On the Other Hand, MPE-ZPB is Tied to the Assumptions 
of the Normal MLE.
– Need Normally Distributed (Multiplicative) Residuals to Ensure 

Consistent Solutions in Many Cases.
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Normal MLE Log Likelihood Example

• For one Data Point with Actual Cost = 10, it is easy to see 
that the objective Function is Dominated by the First 
Term.
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Maximum Likelihood 
Gamma Residuals

• When the Residuals Follow a Gamma Distribution, The Negative 
Log-likelihood Function is

• This Can Be Minimized by Iteratively Minimizing The Sum of 
Percent Squared Errors Until the Estimates Converge:

• Note k is the Iteration Number.
• This Method Was First Developed by Nelder (1968) and 

Wedderburn (1974), Who Called the Method Iteratively Re-
Weighted Least Squares (IRLS) and Re-Discovered by Hu in the 
1990s, Who Called it Miminum Unbiased Percentage Error 
(MUPE).
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IRLS/MUPE

• In the Case of Gamma Residuals, IRLS/MUPE is a 
Maximum Likelihood Estimator.
– Also a Generalized Linear Model (GLM).

• However, IRLS/MUPE Does Not Depend Upon the 
Assumption of Gamma Residuals.

• The Likelihood Method Was Generalized by Wedderburn
to Consider Quasi-likelihood, Which Has Good Statistical 
Properties, But Only Requires a Constant Coefficient of 
Variation.
– Constant Coefficient of Variation Distributions Include Both 

Gamma and Lognormal Distributions.
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Summary of Three Methods

• Log-Transformed OLS, MPE-ZPB, and IRLS/MUPE All 
Share a Common Connection in Maximum Likelihood 
Estimation.

• Log-Transformed OLS is a Maximum Likelihood 
Estimator of the Median of Lognormally Distributed 
Multiplicative Residuals.
– Parametric Method

• MPE is a Pseudo-Likelihood Estimator of the Mean of 
Normally Distributed Multiplicative Residuals.
– Bias Constraint Added.
– Not Directly Parametric But May Has Parametric Properties.

• IRLS/MUPE is a Maximum Likelihood Estimator of the 
Mean of Gamma Distributed Residuals.
– Also More General, Quasi-Likelihood.
– Parametric Method.
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Model Validation

Data and Experience

Model Choice Parameter Calculation

Model Validation 
Model
Valid?

No
Model not suitable, select another model

Yes

Document Results 
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Model Validation

• Parameter Calculation is the End of the Process for Many 
Cost Analysts.

• Once Coefficients Have Been Calculated, Many Analysts 
Begin Applying the New Equations.

• But We are Not Done Yet!
• Still Need to Check Model Validity.

– Do The Estimates Do a Good Job of Replicating Actual Cost?
– Do the Underlying Assumptions Hold True?
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Model Validation – Goodness of Fit

• One Commonly Used Method to Validate 
Models is to Determine the Goodness of Fit.
– Do the Estimates “Fit” the Actual Cost?

• Commonly Used Metrics
– Actual Cost Vs. Estimated Cost

• Pearson’s R2

• Standard Percent Error
• Percent Bias

– Actual Parameters vs. Calculated Parameters
• Consistency
• Efficiency
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Goodness of Fit: Pearson’s R2

• Pearson’s R2

– Pearson Correlation of Actual Vs. Estimated 
Cost, in Unit Space.

– Proportion of Variation of the Estimate that 
can be Attributed,  to Variations of the Actual 
Cost.

– In Excel, “=CORREL(A1:An,B1:Bn)^2”
Where The Actual Costs are in the Cell Range 
A1:An and the Estimates are in the Range 
B1:Bn.

– Higher R2s are Better than Lower R2s.
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Goodness of Fit Metrics
SEE

• Standard Percent Error of the Estimate

– %SEE =                                  100%

Where n is the Number of Data Points in the Sample, 
and k is the Number of Parameters.

– All Else Equal, it is Desirable to Have Low Standard 
Percent Error.

– Will be Lowest for the MPE-ZPB Method (by Design) 
(Book, 2006).

– Foussier has Noted that This Metric Distorts the True 
Underlying Error (Foussier, 2008).

• Has Proposed Average Absolute Percent Error as a Better 
Measure than the Squared Error.
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Goodness of Fit Metrics
Percent Bias

• Bias
– Percentage Bias = 

– MPE Without the Bias Constraint Produces Estimates that are 
Biased Upwards.

– Log-Transformed Ordinary Least Squares Produces Estimates 
that are Biased Low.

• Estimating the Median, which for a Lognormal is Always Less than
the Mean.

• Can be Corrected for with a Simple Factor.
– It is Desirable to Have Estimates that Have Zero Bias if you are

Interested in Estimating the Mean.
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Goodness of Fit Metrics
Consistency

• Consistency
– An Estimator is Consistent if for all δ > 0 and any θ,

– Why This Matters: It’s Important That the Technique 
Converges to the True Parameter as the Sample Size Increases.

• Without This we Have No Guarantee Our Estimated Coefficients 
Resembles the True Underlying Coefficients.

– One of the Most Important Metrics, Often Overlooked.
– Necessary to Have a Reliable Model.
– Maximum Likelihood Methods are Consistent.
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Goodness of Fit Metrics
Mean Square Error and Efficiency

• The Mean-Squared Error (MSE) of an estimator is 

• An Estimator      is a Uniformly Minimum Variance Unbiased 
Estimator (UMVUE) if it is Unbiased and for any True Value of   
There is no Other Unbiased Estimator That has a Smaller Variance.

• An Estimator with That is UMVUE is Efficient, in That it Achieves 
the Lower Bound.

– In Practice This Means That the Estimated Coefficient Will Likely Be 
Closer to the True Estimate Than That Calculated with Another 
Estimator.

– Maximum Likelihood Estimates are UMVUE.
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Validating Model Hypotheses

• If a Maximum Likelihood Method Has Been Used, Need to 
Check to See if Residuals Fit the Assumed Shape.
– Fit Used in the Negative Sense (“Not Reject”).

• Three Commonly Used Tests to Validate
– Chi-Square
– Kolmogorov-Smirnov (K-S)
– Anderson-Darling (A-D)

• Chi-Square and K-S are Both Simple and Easy to 
Compute.

• A-D is More Powerful and Considered a Good Test for 
Departure from Normality.

• Chi-Square Gives More Weight to Low Probability 
Intervals.

• A-D Gives More Weight to the Tails of the Distribution.
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Model Validation – Other Aspects

• If Log-Transformed OLS is Used, Must Check Goodness-
of-Fit to Determine That the Residuals Fit a Lognormal.
– Fit is Used in the Negative Sense.

• If Using IRLS/MUPE as a Maximum Likelihood 
Estimator, Must Check to See if Residuals Fit a Gamma 
Distribution.
– Otherwise the Only Assumption Required is Finite Variance, But 

Instead of Maximizing Likelihood, Only Maximum Quasi-
Likelihood is Guaranteed.

– Quasi-Likelihood Requires Fewer Assumptions, But Has Weaker 
Optimality Properties as Well (Not “Efficient”).

• MPE-ZPB is Posited as a Non-Parametric Method, but as 
a Good Approximation of the Normal MLE method, 
Should Check if the Residuals fit a Normal Distribution.
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Implementing the Methods

• Log-Transformed OLS is the Easiest to Calculate.
– Can Be Implemented in a Spreadsheet Using Native Excel 

Functions.

• MPE-ZPB Requires the Use of a Numerical Routine.
– Can Be Implemented in a Spreadsheet Using an Excel Add-In, 

Excel Solver.

• IRLS/MUPE Also Requires the Use of a Solver-Like 
Routine.
– Requires Solver to be Applied Iteratively.
– Experience Indicates That IRLS/MUPE Typically Converges in 

Less Than 10 Iterations (Book, 2006).
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Comparing the Three Methods

• Although MPE-ZPB Has the Lowest Standard Percent 
Error, The Overall Trend Does Not Match the Actual 
Data.

• MUPE and Log-OLS Have Similar Fit.
– Similar to Results Reported by Mackenzie(2003).

Weight Cost
10 3.2
20 4.5
30 30
40 7.1
70 8.4
100 10
200 14.1
300 17.3
500 22.4
1000 31.6
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Log-Transformed Ordinary Least Squares Summary

• Long-Standing Method Because of Ease of Computation.
– Can Calculate Coefficient By Hand.

• Pros
– Computationally Simple.
– Works Well on Skewed Data.
– Has Optimal Properties (Maximum Likelihood Estimator of the 

Median).
– Parametric Method, So Have Access to Covariance Matrices and 

Confidence Intervals.
– Can Use Any Equation Form in the Generalized Maximum 

Likelihood Estimator Form.

• Cons
– Underestimates the Mean (Biased Estimator of the Mean, Since the

Median is Less than the Mean).
• Can Be Corrected for by Applying an Adjustment Factor.
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MPE-ZPB Summary

• Recent Innovation – Requires the Use of a Computer.
• Pros

– Minimizes the Standard (Percent) Error of the Estimate.
• This Goodness-of-Fit Metric is Best Among All Three Methods.

– Estimator is Unbiased.
– Requires No Parametric Assumptions.

• Cons
– Estimator is Not Consistent.
– Model is Not Parametric.

• Confidence Intervals for Population Mean Not Available.
– Method is Not Robust (Sensitive to Departure from Normality).

• Particularly Troublesome for Estimating Skewed Data.
• Model is Similar Enough to Normal MLE to Retain Some of Its 

Properties.
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IRLS/MUPE Summary

• Recent Innovation – Requires the Use of a Computer.
• Pros

– Requires Weak Assumptions (Finite Variance) But Still  Has 
Confidence Intervals and Covariance Matrices Available to Fully 
Parametric Methods.

– Method is Maximum Likelihood if Residuals Are Gamma 
Distributed.

– Asymptotically Unbiased.
– Consistent

• Cons
– If Not MLE, Weak Optimality Properties (“Quasi-Likelihood”).

• May Not be Efficient.
– Can Be Biased for Small Samples.
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Comparison with Other Industries - Insurance

• The Analogy with Cost Estimating in Insurance is “Loss 
Modeling.” In Insurance Parlance, a “Loss” is the Amount 
of a Loss Experienced by a Policyholder.
– In Insurance, Parametric Models are Used to Estimate 

not Only Loss Size, but Also Claim Frequency.
– Log-transformed OLS and MUPE/IRLS Frequently 

Used to Model Claim Frequency.
• MUPE/IRLS Referred to as “Gamma Regression” by Casualty 

Insurance Modelers (Fu and Moncher, 2004).
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Comparison with Other Industries – Insurance (2)

• Fu and Moncher (2004) Report that the Gamma and 
Lognormal are the Most Widely Used Distributions in Loss 
Modeling.
– Mention 31 Recent Papers that use Lognormal and 37 that use 

Gamma distributions.
– Lognormal Also Used in Ratemaking and Reserve Setting (akin to 

Cost Risk Analysis).
– Also Study Normal but Find Lognormal and Gamma much Better 

for Modeling Skewed, Positive Data.
• Like “Loss” and “Cost”

– Recommend Against Use of Normal Distribution for Modeling 
Skewed Data.

• Normal is Symmetric.
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Comparison with Other Industries – Health Care 
and Labor Economics

• Costs are Modeled Parametrically in Health Care 
Economics.
– Log-Transformed OLS and IRLS/MUPE Widely Used.
– Recent Papers Include

• “Estimating Log Models: To Transform or Not to 
Transform?”, Journal of Health Economics, 2001

• “Comparing Alternative Models: Log Vs. Cox Proportional 
Hazard,” Health Economics, 2004.

• “Generalized Modeling Approaches to Risk Adjustment of 
Skewed Outcomes Data,” Journal of Health Economics, 2005.

• “Net Migration and State Labor Market Dynamics,” Journal of 
Labor Economics, 2004.
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Comparison with Other Industries – Summary

• All Models Used Either Log-Transformed OLS or 
IRLS/MUPE (aka “Gamma Regression”).

• Contrary to Recent Claims, Log-Transformed OLS is a 
“Modern” Method.

• Conclusion
– Log-Transformed OLS and IRLS/MUPE are the Two Leading 

Methods Used in Other Industries.
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The Framework in Action
NAFCOM CER Development

• The Authors Have Successfully Applied this Framework to 
the Development of CERs Included in the Latest Version 
of the NASA/Air Force Cost Model (NAFCOM).
– Released Spring 2009. 
– Also Performed Significant Cost Driver Research and Added 

Twenty New Data Points.
– Model Choice is Statistically-Derived CERs Using Historical Data.
– Parameter Calculation Method is Log-Transformed OLS.

• Also Investigated the Use of MPE-ZPB.
– All CERs Validated by Calculating Goodness-of-Fit Metrics and by 

Verifying that the Residuals for Each CER Fit a Lognormal 
Distribution.
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NAFCOM CER Development
Log-Transformed OLS Vs. MPE-ZPB

• Although We Decided to Use Log-Transformed OLS, We 
Also Investigated the MPE-ZPB Method.
– Found Log-Transformed OLS to be a Better Choice 

• CER Residuals are Lognormally Distributed, so Log-Transformed 
OLS is a Valid Method.

– Empirical Data Leads us to Believe Log-Transformed OLS CERs Provide 
Statistically Consistent and Efficient Estimates for our Data.

• MPE-ZPB CERs Provide Similar Results to Normal MLE, but 
Residuals are Not Normally Distributed.

– Empirical Data Gives us No Confidence that MPE-ZPB CERs will 
Provide Statistically Consistent or Efficient Estimates.

» To the Contrary we Found the Method is Not Robust for Skewed 
Data Since it is Overly Sensitive to Individual Outlying Data Points.

» In Line with Intuition and What Professionals in Other Industries 
Have Found When Working with Skewed Data.
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NAFCOM CER Development
Attitude Determination and Control

• CERs Updated for New Version of NAFCOM.
• Cost Drivers for Attitude Determination and Control 

Include:

• For this CER we Applied Three Methods
– Log-Transformed OLS
– MPE-ZPB Method
– Normal MLE

Weight
Mission Class

Management Rating
Heritage

Technology Maturity Index
Year of Technology
Stabilization Method

Sensors Rating
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Attitude Determination and Control
CER Comparison

• The Methods Provide Similar Goodness-of-Fit Metrics.

• Note “Absolute % Error” is the Average Absolute Percent 
Error of the Estimate, Using Degrees of Freedom as the 
Denominator.

Log-
Transformed 

OLS

Adjusted Log-
Transformed 

OLS MPE-ZPB
Normal 

MLE
Pearson R2 99.2% 99.2% 99.3% 99.3%
Std. % Error 50.2% 46.4% 41.4% 41.5%
Absolute % Error 36.5% 35.0% 36.3% 36.2%
Bias -7.2% -0.4% 0.0% 0.0%
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Attitude Determination and Control
CER Validation

• Still Need to Check Model Hypotheses Are Valid.
• In this instance, Normal MLE and the MPE-ZPB CER 

Provide Almost Exactly the Same Estimates, so the Normal 
MLE and MPE-ZPB Validity Both Depend Upon 
Normally Distributed Residuals.
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Attitude Determination and Control
CER Validation

• The Anderson-Darling Test Statistic for the 
Log-Transformed OLS Residuals is 0.3351, 
Much Less Than Critical Value (0.752) at 5% 
Significance
– Cannot Reject Hypothesis That Residuals are 

Lognormally Distributed. 

• The Anderson-Darling Statistic for Normal 
MLE Residuals is 1.0251, Above Critical 
Value (0.752) at 5% Significance, so we 
Reject the Hypothesis that Residuals are 
Normally Distributed. 
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Consequences of Model Validity 
(or Lack Thereof)

• We Have Empirical Evidence That Log-Transformed OLS 
Assumptions Are Valid.
– Provides Confidence That the Method is Consistent and Efficient.

• We Have Empirical Evidence That Normal MLE 
Assumptions Are NOT Valid for This Application.
– Method Likely to Not be Consistent or Efficient.
– Have No Confidence That Coefficients Resemble the True 

Parameters.
• Both Normal MLE and MPE-ZPB are Very Sensitive to Departures 

from Normality, Indicating a Lack of Robustness.

• Found This Pattern Holds for All NAFCOM Subsystem 
CERs.
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Summary

• Introduced Rigorous Framework for Developing 
Parametric Cost Models.
– Emphasized Importance of Thoroughly Validating Models.

• Through MLE Framework Found:
– Log-Transformed OLS is a General Method with Optimal 

Properties.
– Similarities Between Normal MLE and MPE-ZPB.

• MPE-ZPB is an Approximation of the Normal MLE.

• MPE-ZPB Not Explicitly Parametric, but Tied to Normal 
MLE Assumption in Many Instances.
– Both Normal MLE and MPE-ZPB Very Sensitive to Departures of 

Residuals from Normality.
• Log-Transformed OLS and MUPE Widely Used in Other 

Industries.
– Log-Transformed OLS is a Modern, Relevant Method.
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