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Abstract 
 
Regression, in various forms, is the tool of choice for parametric cost analysis (PCA).  Neural networks 
are a largely unused analysis tool within the cost community.  However, neural networks are an effective 
alternative to all forms of regression for PCA.  This paper will illustrate the use of neural networks for 
PCA and will highlight similarities and differences with respect to the use of regression for PCA.  For 
example, regression provides a linear or transformed linear approximation of parameters for a given set 
of data.  Neural networks provide a purely nonlinear approximation of the parameters for the data.  
When a nonlinear equation is desired with regression, the nonlinear transformation is assumed and 
applied to the data prior to regression.  Neural networks find the best nonlinear fit with no prior 
transformation and no assumptions. 
 
This paper will provide a history of the use of neural networks for cost analysis.  This paper will also 
provide an insight into how neural networks process data and how that process and the associated results 
differ from those of regression.  A method of visual analysis that permits the user to see what is 
happening will be provided. 
 
Also, a method will be provided that permits a valid comparison of the goodness of fit to a given set of 
data for all forms of estimating, including linear regression, nonlinear transformed linear regression, 
neural networks, and all other forms of estimating parameters for PCA. 
 
Attendees will leave with the information necessary to learn more about neural networks and how to get 
started using them for PCA. 
 
Neural Networks: How They Work 
 
A neural network is a mathematical entity that simulates the learning capability of the brain.  It learns by 
approximating a set of outputs given a set of inputs. 
 
It has multiple inputs and multiple outputs.  The result of the learning process is a model that predicts 
the desired outputs based upon a set of (input, output) data.  A neural network has an input layer, one or 
more hidden layers, and an output layer.  The input layer contains all of the inputs.  Each hidden layer 
and the output layer contain one or more artificial neurons.  Each artificial neuron in the output layer 
corresponds to a particular output.  Each artificial neuron has multiple inputs, a threshold, an activation 
function, and a single output.  The activation function is a nonlinear function, such as the inverse tangent 
or the logistic function, that provides the learning capability. 
 
The learning occurs by applying the (inputs, outputs) data to the network.  As each set of input data is 
applied, the weight of each input to and the level the threshold for each artificial neuron is adjusted to 
provide a better prediction of the set of outputs. A single application of all of the (input, output) data is 
called an epoch.  Epochs are applied until the inputs provide a reasonable approximation of the outputs. 
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There are many types of neural networks.  The only type addressed in this paper is the backpropagation 
model originally developed by Werbos (1974) and, later, independently developed by Rumelhart, 
Hinton, and Williams (1986).  This model attempts to reduce the root mean square of the error between 
the ouputs of the neural network output layer and the output data. 
 
Neural Network Background of the Author 
 
In 1963 for his senior Physics project, the author developed an electronic recurrent artificial neural 
network using sonar as the memory stream.  In1965 the author wrote his masters thesis in Mathematics 
on neural networks.  During his tenure with the Naval Ordnance Laboratory, the author applied various 
types of neural networks for the analysis of various types of data.  In 1987 the author began to apply 
neural networks for the analysis of cost data.  From 2001 through 2007, the author applied neural 
networks to cost data for Galorath, Inc.  The author currently uses neural networks for the analysis of 
cost and the stock market. 
 
Neural Networks: Prior Use for Cost Analysis 
 
The primary publications of neural networks applications cost analysis have occurred within the 
Association for the Advancement of Cost Engineering International (AACEI) community. 
 
The first neural network for cost analysis published papers were McKim (1993a) and McKim (1993b).  
Both McKim (1993a) and McKim (1993b) introduce the concept of the backpropagation neural network 
and provide an excellent introduction to the mathematics involved. McKim (1993b) reported that “The 
neural network trained for this paper was able to predict the cost overruns of ten projects with 
approximately half the error of more conventional statistical methods.” 
 
Today, when one searches on the AACEI library using the keyword “neural network”, twenty abstracts 
appear.  Early papers include the following.  Creese and Li (1995) estimate the cost of timber bridges 
using a neural network.  Garza and Rouhana (1995) describe the mathematics of the backpropagation 
neural network and then compare the results of a neural network prediction with regression predictions.  
Rowings and Sonmez (1996) apply both regression and neural networks for the analysis of labor 
productivity.  Moselhi and Siqueira (1998) use a neural network to estimate the cost of structural steel 
buildings.  Al-Tabtabai, Alex, and Tantash (1999) propose applying subjective data to a neural network 
to predict preliminary highway construction costs. 
 
Note that neural networks have been and can be used for a number of types of cost analysis.  Neural 
networks also have been and can be applied to finance (Trippi and Turban, ed. (1996)).  Note also that 
neural networks, being models of the way we think human brains may learn and think, allow the input of 
subjective data as well as hard data. 
 
An Example of a Neural Network Cost Model 
 
In order to demonstrate a point, the following neural network cost model is based upon contrived data. 
 
A typical parametric cost model is of the form y = axb , where y  is the cost, x  is weight, a  is the 
modeled complexity and b is rate of change of cost with respect to weight.  It is a nonlinear model.  If 
we were developing a regression model, we would transform the data and use the equation 
ln(y) = c + b ln(x), where c = ln(a) , to estimate b and c .  Since the backpropagation neural network can 
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approximate nonlinear equations, we do not have to transform the data, although we could if we wished 
to do so.   
 
The data for this example was derived by choosing b  and c  for the 
equation ln(y) = c + b ln(x) and then selecting bi  and ci for the data 
from a normal distribution centered on b and c  for a given xi to 
obtain yi. 
 
At right are the data where x  would be the parameter, such as 
weight, used to estimate y, the simulated cost.  The data z  are 
z = ax b  prior to noise being added.  Thus { xi,zi( )} is the set of 
points of the equation underlying the simulation. 
 
The shareware QuikNet (Jensen, C. (2003)) neural network software 
was used to run the data in this paper. 
 
As can be seen from the 
control panel at right, the 
neural network had one input, 
weight, and one output, cost, 
with one hidden layer with 
three neurons.  A logistic 
function was used as the 
activation function.  
Backpropagation with random 
perturbation was used as the 
training algorithm.  The same 
data was used for training and 
testing.  The training process 
was allowed to run for 11,847 
epochs.  Each epoch is the 
application of each of the data 
points. 
 
Root Mean Square (RMS) Error (RMSE) 
is used as the goodness of fit measure.  
In the figure below the RMSE rapidly 
declines and then reaches an almost 
steady state level at which the training is 
assumed to be complete. 
 
When using regression and a neural 
network, the best policy is to have a test 
data set that is different from the training 
data set.  For this case, in keeping with 
typical cost model development, “because of the low number of data points”, the training data set was 
used as the test data set as well. 
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Note that the backpropagation model uses nonlinear optimization and solutions can be caught at sub-
optimal points. Thus, training neural networks becomes an art rather than the science of applying 
regression.  The experience of the author is that when using one or two hidden layer backpropagation 
neural networks with one or two inputs and one or two outputs for the analysis of cost data, this has 
generally not been a problem.  However, the use of a number of subjective data inputs and two or more 
hidden layers greatly increased the probability of a training session resulting in a suboptimal solution.  
The larger and more subjective the set of inputs and outputs, the greater the art required in training. 
 
Analyzing Neural Network Model Results 
 
When we analyze the results of a regression model of the data, we rely on the well-established methods 
of statistics.  The equations of statistics for regression do not apply to neural networks.  For example, the 
typical goodness of fit for regression is R2.  The goodness of fit for neural networks is RMSE.   
 
The author uses two approaches to provide a comparison of regression and neural network results. 
 
The first is visual analysis.  For regression, we often plot the equation obtained from the regression and 
the data points on the 
same graph.  To compare 
neural network results to 
regression results, we just 
add the neural network 
predicted data points to 
the same graph as at 
right. 
 
The cost data points y  
are diamonds, the 
regression line data 
points ^ yr  are squares, 
and the neural network 
predicted data points 
^ ynn  are triangles.   
 
One can easily see that 
the regression line data 
points follow the curve ^y =αxβ  where α  is the regression estimate of a  and β  is the estimate of b .  
There is no explicit equation for the neural network results, but it is clear from the graph that the neural 
network prediction curve is similar to that from regression, but is nonlinear. 
 
When there is more than one output, say development cost, production cost, and operations cost, the 
author creates a separate graph for each output.  If there is more than one input, then the author creates a 
three dimensional graph for each pair of inputs for a given output.  This allows one to see the shape of 
the cost surfaces derived from the input pair.  Note that cost surfaces exist for both the neural network 
and regression results.  The visual analysis for multiple inputs and multiple outputs requires a lot of 
effort but can be very rewarding once the nature of the cost surfaces are determined. 
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The mathematical basis of the second form of analysis is described by Dean (2008).  Consider the points 
xi, yi, ^yri , and ynni to be dimensions within the vectors xρ, yρ^ , ryρ^ , and nnyρ^ , respectively.  A 
natural geometric measure is the angle between two vectors.  The smaller the angle, the more the 
likeness of the vectors.  To compare the regression model with the neural network model, we use this 
angle as the goodness of fit measure.  We calculate the angles ( )ryyangle ρρ,  and ( )nnyyangle ρρ,  using the 
equation 
 

( ) )arccos(180,
vvuu

vu
pi

vuangle ρρρρ
ρρ

ρρ
••

•
=     

 
where ( )vuangle ρρ,  is in degrees, pi is 3.14159…, w  is the square root of w , and • is the vector dot 
product.  This equation can be easily implemented in Excel using array formulas. 
 
Applying this formula we have ( )ryyangle ρρ ^, = 14.56 degrees and ( )nnyyangle ρρ ^,  = 13.94 degrees. 
 
A noisy and difficult to fit data set was used to display the nonlinearity of the neural network predicted 
line.  As difficult as this data was to fit well, the author has often worked with worse data.  As a 
statistical reference point for the regression goodness of fit, R2= 0.5161.  Note that R2 is for the linear fit 
on the transformed data space.  The ( )vuangle ρρ,  is used to compare the predictions on the untransformed 
data space. 
 
Contrived data was also used in order to see how well the regression model could estimate the 
parameters of a noiseless equation.  The fitted intercept coefficient was 2.7717 vs. 2.0000 for the 
noiseless equation.  The fitted power was 0.5749 vs. 0.7000 for the noiseless equation. 
 
An Instructive Example 
 
This example walks you through a real world example of neural network model development.  The 
database has been culled from the Encyclopedia Astronautica Launch Vehicle Summary Data (Wade 
(1997-2008)) by eliminating all launch vehicles that do not have the desired cost variables and 
performance parameters.  A 5 input, 1 hidden layer with 8 artificial neurons, 2 output neural network 
(1.8.2) is used to model the development cost and the recurring production cost using total length, core 
diameter, span, total mass, and maximum range as performance parameters.  A logistic activation 
function is used with a randomly perturbed backpropagation training algorithm. 
 
The results are compared to the results of a 5 parameter multivariate regression for each cost using the 
same performance parameters.  Graphing the costs against the performance parameters indicates that log 
transformed data should be used for the regressions.  The neural network inputs are the untransformed 
performance parameters. 
 
Note that R2on the transformed data space for the regressions cannot be projected onto the 
untransformed data space.  The desire is to compare both the regressions and the neural network results 
on the untransformed data space.  Thus, the results of the regression are transformed back to the 
untransformed data space of cost for comparison.  By using the angle between each cost data vector and 
its predicted cost data vector for the both regressions and the neural network we obtain an apples to 
apples comparison. 
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The neural network does not adjust the data for the means.  Regression uses mean-adjusted data. We can 
relate the angle used here back to statistics by noting that the multivariate correlation coefficient, R, 
from the regression is the cosine of the angle between the mean-adjusted output data vector and the 
predicted mean-adjusted output data vector (Wickens (1995)).  The cosine of the angle used here can be 
thought of as the multivariate correlation coefficient for the non mean-adjusted data.  By using this angle 
we can compare the results of all estimating means directly 
on the nontransformed (original) data space. 
 
For this example we split the data into a training data set and 
a test data set.  We train the neural network on the training 
data set and use the test data set to monitor the training 
process and to test how well the neural network generalizes 
to similar but different data. 
 
The error reduction of the training process, above right, 
shows the stabilization of the error of the test 
set above and the training set below.  If 
allowed to train further, the error of the test 
set rises as the network over trains on the 
training data at the expense of the error over 
the test set. 
 
The results at right follow. 
 
Potential Uses of Neural Network Project Models 
 
Because neural networks are multi-input, multi-output estimators, they have many potential uses in 
project management.  The AACEI papers cited above point to an array of potential uses.  The theme of 
the 2009 NASA Cost Estimating Symposium was "Probabilistic Joint Cost and Schedule Estimating: 
YES WE CAN." A neural network is not probabilistic, however, it is a natural tool for developing a joint 
cost and schedule model.  Above, the author has alluded to the possibility of jointly estimating 
development, production, and operations cost from a set of input parameters, some of which could be 
subjective in nature.  What other project measures could be combined into this list of outputs?  Let your 
project knowledge be your guide. 
 
Getting Started with Neural Networks 
 
The AACEI references in this paper provide adequate information to understand the mathematics 
underlying the backpropagation neural network.  They may be obtained at the AACEI website (AACEI).  
Search for them at the bookstore using the keyword “neural network”.  AACEI members can download 
the articles for free. 
 
Jones and Hoskins (1987) and Hecht-Nielsen (1992) do an excellent job of explaining the inner 
workings of the backpropagation neural network.  For a detailed introduction to several of the more 
popular types of neural networks, including backpropagation, study Lippmann (1987).  Haykin (1994, 
1998) is the comprehensive source for learning about all types of neural networks. 
 

Goodness of 
Fit (degrees)

Multivariate 
Regression 
Training 
Data

Neural 
Network 
Training 
Data

Multivariate 
Regression 
Test Data

Neural 
Network Test 
Data

Development 
Cost 31.6 14.2 72.4 8.4
Recurring 
Production 
Cost 11.7 14.9 89.8 34.5
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By downloading the shareware program QuikNet (Jensen (2003)), one can begin to get the feel of 
training a neural network and actually develop models.  The author uses this software under Windows 
Professional 2000 Pro.  Hopefully it will work under Windows XP and Windows Vista. 
 
For more sources for learning about neural networks or for more advanced neural network software, 
perform a web search for “neural network” or “neural network software”. 
 
Summary and Conclusion 
 
There is a learned art to the development of neural network models.  They can be used to develop 
project measure models including cost and schedule as outputs from a set of input parameters, some of 
which could be subjective in nature.  They facilitate multi-input, multi-output model development.  They 
are inherently nonlinear which opens many modeling possibilities restricted by linear models and related 
data transformation assumptions.  Since they are not based upon statistics, which requires a substantial 
number of data points for validity, there is no validity restriction on how few data points can be used to 
develop the model.  The use of the angle between data and predicted data vectors provides an intuitive 
and understandable goodness of fit measure by which to compare the results of all types of models.  
Engineering managers who are the recipients of the cost estimates are usually familiar with the angle, 
while there is an excellent chance that they are not familiar with R or 2R .  Finally, the experience of the 
author is that properly trained neural network models usually provide a closer match to the data and 
generalize to test data better than do equivalent regression models. 
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