

Analysis, Modeling, Simulation and Experimentation

Experimentation Estimating Toolkit

ISPA/SCEA National Conference June 2009

Karen Mourikas – Phantom Works: Experimentation Denise Nelson – Boeing Research & Technology: Affordability The Boeing Company

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

No License Required

Agenda

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

- Overview of Experimentation
- Experimentation Estimating Approach
- Implementation of Model
- Lessons Learned
- Next Steps
- Summary

Analysis, Modeling, Simulation and Experimentation

Overview of Experimentation

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Experimentation Defined – Part I

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Definition of Experiment *

- A test under controlled conditions that is made to
 - demonstrate a known truth,
 - examine the validity of a hypothesis, or
 - determine the efficacy of something previously untried.

Definition of Experimentation *

- The process of conducting such a test.

Experimentation in general

- Consists of gathering and examining data
- Explores and Answers Questions with Analyses and Observations

Experimentation Defined – Part II

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Experimentation

- Contains Variability
 - Demo ~ Broadway Play
 - Scripted event where outcome is always the same
 - Experimentation ~ Baseball Game
 - Outcome is never exactly the same
 - Current tactics are adapted for future games in light of observed outcomes
- Campaigns of Experiments help build body of knowledge
- Iterative Approach based on outcomes of previous experiments and analyses

Three Main Types of Experiments

- Discovery (to understand effects of innovation)
- Hypotheses Testing (if A then B under conditions C)
- Technical Demonstrations (to showcase technology, concept, etc)

Discovery Experiments

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Effective Collaboration

- Discovery Experiment analyzing the question "What makes for effective collaboration?"
- "how do differences in group structure, communications patterns, work processes, participant intelligence, participant cooperative experiences, and participant expertise affect the quality of collaboration?" *

* Code of Best Practice for Experimentation, Alberts, Hayes, et al., 2002

Historical Discovery Experiments

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Information / Communications CONOPS

– "Perhaps the most famous initial discovery experiments were those conducted by the Germans to explore the tactical use of short range radios before World War II. They mimicked a battlespace (using Volkswagens as tanks) in order to learn about the reliability of the radios and the best way to employ the new communications capabilities and information exchanges among the components of their force."

Code of Best Practice for Experimentation, Alberts, Hayes, et al., 2002

7

Hypothesis Testing

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Objective: Investigate camera-only capabilities for identification and tracking

- Does tracking software XX provide sufficient target recognition and cueing to be used without radars?
 - Compare camera with tracking software versus camera without tracking software
 - If tracking software used (A)
 - -then increased Target Recognition (B)
 - without radars (C)

Proposition: "information sharing will improve group situation awareness in combat"

- IF information sharing occurs,
 - THEN group situation awareness will increase
 - WHEN the subjects are military professionals working in a warfighting context.

Code of Best Practice for Experimentation, Alberts, Hayes, et al., 2002

8

Campaigns of Experiments

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Command and Control for Stabilization Operations

- Such as ensure security, provide reconstruction and humanitarian assistance, act as peacekeepers and engage in military operations
- Series of experiments evaluating competing and alternative approaches
 - Explore alternatives identifying strengths, weaknesses, limiting conditions and reduce potential approaches to most promising
 - Analyze final candidates under more realistic environments and identify best-value approach
 - Develop demonstration of best-value approach for specific operational environments
- Purpose of campaign is to convince user community selected approach is the better candidate and to provide venue for user community to critique and improve approach

Campaigns of Experimentation, Alberts, Hayes, et al., 2006

Analysis, Modeling, Simulation and Experimentation

Experimentation Estimating Approach

Why are we doing this?

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Each experiment is unique

Different objectives, tasks, scope, domains, maturity, models, operators, personnel, etc

Standard method of estimating needed

- Define Experimentation cost drivers to be as minimally subjective as possible
 - System complexity-
 - defines number of various interactions between the systems and/or subsystems (or Platforms, SoSs etc)
 - Experimentation Type: Constructive/Virtual/Live
 - Leverage from previous efforts: re-design and new-design of work products
- Properly capture data from future efforts to better refine estimating relationships

11

General Approach

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Development Approach

- Establish generic WBS for Experimentation efforts
- Develop Interview Process and Collect Data
- Perform Statistical Analysis on Normalized data
- Generate Cost Estimating Relationships (CERs)
- Design and Implement estimating Model

Next Phase: Collect and analyze future data points

- Record labor data to distinguish time spent on each project/event
- Collect information immediately at end of scheduled effort/phase
- Update/calibrate model with new data points throughout the year
- Train Project Leaders/Estimators on the estimating tools as a standard to validate (and generate) future estimates

Establish Generic WBS

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Six general phases of Experimentation*

- Discovery (Customer Interaction)
 - Understand customer needs and issues
- Problem Formulation
 - Identify and Scope problem
- Experiment Design
 - Decompose problem
- Experiment Development
 - Build, Implement, Test & Verify
- Experiment Execution
 - Conduct the Experiment
- Analysis
 - Analyze data and interpret results

* From Guide for Understanding and Implementing Defense Experimentation GUIDEx, 2006

Data Collection & Interview Process

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

First Attempt

- Asked "How much did it cost?"
 - Total and by phase, with schedule data
 - Provided detailed tasks for assistance
- Result
 - Too much variability in scope and type of effort
 - No consistency in data or data format

Second Attempt

- Developed Interview Questionnaire to scope effort
 - Start/Stop work for given interval of work
 - Clearly defined questions and examples to guide the interviewee
- Result
 - Consistent data format
 - Better defined scope and definitions
 - 22 completed Data Points plus 11 In-work efforts

14

Questionnaire Ground Rules

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Data Point Defined Scope

- Schedule Start/Stop to distinguish "follow-on work" start times
- Actuals/Budget of identified time interval
- Actuals/Budgets/Tools/Personnel questions only refer to the primary work group under the supervision and control of the project lead (unless otherwise noted)

Data not captured

- Standard/indirect cost that would be spent regardless of the effort in question
 - Software licenses/maintenance
 - Hardware and facility upgrades
 - Training

Questionnaire Focus

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Experiment/System Complexity

- Number of interacting Classes/
- Constructive, Virtual, Live

Tools/Models/Simulations

- Existing, Integrate As-is
- Existing Modified
- Newly Developed
- Leverage from previous work
- Number of MOEs/MOPs
 - Delivered/Calculated
- Customer Involvement
- Integration

- Actuals/Budget \$K
- Actual/Scheduled Months
- Man Months (EP)
 - Developers/System Engineers and Designers
 - SME and PM

Other Costs

- HW/SW tools and licensing*
- Training* and Travel
- Security Level
- Special notes of interest

*Costs above and beyond team's expected annual expenditures

Data Analysis

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Minor trends and correlations noticed

- but no "statistical significance" calculated
- Percent breakouts for PM/SME/etc. look promising

Possible data nuances:

- Project actuals (\$K , schedule, EP) vs. estimates
- Regression on Qualitative Data
- Subjective data
- Limited data
- Cost driver assumptions

Refinement of questions for future data collection is required

Analysis, Modeling, Simulation and Experimentation

Implementation of Experimentation Estimating Model

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Model Inputs

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Experiment Complexity

- System Complexity (Approximate number of different types of interactions)
- Experiment Type (Constructive, Virtual, Live)
- Phase/Concept Maturity

Design Complexity

- Reuse/Redesign/Leverage from previous work

Integration Complexity

- Number of different tools used
- Number of sites
- Security

Other Drivers TBD

Experiment Complexity - Determines Analog Data

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Use or disclosure of data contained on this page is limited to the restrictions on the title page of this document.

Data Reference

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Looks up Average Expected Cost based on data that fits the given Complexity Rating

		Data Reference Value			
	WBS/CES Description	Unique ID	Equation / Throughput	Point Estimate	
341	F3 ROM	F3	F3\$KperMo*F	55,600.000 *	
345					
346					
347	F3 Average Cost Per Month	F3\$KperMo	11120	11,120.000*	
348	F3 Average Months	F3Mo	5	5.000 *	
349					

User Inputs (in Red)

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

	WBS/CES Description	Unique ID	Equation / Throughput
16	*User Inputs		
17	Experiment Complexity Input	ECRef	F3
18			
19	*Design Complexity Inputs (rate 1-7)		
20	New ESLOC	DC1	5
21	New Modules/Algorithms	DC2	4
22	Added Complexity/Entities	DC3	7
23	Briefings/schedule	DC4	2
24	Customer Invor Based off look up	DC5	1
25	Descriptors, user enters		
26	level of complexity for		
27	*Integration		
28	Number of difference various university ost team	IC1	5
29	Number of different toors and the by other teams	IC2	3
30	Number of sites for Development	IC3	2
31	Number of sites for Main Event	IC4	4
32	Security Level (rate 1-7)	IC5	1
33			

Design Complexity Look-up Values

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

		WBS/CES Description	Uni	que ID	Equation / Throughput
	16	*User Inputs			
	17	Experiment Complexity Input		ECRef	F3
	18				
	19	*Design Complexity Inputs (rate 1-7)			
	20	New ESLOC		DC1	5
				DC2	4
Desiar	n Compl	exity for Effective Software Lines of Code (ESLOC)		DC3	7
ESL	OC = New SLOC	equivelent (includes New Code and a discounted Code count based on redesign of existing code)	Rating	DC4	2
Does not	require	any new coding nor any redesign of existing software	4	DC5	1
No chang	jes need	ate to code	1		
vinor au	justemer		2		
Noderate	adiuste	ements to code might include new code			
<20% ch	ange fro	m original	3	101	E
Signifiga	nt adjust	ements to code, includes some new code			C
~35% change from original 4			IC2	3	
Major ad	justemer	nts to code, signifigant new code required	\sim	IC3	2
~50% ch	ange fro	m original	(5)	IC4	4
Major ad	justemer	nts to code, more than half is new code		IC5	1
>75% ch	ange fro	m original state	6		
No existi	ng Code	exists, need to be newly developed			
100% Ne	w Desig	n	7		

Design Complexity Factor

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

	WBS/CES Description	Unique ID	Equation / Throughput
16	*User Inputs		
17	Experiment Complexity Input	ECRef	F3
18			
19	*Design Complexity Inputs (rate 1-7)		
20	New ESLOC	DC1	5
21	New Modules/Algorithms	DC2	4
22	Added Complexity/Entities	DC3	7
23	Briefings/schedule and other PM products	DC4	2
24	Customer Involvement/History	DC5	1
	Design Complexity Factors		
	SI		

DCX=

Design Complexity Rating = (.5*1+.3*.5+.1*1.1+.05*.25+.05*1)

1

0.1

0.3

0.1

0.1

0.25

=.82)

6

1.3

1.1

1.5

1.25

1

1

0.9

1.1

1

Copyright © 2008 Boeing. All rights reserved.

Weights

0.5

0.3

0.1

0.05

0.05

New ESLOC

New Modules/Algorithms

Added Complexity/Entities

Customer Involvement/History

Briefings/schedule and other PM products

2

0.25

0.2

0.25

0.25

0.5

3

0.5

0.35

0.5

0.5

0.75

4

0.8

(0.5)

0.8

0.75

Model Outputs

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Cost

- EP hours
 - Developers/SE
 - PM
 - SME
- SW/HW, Training and Travel
- % cost for CVL

Expected Schedule (months)

- Schedule Scrunched/Expanded costs
- Risk Assessment
- Experiment Event Metrics
 - EP to run experiment (body count)
 - Days
- GUI interfaces

	WBS/CES Description	Point Estimate
52	*Estimator Outputs	
53	Total Estimated Costs	55,600.000 *
54	Primary Team's Expected Hours	400.000 *
55	Developers/SE and Event costs	280.000 *
56	Project Management	* 000.08
57	Subject Matter Expertise	40.000 *
58	Hardware/Software/Training and Travel	20,000.000 *
59		
60	Expected/Optimal Schedule Months	4.000 *
61		
62	Percent Cost spent on Constructive Efforts	0.800 *
63	Percent Cost spent on Virtual Efforts	0.200*
64	Percent Cost spent on Live Efforts	* 0.000
65		
66	*Experiment Event Metrics	
67	EP to run experiment (body count)	1.500 *
68	Hours projected for Event	60.000 *
69		
70	Cost by WBS	55,600.000 *
71	Discovery (Customer Interaction	5,560.000*
72	Problem Formulati	~
72	Design (Refin	¥Q.*
74	Developme Phase 2	ł
75	Execution	
76	Analysis (A Implementa)	tion /
77		

Analysis, Modeling, Simulation and Experimentation

Lessons Learned

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Lessons Learned

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Different Languages

- COBP-X/GuideX/Boeing
- Tool/Model/Simulation
- Processes
- Phases

Different Opinions

- Naysayers
- Enthusiasts

Analysis, Modeling, Simulation and Experimentation

Next Steps

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Next Steps

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Refine time charging to better capture future efforts

Resonate the modeling inputs and techniques to project leaders and estimators

- Use model to plan projects initially
- Collect data at end of projects

Refine/verify collected data and assumptions

- Continue to collect data
- Calibrate/refine Model with new data
- Mature and refine model in conjunction with SMEs to better represent and define cost drivers and level of detail

Analysis, Modeling, Simulation and Experimentation

Summary

BOEING is a trademark of Boeing Management Company. Copyright © 2008 Boeing. All rights reserved.

Summary

Advanced Systems | Analysis, Modeling, Simulation and Experimentation

Experimentation

- Helps to assess concepts and technologies, causes and effects, and/or conclusions
- Explores and Answers Questions with Analyses and Observations
- Is not a scripted Demo
- Developed standard method of cost estimation
 - Each experiment unique
- Experimentation WBS separated into six phases
- Data Collection and Comprehension the biggest task
- Phase 1 Model Developed
- Biggest Lesson Learned : Need for common language
- Next Steps : Refine and Mature Model and Data Collection/Analysis