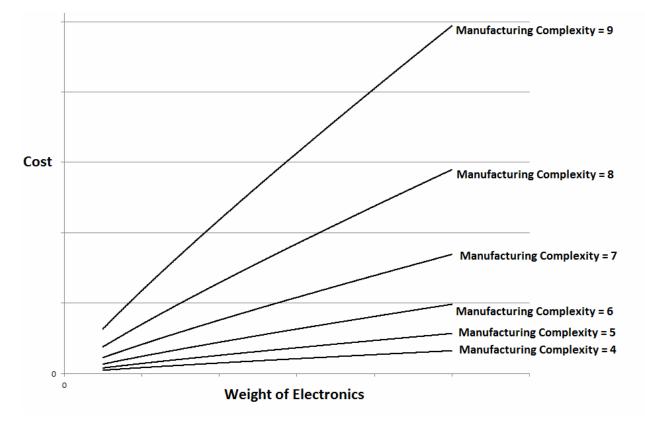

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Data-Driven Estimating - Quantifying Electronics Complexity Using Public Data

> F. Gurney Thompson III ICEAA – June 26-29, 2013

Requirements


- Must cover a vast majority of electronic equipment types and technologies estimated by the Aerospace and Defense market.
- Must be derived from actual electronic cost data that can be redistributed publicly.
- Must enable the user to trace recommendations back to the cost data from which it came.

 These requirements led to a solution using publicly available data.

Solution Design

- Manufacturing Complexity for Electronics is a technology index for the electronics of the item being modeled.
- Represents production cost per unit of weight for electronics

Solution Design

- Met with electronics engineer, designed a structure to cover most classifications of electronics
- Allows user to describe electronics 2 different ways:
 - Function (receiver, transmitter, filter, signal processor, detector, memory, etc.)
 - Equipment Type (radar, sonar, navigation, countermeasures, GPS, data link, etc.)
- See new Manufacturing Complexity schema

Data Collection

- U.S. Federal Supply Catalog is main data source.
 - Data from over 70 US Army, Navy, Air Force and other government, military and commercial-related databases, for all items in US Federal Supply Catalog. IHS Haystack tool used to organize/query data. Contains parts, logistics, cost, and technical data.
- Designed a data collection/analysis process, to model electronic items in TP, and calibrate to find Complexity
- MCPLXE calibration requires the following info:
 - Unit Production Cost (with quantity and date basis)
 - Weight of electronics and structure
 - Operating Specification
 - Manufacturing Complexity for Structure

Unit Production Cost

- ML-C unit price (DLA average price) data is frequently available
- ML-C unit price includes:
 - Acquisition Cost
 - Unit Production Cost
 - G&A (Assumed 15%)
 - Fee/Profit (Assumed 15%)
 - Cost of Money (Assumed 2%)
 - Material Support Division (MSD) Overhead
- Unit Production Cost = (ML-C Price MSD Overhead) * 0.85 (G&A) * 0.85 (F/P) * 0.98 (COM)
- MSD Overhead is only occasionally available. Used available data to find an average to apply to all data points
- Normalize by date/inflation

Determining Quantity Basis

- For electronics, DLA values generally represent replenishment spares (small batch)
- Will use average lot size from procurement histories, when available
 - If unavailable for a data point, will use average lot size for similar equipment
 - Average lot size is small, average ~24
- Learning Curve assumed very slight (98%), because there is very little room for additional learning when building replenishment spares in small batches.
 - This also means quantity is not a major influence on UPC.

Weight of S/E

- The only weight data generally available is Unit Pack Weight (with an associated quantity), and Packaging Type
- Unit Pack Weight includes:
 - WS
 - WE
 - Weight of packaging
- WE/WT ratio determined 1 of 3 ways:
 - refer to PRICE NDA dataset for similar items
 - predefined rules of thumb (see excel sheet)
 - SME estimate
- Weight of Packaging estimated according to table (see excel sheet)
- WE = (Unit Pack Weight Weight of Packaging) * (WE/WT Ratio)

Other Drivers

Operating Specification

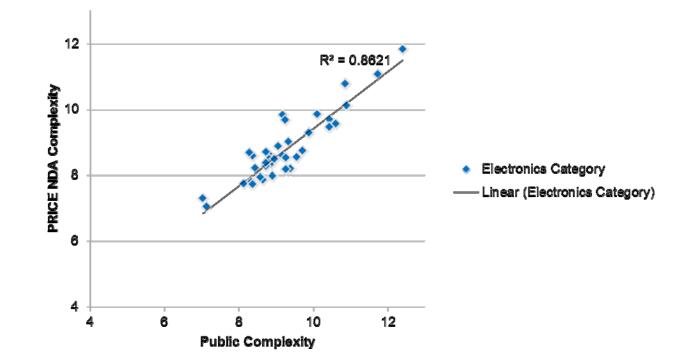
 Determined by looking for clues in "Technical Characteristics" database. The "End Item" is often known.

Manufacturing Complexity for Structure (MCPLXS)

- Determined by MCPLXS generator, or
- Use MCPLXS of similar items from original PRICE dataset.

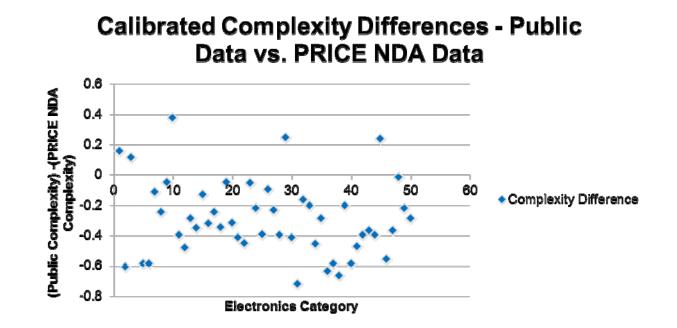
Adjustment Equations

- Variance exists in the calculated Complexity values that could be explained by other variables
- For every item, Operating Specification found to be a significant variable in explaining variation – implemented as an additional adjustment equation.
- May find adjustments specific to a category
 - Example: RF electronics may be adjusted by Frequency.

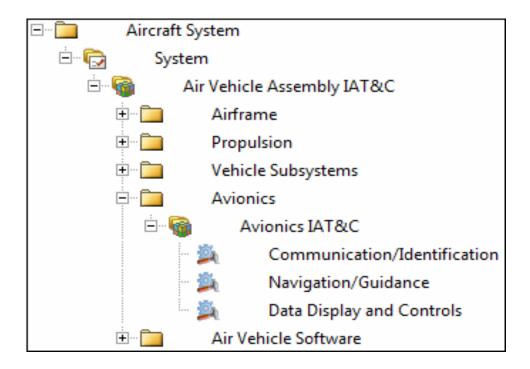

Adjustment Equations (cont.)

- Remaining variability may be due to different intended uses that require more advanced technology.
 - Example: RF Amplifiers might be used in walkie talkies (low complexity), in state-of-the-art electronic warfare equipment (high complexity), or anywhere inbetween
 - This is why RF amplifiers have such a large standard deviation
- "Technology Adjustment" accounts for remaining variability
 - The magnitude of effect for this input depends on the standard deviation in our dataset.

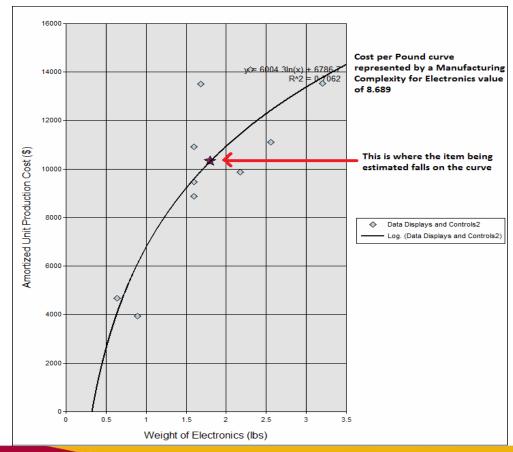
Final Calibration Step


 By comparing to our private PRICE dataset (protected by NDA), we can see that relative complexities seem correct

Final Calibration Step


Relative complexities match our data, but absolute complexity is off.

Defending Your Estimate


- The goal is to empower users to defend their estimates
- Example: Aircraft Avionics Cost Estimate

Defending Your Estimate

- Quantities, Schedule? From Project Office or RFQ
- Weight? From Weight Statement
- Manufacturing Complexity for Electronics?

Questions

