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Abstract 
Traditional development of cost-estimating relationships (CERs) has been based 

on “full” data sets consisting of all available cost and technical data associated with a 
particular class of products of interest, e.g., components, subsystems or entire systems of 
satellites, ground systems, etc.  In this paper, we review an extension of the concept of 
“analogy estimating” to parametric estimating, namely the concept of “adaptive” CERs – 
CERs that are based on specific knowledge of individual data points that may be more 
relevant to a particular estimating problem than would the full data set.  The goal of 
adaptive CER development is to be able to apply CERs that have smaller estimating error 
and narrower prediction bounds.  Several examples of adaptive CERs were provided in a 
paper (Reference 2) presented by the first two authors to the May 2008 SSCAG Meeting 
in Noordwijk, Holland, and the July 2008 ISPA/SCEA Conference in Industry Hills CA. 

 
This paper focuses on statistical foundations of the derivation of adaptive CERs, 

namely the method of weighted least-squares (WLS) regression.  Ordinary least-squares 
(OLS) regression has been traditionally applied to historical-cost data in order to derive 
additive-error CERs valid over an entire data range, subject to the requirement that all 
data points are weighted equally and have residuals that are distributed according to a 
common normal distribution.  The idea behind adaptive CERs, however, is that data 
points should be “deweighted” based on some function of their distance from the point at 
which an estimate is to be made, i.e., each historical data point should be assigned a 
“weight” that reflects its importance to the particular estimation that is to be made using 
the derived CER.  This presentation describes technical details of the WLS derivation 
process, resulting quality metrics, and the roles it plays in adaptive-CER development.  

 
Introduction 

 
Weighted least-squares (WLS) regression is the statistical technique applied in 

Reference 1 to develop adaptive CERs.  WLS regression is a straightforward extension of 
classical ordinary least-squares (OLS) regression, which is the 18th Century curve-fitting 
technique commonly taught in elementary statistics courses. 

 
OLS regression “best” fits a straight line y = a + bx to a set of ordered pairs 

(xk,yk), 1 ≤ k ≤ n, of data points in two-dimensional Euclidean space.  We will get to the 
OLS definition of “best” momentarily.  Procedures based on OLS philosophy and 
mathematical principles can extend OLS regression to the case of curved lines, primarily 
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logarithmic, as well as a multidimensional context.  However, for our purposes of 
deriving adaptive CERs, the linear two-dimensional context suffices. 

 
Suppose we have n data points such as those in Table 1, labeled (x1,y1), (x2,y2), 

…, (xn,yn), where, for 1 ≤ k ≤ n, yk is the actual cost associated with a program whose 
cost driver (perhaps weight, power, etc.) is xk.  Were we to use the OLS regression line y 
= a + bx to predict the cost of the program in question, our cost estimate would have been 
a + bxk, rather than the actual cost yk.  The equation y = a + bx is therefore called a “cost-
estimating relationship” (CER).  

 
Cost-Driver Unit Cost

Program Value x y
A 156.12 51,367.22
B 179.40 5,885.00
C 180.30 7,060.00
D 217.50 139,483.12
E 419.14 3,386.00
F 437.09 6,738.00
G 440.93 6,812.00
H 494.45 3,291.34
I 789.90 5,723.14
J 826.10 10,992.00
K 864.30 11,590.00
L 869.30 15,973.00
M 976.50 7,970.67
N 1,355.80 9,524.10
O 1,360.90 35,927.22
P 1,463.21 11,238.73
Q 2,332.10 92,059.97
R 3,017.73 74,649.00
S 3,253.00 42,915.23  

Table 1. Example of Historical Cost Data (19 Data Points) 

The error in our estimate of the cost of any program is the difference dk = yk – 
(a+bxk) = yk – a – bxk between the actual cost yk and the CER-estimated cost a + bxk.  
The principle of least squares asserts that, in order to calculate the “best”-fitting straight 
line, we ought to choose the coefficients a and b, which determine the CER, so that the 
sum of squared differences (i.e., estimating errors)  
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is as small as possible.  By considering this problem as a two-dimensional minimization 
problem, we can take the partial derivatives of f(a,b) with respect to a and b, respectively, 
set both partial derivatives equal to 0, and solve the resulting simultaneous equations for 
the two unknowns a and b.  This process results in the following OLS explicit 
expressions for the slope b and the intercept a of the linear CER y = a + bx:  
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The above discussion summarizes what can be referred to as “naïve” regression.  

It is naïve, because a number of unstated assumptions that critically affect the nature of 
the CER and how it can be correctly applied are being made, often without the 
knowledge or concurrence of the cost analyst.  The most important of these assumptions 
is that all n data points are and ought to be treated equally by the mathematical 
computations.  An immediate unfortunate corollary is that extreme outlying data points, 
those far away from the bulk of the data and/or the cost-driver value at which the analyst 
wants to make an estimate, exert excessive influence on the location of the regression line 
and all estimates made using it. 

 
What is it about OLS that requires us to consider each data point of equal merit? The 

answer to this question goes back to the early part of the 18th Century when it was 
mathematically derived from reasonable assumptions that estimation errors are well-
modeled by the normal distribution.  In fact, use of the word "normal" was introduced in 
the context of “the normal law of error” by Karl Pearson (1857-1936), a British scientist 
who was one of the founders of modern statistical theory.  (It is said that Pearson later 
regretted his use of the word “normal,” coming to believe that its common usage biased 
less knowledgeable analysts against other statistical distributions, which they assumed to 
be “abnormal” in some sense.)  The theory of regression assumes that the regression line 
is the truth and any departures from it, e.g., those in Figure 1 below, are errors.  This 
means that the actual y values corresponding to any particular x value are normally 
distributed with mean equal to the number a+ bx.  Another way of looking at the OLS 
regression model is as yk = a + bxk + εk, where εk is a normally distributed random 
variable with mean 0 and standard deviation σ. 

 
So far so good. The killer as far as CERs are concerned, though, is the OLS 

requirement that all normal distributions of y values (i.e., εk values), one for each x value, 
have the same standard deviation σ.  It is this requirement that forces OLS to consider all 
data points to be of equal merit. The requirement of equal σ  values as a general rule, 
though, is highly questionable in the case of CERs, especially when the wide range of 
parameters on which CERs may be based is considered.  Take a look at Figure 1. It seems 
clear that, for some technical reason as yet uninvestigated, cost is much more variable for 
cost-driver values near 300 than for other cost-driver levels. Why this happens should be 
studied in detail from the engineering point of view, but nevertheless we have to take 
account of it when estimating costs. 
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Figure 1 illustrates the data of Table 1, along with the OLS regression line that 

best fits the points in the least-squares sense.  The dashed vertical lines in Figure 1 
represent the distances dk whose sum of squared values is to be minimized.  

 
 
 
 
 
 

 

 

 

 

 

 
 

 

 

OLS Regression CER: y = 12.5x + 15,645.6 

y = 12.495x + 15,646
R2 = 0.0968
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Figure 1. The Data Points of Table 1 and their OLS Regression Line 
 
Consider the data point in Table 1 associated with Program D.  From Figure 1, we 

see that this data point’s dk value will contribute the largest amount to the sum of squared 
estimating errors.  In its attempt to minimize the sum of squared errors, the mathematics 
of OLS will take special pains to pull the regression line toward the Program D data point 
and thereby reduce the size of Program D’s contribution to the total squared error.  It is 
its very extremeness that gives the Program D data point its undue influence on the OLS 
regression line. 

 
OLS CER Quality Metrics 

Three quality metrics allow the cost analyst to assess the applicability of the CER 
to estimating problems involving the kinds of subsystems and/or components of which 
the supporting data base is comprised and the validity of estimates made using it.  These 
three quality metrics are the following: (1) standard error of the estimate SEE; (2) bias B; 
and (3) R2.  We will discuss each of these in turn.  

 
The standard error of the estimate SEE is an estimate of the σ value, which is the 

standard deviation of the normal distribution of εk  = yk - a - bxk.  Its expression is  
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In the OLS context, SEE is expressed in the same units as the costs and cost estimates, 
usually dollars.  Because the coefficients of the OLS CER are calculated by minimizing 
the numerator under the square-root sign, the smaller the SEE turns out to be, the “better” 
the CER is.  Choosing the denominator above as n-2 makes SEE an “unbiased” estimator 
of σ.  If the denominator were simply n, SEE would be the “maximum-likelihood” 
estimator of σ, but not unbiased.  “Unbiased” and “maximum likelihood” are statistical 
terms, for which we refer you to any advanced statistics text for further explanation. 
 

The bias B of a CER is the average (sample mean) of the “residuals,” namely the 
differences between the cost estimates and their respective actual costs, corresponding to 
all points in the supporting data base.  In the OLS context, the bias always turns out to be 
zero, viz. 
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Finally, R2, often called the coefficient of determination, is the square of the 

Pearson correlation between the cost estimates and their respective actual costs, 
corresponding to all points in the supporting data base.  R2 indicates the proportion of 
variation in the costs that is attributable to the OLS linear relationship between costs and 
cost drivers.  It is usually expressed as a percentage between 0% and 100%.  An R2 of 
80%, for example, means that 80% of the variation in the cost values seen in the data 
base is attributable to variations in the cost-driver values, while the remaining 20% of the 
variation is attributable to other factors not taken account of in the model, typically 
additional unidentified cost drivers. 

 
Weighted Least Squares 

 
Weighted least-squares (WLS) regression allows the cost analyst to take into 

account, not only the historical-cost data themselves, but also the data-collection or 
estimating context within which the data were gathered or the use to which any resulting 
CER will be put.  Sometimes, the analyst will know that certain data points are less 
reliably known than others, so he or she can “deweight” the less reliable ones.  
Sometimes, the analyst will need a CER that estimates cost only within a certain cost-
driver range, and then he or she can deweight data points outside that range.  Once WLS 
theory is understood, further application contexts will almost certainly present 
themselves. 
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In addition to the actual values of cost driver and cost, each data point is assigned 
a weight, based on considerations discussed above, so that the set of data consist of 
triples (xk,yk,wk), where the weight wk represents the influence that the data point (xk,yk) 
is to have on the CER derived from the data set.  In WLS regression, we weight each 
squared difference =( y2

kd k – (a+bxk))2 = (yk – a – bxk)
2 

 by its weight wk.  We may 
express the principle of weighted least squares as choosing the numerical values of the 
coefficients a and b by minimizing the weighted sum of squared errors: 
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 What effect on the numerical values of a and b does the weighting procedure 
have?  Well, suppose a particular value wk is “small,” indicating that we do not want the 
data point (xk,yk) to exert a major influence on the CER.  Then, regardless of the choice 
of a and b, the term  is not going to contribute too much to the sum of 
squared errors.  Therefore, the mathematics does not have to move the regression line too 
close to the data point (x

2
kkk )bxay(w −−

k,yk) in order to minimize the sum, because not much will be 
gained by making an already small summand a little smaller.  On the other hand, suppose 
wk is “large,” indicating that we do want the corresponding data point (xk,yk) to exert a 
major influence on the CER.  In this case, the term  will be a major 
contributor to the sum of squared errors.  In order to make the sum of squared errors as 
small as possible, a and b will have to be selected to push the resulting CER very close to 
the point (x

2
kkk )bxay(w −−

k,yk). 
 

Normalizing the Weights 
 

 Given an initial set of weights }w,...,w,w{ ***
n21 , we can define a new set of 

weights {w1, w2, …, wn} that is equivalent to the initial set in the sense that the relative 

weights of all data points are the same as they were, but such that   The new 
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shown in the next section.   
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Derivation of WLS Regression Coefficients 
 

To obtain the mathematical expression for a and b in the WLS context, we apply 
calculus to minimize the weighted sum of squared errors g(a,b) by first taking the partial 
derivatives with respect to a and b:   
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Setting the two partial derivatives equal to 0, we obtain the following two simultaneous 
equations in the unknowns a and b: 
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The solution to these equations is 
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Because the weights are normalized, the expressions for b and a can be reduced to, 
respectively,  
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It is should be noted that when all wk values are equal (i.e., all equal to 1 assuming 

normalization), the WLS expressions for a and b reduce to the OLS expressions.  In 
addition, we refer to the expressions 
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as the “weighted means” of the x and y values, respectively.  Note that the expression for 
a guarantees that the point )y,x( ww  falls exactly on the WLS regression line.  Again, 
when each wk = 1 or, more specifically, when all wk values are equal, the expressions for 
the weighted means reduce to the expressions for the ordinary means (i.e., the averages) 
of x and y. 

 
WLS CER Quality Metrics 

The same three quality metrics used for OLS allow the cost analyst to assess the 
applicability of the WLS CER to estimating problems involving the kinds of subsystems 
and/or components of which the supporting data base is comprised and the validity of 
estimates made using it.  These three quality metrics are again the following: (1) standard 
error of the estimate SEEw; (2) bias BBw; and (3) .  However, as one would expect, the 
formulas for them are slightly different in the WLS situation.  
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Because there is nothing in the WLS setup that plays the OLS role of σ, we 

consider the standard error of the estimate SEEw to measure the closeness of the 
estimated costs a + bxk to the actual costs yk in the data base.  Its expression is  
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In the WLS context, SEEw is expressed in the same units as the costs and cost estimates, 
usually dollars.  Because the coefficients of the WLS CER are calculated by minimizing 
the numerator under the square-root sign, the smaller SEEw turns out to be, the “better” 
the CER is.  Because the weights are normalized, the denominator reduces to n-2.  If all 
weights are equal, SEEw reduces to the unbiased form of the OLS SEE. 
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The bias BBw of a CER is the weighted mean of the “residuals,” namely the 
differences between the cost estimates and their respective actual costs, corresponding to 
all points in the supporting data base.  As noted earlier, in the OLS context, the bias 
always turns out to be zero, but this is not true in the WLS context.   
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which reduces to 0 when all wk = 1 or, more specifically, are all the same when 
normalized.  However, the bias is, in general, not typically zero in the weighted least-
squares situation.   

 
Finally, R2, just as in the OLS situation, measures the worth of the linear- 

regression equation as a model of the relationship underlying the data base.  To derive the 
formula for R2 in the WLS situation, let’s start with some reasoning that applies in the 
OLS situation.  Referring to the data points (x1,y1), (x2,y2), …, (xn,yn), we ask why the y 
values vary, i.e., why are they not all the same.  There are two basic reasons that the y 
values vary: (1) the x values vary, and y is related to x through the hypothesized linear 
relationship, and (2) any other reason you can think of that does not involve the 
hypothesized linear relationship, e.g., nonlinearity, random errors in the data, additional 
cost drivers, that affects y.  What R2 does is to allocate the variation in y between these 
two sources.  In particular R2, usually expressed as a percentage, indicates the proportion 
of variation in y that is attributable to the linear relationship between x and y. 

 
 If the y values did not vary at all from the WLS regression line, they all would be 

equal to their weighted mean n/ywy
n

1k
kkw ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

.  If, on the other hand, we had no 

knowledge at all about the relationship between x and y, the best we could do to predict 
the value y at any given x would be to predict wyy = .  This is equivalent to using the 
horizontal line wyy =  in place of the regression line y = a + bx.  The sum of squared 
errors from the horizontal line wyy =  is called the “total variation” of y and is denoted 

TV = .)yy(w
n

1k

2
wkk∑

=

−  
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Suppose now that the only variation in y were due to the influence of the 
regression line y = a + bx.  Then every yk would be equal to its corresponding a+bxk.  
The resulting total variation would then be 

∑∑
==

−+=−
n

1k

2
wkk

n

1k

2
wkk )ybxa(w)yy(w  

since each yk and a+bxk would be one and the same.  It would follow that the quantity VR 

= ∑
=

−+
n

1k

2
wkk )ybxa(w , called the “variance due to regression” is the variation in y that 

can be attributed to the impact of the regression relationship. 
  
 We then compare TV and VR with the weighted sum of squared (SS) errors, 

where SS =     It can be proved by elementary, though tedious, 

calculations that TV = SS+VR.  These calculations are reproduced in the Appendix.  

Simple algebra then ensures that 

.)bxay(w
n

1k

2
kkk∑
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.1
TV
VR

TV
SS

=+   From this equation, it is evident that 

VR/TV is the proportion of the total variation in y that can be attributed to the impact of 
the linear-regression relationship.  The proportion of variation in y due to all other effects 
is equal to SS/TV.  The WLS coefficient of determination is then 
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Adaptive CERs via Quadratic-Distance Weighting 

 
An “adaptive” CER is an extension of the concept of analogy estimating to the 

CER context.  The standard way doing analogy estimating is by finding one historical 
program that has several characteristics in common with the subsystems or components 
of a program that is being estimated, for example, the program’s objective, hardware or 
software design proposed to carry it out, materials of which any hardware is constructed, 
use of similar legacy components, and Government or contractor approach to program 
development or production.  The idea behind an adaptive CER is to build a data base 
consisting of as many programs as we can find that have subsystems or components of 
the same basic kind as in the program being estimated.  Normally, we would use all the 
points of this data base to derive a CER that expresses the subsystem or component cost 
in terms of an appropriate cost-driver. 

 
However, in any particular estimating context, we are interested only in one 

particular value of the cost driver or, at most, a relatively short interval of such values.  
We know from classical OLS theory (see below) that, if the value at which we are 
interested in estimating is relatively far away from the cost-driver values in the data base, 
the accuracy of our estimate is substantially reduced.  Adaptive CERs look at the flip side 
of this situation: If a cost-driver value of a data point is relatively far away from the value 
at which we want to do our estimate, maybe we don’t want to use that data point to 
calculate our CER or, at least, maybe we don’t want to consider it of equal weight with 
data points whose cost-driver values are closer to where we want to estimate. 

 
The mechanics of calculating adaptive CERs is therefore based on measurements 

of the distance between cost-driver values in the data base and the cost-driver value at 
which we want to conduct our estimate.  Data points are treated differently, according to 
their distance from the estimating point.  To carry out the process, we assign each point in 
the data base a “weight” that indicates how important that data point is to our estimating 
problem.  Then we apply “weighted least-squares” (WLS) regression to derive the CER. 

 
For purposes of illustration in this paper, we shall consider quadratic-distance 

weighting.  This weighting method calls for weighting points according to the squared 
distance of its cost-driver value along the x-axis from a cost-driver value of interest.  If x0 
is the cost-driver value of interest and xk is the cost-driver value of the kth data point, then 
QDk = (x0-xk)2 is the squared distance between the two cost-driver values.  Because the 
greater that distance is, the less we want its weight to be, we define the weight of the data 
point (xk,yk) to be the reciprocal of QDk, namely wk = (x0-xk)-2. 
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Why choose quadratic-distance weighting from among the infinite number of 
ways to define the weighting in terms of a cost driver’s distance from x0?  We prefer the 
squared (quadratic) distance, because OLS calculations use the squares of residuals for 
best fit – this process forces the CER to pass through the point )y,x( , where x  is the 
mean of the cost-driver values and y is the mean of the cost values in the data base.  In 
the WLS case, the regression line based on minimizing the squares of residuals passes 

through the point )y,x( ww , where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
÷⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

k

1k
k

k

1k
kkw wxwx  is the weighted mean of 

the cost-driver values and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
÷⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

k

1k
k

k

1k
kkw wywy  is the weighted mean of the cost 

values.  However, other weighting schemes can be used if there is a compelling reason to 
do so. 

 
Starting with the historical-cost data in Table 1, suppose we want to estimate the 

cost of a similar subsystem or component of interest whose cost-driver value is 800.  We 
then weight each of the data points according to the quadratic distance of its cost-driver 
value from 800.  The results are listed in Table 2.  Note that the normalized weights sum 
to 19, which is the number of data points. 
 

 
 

    Table 2. Historical-Cost Data Weighted According 
                             to their Quadratic Distances from 800 
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The next step is to calculate the adaptive CER, i.e., the CER adapted to estimating 
at a cost-driver value of 800.  We apply WLS methods to derive this CER, i.e., using the 
formulas  for a and b derived earlier.  The required preliminary computations appear in 
Table 3. 

 

 
 

Table 3. WLS Computations Leading to Adaptive CER 
at a Cost-Driver Value of 800 

 
 Figure 2 compares the full-data-set CER with the CER adapted, via quadratic-
distance weighting, to a cost-driver value of 800.  It should be noticed that the standard 
error of the full-data-set CER is 34,336.83, while the standard error of the adaptive CER 
with points far from 800 deweighted considerably is only 3,147.82, a decrease in 
magnitude of over 90%.  
 
 Note also that the adaptive CER y = -8,773.56 + 19.4685x appears to estimate 
more accurately around x = 800, while essentially ignoring data points whose x values 
are far removed from 800.  This view is supported by the relative values of the standard 
errors of both CERs. 
 
 For additional illustration, we compare in Figure 3 the full-data-set CER with the 
CER adapted, via quadratic-distance weighting, to a cost-driver value of 300.  It is still 
true, of course, that the standard error of the full-data-set CER is 34,336.83, while the 
standard error of the adaptive CER with points far from 300 deweighted considerably and 
those near 300 more heavily weighted is now 55,556.56.  This large standard error 
undoubtedly occurs, because the actual data points vary quite a bit near the 300 cost-
driver value.  In Figure 4, we compare the full-data-set CER with the CER adapted, via 
quadratic-distance weighting, to a cost-driver value of 3,000.  While the standard error of 
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the full-data-set CER remains at 34,336.83, the standard error of the adaptive CER with 
points far from 3,000 deweighted is now 2,838.37.  

Historical-Cost Data Points with OLS Full-Data-Set CER
and Adaptive CER at 800 
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Figure 2. OLS Full-Data-Set CER Compared with 

Adaptive CER at a Cost-Driver Value of 800 
 

Historical-Cost Data Points with OLS Full-Data-Set CER
and Adaptive CER at 300
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Figure 3. OLS Full-Data-Set CER Compared with 

Adaptive CER at a Cost-Driver Value of 300 
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Historical Cost Data Points with OLS Full-Data-Set CER and 
Adaptive CER at 3,000
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Figure 4. OLS Full-Data-Set CER Compared with 

Adaptive CER at a Cost-Driver Value of 3,000 
 

The “Universal Adaptive CER” 
 

The “universal adaptive CER” is formed by combining* the various individual 
adaptive CERs, of the sort derived above, over the range of cost drivers into one CER 
that applies over the entire range.  This “universal adaptive CER” is, as P. Foussier 
(Reference 3, Chart 5) presciently noted, “highly nonlinear.”  For the data set we have 
been working with, we can consider the cost-driver range to go from 50 to 3,500, and we 
calculate a quadratic-distance-weighted CER and an estimated cost at each increment of 
50 for each of those cost-driver values.  Then we string all these estimates together and 
interpolate between successive ones to form the universal adaptive CER. 

 
 To complete the picture of estimating at each point along the cost-driver axis, we 
record and graph the standard error at each point as well.  Table 4 contains the estimates 
and standard errors at 50 units apart along the cost-driver axis.  The numbers in Table 4 
form the basis for the graphs of the universal adaptive CER and the corresponding 
standard errors in Figure 5. For comparison purposes, the standard error of the OLS CER 
is a constant 34,336.83 across the data base.  Notice how the standard error of the 
universal adaptive CER varies with the distance of the cost-driver value (x axis) from the 
nearest point in the data base.  The numbers in red (between the 50-unit points) in Table 4 
identify the actual data points underlying the analysis. 
------------------------------------------------------------ 
* The idea of combining estimates at various points of the cost-driver range into one all-
inclusive CER was suggested to us by Paul Wetzel of OpsConsulting LLC. 
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Table 4. Universal Adaptive-CER-Based Estimates and Standard Errors 
at 50-Unit Increments Along the Cost-Driver Axis 
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Figure 5. Universal Adaptive-CER-Based Estimates and Standard Errors 

Graphed at 50-Unit Increments along the Cost-Driver Axis 
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Prediction Bounds 
 

Estimating the cost of developing or producing a new subsystem or component is 
essentially trying to predict the future, which means that any such estimate contains 
uncertainty.  A portion of this uncertainty is described by the “standard error of the 
estimate” of a cost-estimating relationship (CER), which is basically the standard 
deviation of errors made (the “residuals”) in using that CER to estimate the (known) costs 
of the subsystems or components comprising the supporting historical data base.  The 
standard error of the estimate depends primarily on the extent to which those (known) 
costs fit the CER that purports to model them.  However, additional uncertainty arises 
from the location of the particular cost-driver value (x) within or without the range of 
cost-driver values for programs comprising the historical cost data base.  For example, if 
x were located near the center of the range of its historical values, the CER would 
provide a more precise measure of the element’s cost than if x were located far from the 
center of the range.  The total uncertainty in the estimate can then be expressed in terms 
of prediction bounds that involve both sources of uncertainty.  

 
The first kind of uncertainty, represented by only one number characteristic of the 

CER, is fairly easy to measure for any CER shape or error model.  The second kind, 
which involves both the CER itself and the value of the cost-driving parameter, however, 
is more complicated, and the way to calculate it is completely understood only in the case 
of classical OLS linear regression.  As a result, an explicit formula exists for “prediction 
intervals” that bound cost estimates based on CERs that have been derived by applying 
OLS to historical cost data.  In fact, the formula for the (1-α)th percent upper and lower 
prediction bounds on the true cost y, based on the estimate ESTy from the CER is the 
following: 
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where tα/2,n-2 is the (1-α)th percentage point of the t distribution, x is the mean of the cost-
driver values in the data base, x is the cost-driver value at which the estimate is being 
made, and SEE is the standard error of the estimate.  Table 5 displays the sequence of 
80% upper and lower prediction bounds for the OLS CER based on our data set.  Figure 6 
graphs the prediction bounds, along with the actual data points and the OLS CER. 
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Cost-Driver Unit Cost 80% Upper OLS 80% Lower
Program Value x y Bound EST y Bound

A 156.12 51,367.22 65,673.53 17,596.30 -30,480.93
B 179.40 5,885.00 65,907.23 17,887.18 -30,132.88
C 180.30 7,060.00 65,916.29 17,898.42 -30,119.45
D 217.50 139,483.12 66,292.88 18,363.23 -29,566.43
E 419.14 3,386.00 68,400.42 20,882.67 -26,635.08
F 437.09 6,738.00 68,593.51 21,106.95 -26,379.62
G 440.93 6,812.00 68,634.94 21,154.93 -26,325.09
H 494.45 3,291.34 69,216.65 21,823.65 -25,569.35
I 789.90 5,723.14 72,574.56 25,515.22 -21,544.12
J 826.10 10,992.00 73,003.23 25,967.53 -21,068.17
K 864.30 11,590.00 73,459.69 26,444.83 -20,570.03
L 869.30 15,973.00 73,519.75 26,507.30 -20,505.14
M 976.50 7,970.67 74,824.83 27,846.74 -19,131.35
N 1,355.80 9,524.10 79,710.04 32,586.00 -14,538.05
O 1,360.90 35,927.22 79,778.56 32,649.72 -14,479.12
P 1,463.21 11,238.73 81,168.85 33,928.06 -13,312.74
Q 2,332.10 92,059.97 94,145.23 44,784.62 -4,576.00
R 3,017.73 74,649.00 105,728.61 53,351.39 974.17
S 3,253.00 42,915.23 109,940.12 56,291.03 2,641.94  

 
Table 5.  80% Upper and Lower OLS Prediction Bounds 

 

80% Prediction Bounds on OLS CER-Based Estimates
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Figure 6. 80% OLS Prediction Bounds with Actual Data Points and OLS CER 
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When the weights are normalized, the expressions for the (1-α)th percent upper 
and lower prediction bounds on the true cost y at the cost-driver value xp, based on 
estimates ESTy from WLS-based adaptive CERs are the following: 
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One way to obtain a usable value, if needed, for wp when xp is not in the data 

base from which the adaptive CERs are derived is to interpolate between the weights of 
the nearest data-base points.  That is what is effectively done in the graphs based on 
Tables 6, 7, and 8 below. 

 
In Table 6, 7, and 8 we compile the 80% upper and lower prediction bounds on 

adaptive CERs at the cost-driver values, respectively, of 800, 300, and 3,000.  Figures 7, 
8, and 9 display the graphs of these respective prediction bounds.  Notice how the 
prediction bounds narrow in the region very near the cost-driver value of interest.  

   
Cost-Driver Unit Cost 80% Upper WLS 80% Lower

Program Value x y Bound EST y Bound
A 156.12 51,367.22 67,335.731428 -5,734.14 -78,804.008697
B 179.40 5,885.00 65,146.948025 -5,280.91 -75,708.771200
C 180.30 7,060.00 65,062.330513 -5,263.39 -75,589.110360
D 217.50 139,483.12 61,564.835765 -4,539.16 -70,643.158038
E 419.14 3,386.00 42,608.518817 -613.53 -43,835.578046
F 437.09 6,738.00 40,921.251654 -264.07 -41,449.391167
G 440.93 6,812.00 40,560.306422 -189.31 -40,938.927733
H 494.45 3,291.34 35,529.986321 852.64 -33,824.697703
I 789.90 5,723.14 8,126.533982 6,604.62 5,082.700610
J 826.10 10,992.00 10,459.318778 7,309.38 4,159.436356
K 864.30 11,590.00 15,439.587849 8,053.07 666.561891
L 869.30 15,973.00 16,099.371097 8,150.42 201.463800
M 976.50 7,970.67 30,313.734118 10,237.44 -9,838.849438
N 1,355.80 9,524.10 80,730.945765 17,621.85 -45,487.245014
O 1,360.90 35,927.22 81,409.009710 17,721.14 -45,966.730098
P 1,463.21 11,238.73 95,011.748000 19,712.96 -55,585.820690
Q 2,332.10 92,059.97 210,542.762967 36,628.96 -137,284.838305
R 3,017.73 74,649.00 301,708.981386 49,977.16 -201,754.659776
S 3,253.00 42,915.23 332,992.265384 54,557.52 -223,877.228359

Sums 19,633.77 542,585.74 215,542.66  
 

Table 6.  80% Upper and Lower Prediction Bounds for 
Adaptive-CER-Based Estimates at Cost-Driver Value 800 
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Figure 7.  80% Prediction Bounds for Adaptive-CER-Based Estimates 
at Cost-Driver Value 800 with Actual Data Points and Adaptive CER 

 
 What is characteristic about the prediction bounds whose graphs appear in Figures 
7, 9, and 11 is their excessive widening as the cost-driver value moves away from its base 
value (800 in Figure 7, 300 in Figure 9, and 3,000 in Figure 11.  The point to remember 
about adaptive CERs is that it is our intention to apply them only in the vicinity of the 
base cost-driver value, where the prediction bounds are at their narrowest.  Therefore, 
their width in other estimating regions is essentially irrelevant.  By the way, the upper 
and lower prediction bounds do not touch, as Figures 8, 10, and 12 below show.  In 
addition, because these are prediction bounds on cost estimates, which as a practical 
matter cannot be negative, the region of applicability is further constrained beyond cost-
driver values at which the lower prediction bounds go negative.  
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Figure 8.  Gap between Upper and Lower Prediction Bounds 
in the Vicinity of the Cost-Driver Value 800 

 
 

Cost-Driver Unit Cost 80% Upper WLS 80% Lower
Program Value x y Bound EST y Bound

A 156.12 51,367.22 65,389.279544 61,698.97 58,008.663971
B 179.40 5,885.00 62,372.227016 59,227.74 56,083.244080
C 180.30 7,060.00 62,255.776784 59,132.20 56,008.619347
D 217.50 139,483.12 57,462.441876 55,183.32 52,904.189048
E 419.14 3,386.00 36,867.788626 33,778.67 30,689.557986
F 437.09 6,738.00 35,381.736102 31,873.23 28,364.726492
G 440.93 6,812.00 35,064.501531 31,465.60 27,866.707881
H 494.45 3,291.34 30,658.711130 25,784.31 20,909.907048
I 789.90 5,723.14 6,491.040727 -5,578.52 -17,648.087346
J 826.10 10,992.00 3,534.857637 -9,421.25 -22,377.363947
K 864.30 11,590.00 415.759782 -13,476.29 -27,368.336816
L 869.30 15,973.00 7.527753 -14,007.05 -28,021.632368
M 976.50 7,970.67 -8,743.802865 -25,386.63 -42,029.453100
N 1,355.80 9,524.10 -39,698.603983 -65,650.37 -91,602.134324
O 1,360.90 35,927.22 -40,114.762116 -66,191.75 -92,268.734323
P 1,463.21 11,238.73 -48,463.042557 -77,052.24 -105,641.431258
Q 2,332.10 92,059.97 -119,355.526647 -169,287.31 -219,219.087245
R 3,017.73 74,649.00 -175,292.373781 -242,068.82 -308,845.271266
S 3,253.00 42,915.23 -194,486.501042 -267,043.38 -339,600.262830

Sums 19,633.77 542,585.74 -597,019.57  
 

Table 7.  80% Upper and Lower Prediction Bounds for 
Adaptive-CER-Based Estimates at Cost-Driver Value 300 
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Figure 9.  80% Prediction Bounds for Adaptive-CER-Based Estimates 
at Cost-Driver Value 300 with Actual Data Points and Adaptive CER 
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Figure 10.  Gap between Upper and Lower Prediction Bounds 
in the Vicinity of the Cost-Driver Value 300 
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Cost-Driver Unit Cost 80% Upper WLS 80% Lower
Program Value x y Bound EST y Bound

A 156.12 51,367.22 202,434.005312 34,104.71 -134,224.591913
B 179.40 5,885.00 201,384.901034 34,433.09 -132,518.729992
C 180.30 7,060.00 201,344.342887 34,445.78 -132,452.781730
D 217.50 139,483.12 199,667.940092 34,970.51 -129,726.920845
E 419.14 3,386.00 190,581.137616 37,814.77 -114,951.604146
F 437.09 6,738.00 189,772.232090 38,067.96 -113,636.306880
G 440.93 6,812.00 189,599.184936 38,122.13 -113,354.928569
H 494.45 3,291.34 187,187.341936 38,877.06 -109,433.220060
I 789.90 5,723.14 173,873.151720 43,044.57 -87,784.019292
J 826.10 10,992.00 172,241.840172 43,555.19 -85,131.460894
K 864.30 11,590.00 170,520.403443 44,094.02 -82,332.354836
L 869.30 15,973.00 170,295.084698 44,164.55 -81,965.979897
M 976.50 7,970.67 165,464.262738 45,676.67 -74,110.913120
N 1,355.80 9,524.10 148,371.862469 51,026.94 -46,317.989913
O 1,360.90 35,927.22 148,142.044389 51,098.87 -45,944.294515
P 1,463.21 11,238.73 143,531.737673 52,542.02 -38,447.695941
Q 2,332.10 92,059.97 104,382.272484 64,798.25 25,214.232669
R 3,017.73 74,649.00 75,911.693364 74,469.49 73,027.283557
S 3,253.00 42,915.23 92,744.870060 77,788.12 62,831.365052

Sums 19,633.77 542,585.74 883,094.70  
 

Table 8.  80% Upper and Lower Prediction Bounds for 
Adaptive-CER-Based Estimates at Cost-Driver Value 3,000 
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Figure 11.  80% Prediction Bounds for Adaptive-CER-Based Estimates 
at Cost-Driver Value 3,000 with Actual Data Points and Adaptive CER 
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Figure 12.  Gap between Upper and Lower Prediction Bounds 
in the Vicinity of the Cost-Driver Value 3,000 

 
Prediction Bounds for the Universal Adaptive CER 

 
 The universal adaptive CER described in Table 4 and Figure 5 is formed by 
combining the various individual adaptive CERs, over the range of cost drivers into one 
CER that applies over the entire range.  In the example we have been working with, 
adaptive CERs corresponding to 50-unit cost-driver increments are merged to form one 
continuous CER across the entire cost-driver range.  The resulting universal adaptive 
CER is illustrated in Figure 5.  Insofar as prediction bounds are concerned, we want to 
make use of the fact that prediction bounds on each individual adaptive CER are very 
narrow in the vicinity of the cost-driver value on which the adaptive CER is based, but 
they widen considerably as the cost-driver value moves away from that point.  This effect 
can be seen very clearly in Figures 7, 9, and 11.  The universal adaptive CER takes 
advantage of this situation by providing estimates that have the narrowest possible 
prediction bounds for all cost-driver values. 
 
 Table 11 below contains the numerical data on 80% upper and lower prediction 
bounds on estimate made using the universal adaptive CER.  The prediction bounds 
themselves, along with the data points and the CER, appear in Figure 10.  Note that the 
prediction bounds are much narrower in the adaptive context than in the standard least-
squares-fit context.    
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Table 9. Universal Adaptive-CER-Based Estimates and 80% Prediction Bounds 

at 50-Unit Increments Along the Cost-Driver Axis 
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The Universal Adaptive CER with 
80% Upper and Lower Prediction Bounds
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Figure 13. Universal Adaptive-CER-Based Estimates and 80% Prediction Bounds 

Graphed at 50-Unit Increments along the Cost-Driver Axis  
 

As is characteristic of adaptive CERs, we see that the prediction bounds are much 
narrower in Figure 10 than they are in the OLS regression situation illustrated in Figure 
6.  Again, this narrowing is due to the fact that estimating using an adaptive CER near a 
cost-driver value is carried out using only data points near that cost-driver value.  
However, when there is significant variation in data points near a cost-driver value, the 
prediction bounds widen in that region.  For an example, see what happens in the cost-
driver region of 200-300 in Figure 13 above.  The prediction bounds for OLS CERs, on 
the other hand, must be wide enough to provide the desired amount of confidence, e.g., 
80%, throughout the entire cost-driver range. 
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Appendix 
 

Algebraic Analysis of the Total Variation 
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We now show that the third summand in the above equation is always zero, no matter 
what the data, so that TV = SS + VB for every set of data points.  The expression for a 
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