

A Novel Non-Recurring Production CER Methodology

ICEAA Workshop – New Orleans, LA June 18-21, 2013

Lisa Hackbarth Associate – MCR LLC <u>hackbarth@mcri.com</u> Raymond Covert President – Covarus LLC

© 2013 MCR, LLC | Distribution prohibited without express written consent of MCR, LLC

MCR Outline

Introduction

Data

Non-Recurring Estimate Methods

- Factor Method
- CER Method
- Logistic Regression
- Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

R Introduction (1 of 3)

- P Covarus Businees - Moth - Science
- In the process of developing a weapon system cost model, we regressed Recurring (R) Production CERs
 - Against various technical parameters (weight, range, etc.)
 - Using Zero Percent Bias, Minimum Percent Error (ZMPE) Unit-as-an-Independent Variable (UAIV) regression technique (Covert, R., & Wright, N., 2012)
- For completeness, we needed to include Non-Recurring (NR) Production costs as well
 - Typically done with a NR/R factor, but is there a better way?

- But there are problems with estimating NR Production costs as opposed to recurring production costs, such as...
 - Inconsistencies in the ways contractors breakout NR and R production costs
 - Some don't break it out at all
 - They have differing definitions of what constitutes NR
 - Not every lot has NR costs
 - Typically a decrease in NR costs in later lots
 - Unknown and unreported cost drivers
 - NR costs not necessarily driven by same variables as R Production costs

Introduction (3 of 3)

- P Covarus Business - Moth - Science
- The problem we faced was how to create an estimating method with a binary data set
 - In some cases the NR production cost data showed recognizable trends with quantity, and
 - In other cases data were absent or had zero values
- This creates a situation in which CER development is hindered by very poor fit statistics and a lack of recognizable cost drivers
- We will present the data and demonstrate how we applied a novel NR Production CER methodology

Outline

- Introduction
- Data
- Non-Recurring Estimate Methods
 - Factor Method
 - CER Method
 - Logistic Regression
 - Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

- The data consist of the NR production costs of low rate initial production (LRIP) and full scale production (FSP) lots (in FY13\$K)
 - We also include our estimate of the lot recurring production costs based upon previously developed CERs
- We gathered the first and last production units for each of these lots
- We then calculated an assumed lot midpoint (LMPA) based on the pooled learning curve slope derived from all of the production lots

Data Table (1 of 3)

Task	First	Last	LMP _A	NR	2013\$K	RE	C^
LRIP 1 of 1	1	15	6	\$	238	\$	40,273
Lot #1	1	15	6	\$	-	\$	19,726
LRIP 1 of 2	1	66	22	\$	24	\$	80,370
Lot #1	1	67	22	\$	-	\$	37,229
Lot #1	1	80	27	\$	56,680	\$	78,912
Lot #1	1	132	43	\$	-	\$	266,255
Lot #1	16	85	44	\$	14,095	\$	50,188
Lot #1	16	90	46	\$	408	\$	108,438
Lot #2	31	138	76	\$	3,294	\$	183,361
Lot #1	1	240	76	\$	3,196	\$	370,935
LRIP 1 of 2	1	352	111	\$	16,083	\$	130,457
LRIP 2 of 2	67	170	113	\$	4,768	\$	77,785
Lot #1	1	390	123	\$	37,046	\$	206,763
Lot #2	68	251	147	\$	5,623	\$	58,365
Lot #2	86	295	177	\$	29,704	\$	99,756
Lot #2	91	290	178	\$	1,280	\$	193,524
Lot #2	81	316	182	\$	24,056	\$	131,098
LRIP 1 of 3	1	735	229	\$	29,126	\$	52,885
Lot #3	85	434	230	\$	-	\$	153,683
LRIP 1 of 1	1	800	249	\$	29,635	\$	143,951
Lot #3	139	403	256	\$	-	\$	313,396
Lot #1	171	488	312	\$	16,264	\$	175,895
Lot #3	241	524	371	\$	-	\$	273,870
Lot #3	252	687	446	\$	5,079	\$	99,310
Lot #3	317	609	453	\$	24,969	\$	124,004
Lot #3	291	662	460	\$	23,333	\$	271,337
Lot #4	404	668	529	\$	-	\$	252,485
Lot #2	489	788	631	\$	2,655	\$	134,516
Lot #5	525	974	735	\$	5,872	\$	353,932
Lot #4	435	1178	767	\$	163	\$	228,237

LMP_A= Assumed Lot Midpoint

REC[^] = Estimated Recurring Production Cost

© 2013 MCR, LLC. All rights reserved. Distribution prohibited..

Data Table (2 of 3)

Task	First	Last	LMP _A	NR	2013\$K	RE	C^
Lot #5	669	933	796	\$	-	\$	223,493
LRIP 2 of 2	353	1408	805	\$	2,837	\$	216,673
Lot #4	506	1255	844	\$	19,042	\$	223,610
Lot #4	688	1061	866	\$	3,679	\$	69,924
Lot #4	663	1112	875	\$	13,286	\$	271,024
Lot #4	610	1259	909	\$	89,796	\$	223,468
Lot #3	789	1139	957	\$	2,493	\$	138,995
LRIP 2 of 3	874	1074	972	\$	-	\$	36,498
Lot #1	1	3218	990	\$	657	\$	371,030
Lot #6	934	1086	1009	\$	-	\$	120,251
Lot #2	391	1880	1016	\$	-	\$	420,420
LRIP 2 of 3	736	1604	1134	\$	2,719	\$	38,786
Lot #7	1087	1266	1175	\$	-	\$	135,183
Lot #6	975	1406	1182	\$	-	\$	294,867
Lot #5	1113	1382	1244	\$	-	\$	146,412
Lot #4	1140	1397	1266	\$	1,913	\$	94,002
Lot #5	1062	1555	1298	\$	638	\$	81,853
LRIP 2 of 3	1075	1572	1313	\$	2,170	\$	82,665
Lot #8	1267	1461	1362	\$	-	\$	140,127
Lot #5	1398	1545	1471	\$	1,033	\$	51,564
Lot #6	1546	1595	1570	\$	359	\$	17,083
Lot #7	1407	1836	1615	\$	-	\$	267,412
Lot #6	1383	1922	1643	\$	658	\$	269,552
Lot #9	1462	1881	1666	\$	-	\$	284,266
Lot #6	1556	1996	1770	\$	2,488	\$	66,624
Lot #5	1256	2565	1861	\$	3,192	\$	308,631
Lot #1	1409	2508	1925	\$	8,744	\$	174,059
Lot #8	1837	2136	1984	\$	-	\$	175,477
LRIP 3 of 3	1573	2610	2063	\$	4,264	\$	150,598
LRIP 3 of 3	1605	2620	2086	\$	3,781	\$	37,814

Data Table (3 of 3)

Task	First	Last	LMP _A	NF	2013\$K	RE	C^
Lot #7	1997	2574	2278	\$	1,505	\$	81,001
Lot #9	2257	2376	2316	\$	-	\$	67,027
Lot #3	1881	3473	2625	\$	-	\$	338,724
Lot #6	2566	2865	2714	\$	191	\$	63,158
Lot #8	2537	3305	2910	\$	-	\$	323,726
LRIP 3 of 3	2611	3264	2930	\$	-	\$	85,471
Lot #2	2061	4197	3048	\$	1,353	\$	182,132
Lot #6	2954	4323	3610	\$	46,228	\$	312,283
Lot #1	3265	4052	3649	\$	2,224	\$	96,457
Lot #4	3474	5080	4244	\$	-	\$	296,102
Lot #1	4053	5036	4533	\$	2,666	\$	112,912
Lot #12	4363	5239	4792	\$	-	\$	318,187
Lot #3	4198	6127	5123	\$	-	\$	140,901
Lot #2	3219	7861	5320	\$	-	\$	324,151
Lot #13	5240	5837	5535	\$	-	\$	207,843
Lot #1	2621	9395	5558	\$	7,380	\$	188,288
Lot #14	5838	6372	6102	\$	-	\$	180,615
Lot #5	5081	7227	6113	\$	-	\$	354,833
Lot #15	6373	6954	6661	\$	760	\$	191,423
Lot #2	2509	13131	6928	\$	1,190	\$1	,147,575
Lot #5	7228	8906	8048	\$	-	\$	255,653
Lot #3	7041	9959	8446	\$	13,250	\$	278,251
Lot #6	8907	11433	10136	\$	-	\$	359,212
Lot #7	11434	12700	12060	\$	-	\$	171,012
Lot #8	12701	13022	12861	\$	-	\$	42,636
Lot #4	11046	16343	13583	\$	-	\$	464,430
Lot #2	9396	21714	15007	\$	11,719	\$	254,638
Lot #3	21715	27048	24318	\$	4,642	\$	95,480
Lot #5	30834	36347	33542	\$	-	\$	222,375
Lot #6	36348	39210	37767	\$	-	\$	111,450

CR NR Production Scatter Plot

© 2013 MCR, LLC. All rights reserved. Distribution prohibited..

LMP_A

A Novel Non-Recurring Production CER Methodology |11

ovarus

Business - Math - Science

MCR Outline

- Introduction
- Data
- Non-Recurring Estimate Methods
 - Factor Method
 - CER Method
 - Logistic Regression
 - Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

Presented at the 2013 BEAA Professional Development & Training Workshop - www.iceaaonline.com NON-Recurring Estimate Covarus Methods

- Initially, we used two methods of creating estimates of NR production costs
 - Factor Regression, y=a* ϵ
 - CER Regression, Log-Unit CER, y= a + b * In(Unit) * ϵ
- We then tried to treat the binary nature of the data using Logistic Regression
 - The goal was to be able to predict which NR production costs should be zero and which ones should not
- Finally, we combined the Logistic Regression and CER Regression to develop the estimates

Factor Method

- Cost-on-Estimate (CoE) factor, y=a*e
- The coefficient "a" is the ratio of NR/R production costs
- These factors were developed using the weighted average and ZMPE Method (which removes the bias)
- Drawbacks
- Predicts NR costs for every lot (whether there were actual NR costs for that lot or not)
- The statistics for the weighted average can be biased when compared to actual NR production lot costs, ZMPE method provides an unbiased factor

Factor Method

© 2013 MCR, LLC. All rights reserved. Distribution prohibited..

A Novel Non-Recurring Production CER Methodology 15

arus

Rusinans - Math - Sci

CER Method

- Regressed NR/R costs as a function of quantity
 - Used ZMPE regression technique
 - Scatter of data indicated a natural log (In) equation would be the best fit: NR/R = a + b * In(Unit)* ε
- Drawbacks
 - Predicts NR costs for every lot (whether there were actual NR costs for that lot or not)
 - Poor statistics partially due to zero-cost lots
 - When "unit" is large, can result in negative NR cost

CER Method

© 2013 MCR, LLC. All rights reserved. Distribution prohibited...

A Novel Non-Recurring Production CER Methodology 17

arus

Rusinass - Math

Logistic Regression (1 of 3)

- Logistic regression used to find relationships between an independent variable and a series of dependent variables
- Commonly used in social sciences, but very rarely used in cost analysis
 - Used in cost growth studies (Lucas & White, 2009) (White, Sipple, & Greiner, 2004)
 - Used in this paper to model binomial (i.e., zero and nonzero) behavior of NR production cost data

Logistic Regression (2 of 3)

 Logistic regression uses the logistic function, π(x), to relate the dependent variables, X_i, to a range of values between zero and one (i.e. [0,1])

$$\pi(x) = \frac{e^{g(x)}}{1 + e^{g(x)}}; 0 \le \pi(x) \le 1$$

where g(x) is the logit function (typically, but not necessarily, a linear relationship)

The function g(x) is called the logit function which represents the log-odds of an event taking place

$$g(x) = a + bx_1 + cx_2 + dx_3 + ex_4 + \varepsilon$$

Logistic Regression (3 of 3)

- Several a priori variables and combinations were used until the highest 'hit rate' was found
 - 'Hit rate' is the percentage that the logit function correctly predicted the presence or lack of NR costs
 - Solved using ZMPE with additive error
- Best logistic regression found, g(x):
 - $g(x) = a+bx_1+cx_2+dx_3+\varepsilon$, where
 - x_1 = Natural log of the LMP_A, using the pooled learning curve slope
 - x₂ = Lot number, integer value for FSP lots and a fraction for each LRIP lot based on total program LRIP lots (e.g. for a program with 2 LRIP lots: LRIP 1 = 0.33, LRIP 2 = 0.66)
 - x_3 = First unit in the lot divided by 1000
 - a, b, c, and d are coefficients of the logistic regression
 - ε = The error of the regression

CR Logit Function Statistics

Coefficients and fit statistics

g(x)							
a 2.760369895							
b	-0.12299699						
С	-0.348271119						
d	-0.04408676						
Measurement Data							
Observations 90							
Coefficents							
Dof 86							
Error Statistics							
PSE	52.8%						
Bias	(0.00)						
Hit Rate, %	73.3%						

• $f_{\pi(x)} = \begin{cases} 1 & if \ \pi(x) > 0.5 \\ 0 & otherwise \end{cases}$ Interpretation: If $\pi(x) > 0.5$, the NR is deemed present for that lot

Presented at the 2013 ICEAA Regional Development & Training Workshop - www.iceaaonline.com LOGISTIC-REGRESSION-Enhanced CER

- Combined the logistic regression and CER regression in one step to find the coefficients of the equation $Y = f_{\pi(x)}(a + b * \ln(\text{Unit})) * \varepsilon$
 - Regressed all lots (with zero and non-zero NR production costs) using the ZMPE method
- Goal is to find logistic-regression-enhanced CER with lowest PSE
 - If a hit and no actual NR, PSE for that lot is 0; if a miss and actual NR, PSE is -1; otherwise PSE calculated as:

PSE = 100% *
$$\sqrt{\frac{1}{n-m} \sum_{i=1}^{n} \left[\frac{y_i - f(x_i)}{f(x_i)}\right]^2}$$

Presented at the 2013 ICEAA Refessional Development & Training Workshop - www.iceaaonline.com arus Enhanced **ČER** Rusinans - Math - Sci

A Novel Non-Recurring Production CER Methodology 23

Outline

- Introduction
- Data
- Non-Recurring Estimate Methods
 - Factor Method
 - CER Method
 - Logistic Regression
 - Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

Comparison

The error statistics using the three methods are shown below

ZMPE F	actor	CER N	Nethod	Logistic Reg + CER		
PSE	223%	PSE	187%	PSE	153%	
R ²	0.2%	R ²	0.7%	R ²	2.3%	
Pct Bias	0.0%	Pct Bias	0.0%	Pct Bias	0.0%	
Hit Rate, %	60.0%	Hit Rate, %	60.0%	Hit Rate, %	73.3%	

- While the PSE and R² statistics are still poor, we experienced successive improvements
 - Unit-driven CER is an improvement over a simple factor
 - Logistic-Regression-Enhanced CER is an improvement over the unit-driven CER

Comparison

© 2013 MCR, LLC. All rights reserved. Distribution prohibited..

A Novel Non-Recurring Production CER Methodology 26

Outline

- Introduction
- Data
- Non-Recurring Estimate Methods
 - Factor Method
 - CER Method
 - Logistic Regression
 - Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

Conclusion (1 of 2)

• NR production costs are difficult to estimate due to:

- Binary nature of the data
- Amount of scatter of the data
- Lack of established NR production cost drivers with which to perform regressions
- This forced us to create NR factor-type CERs
- To improve the ability to estimate these costs, we combined logistic regression with CER development techniques

Conclusion (2 of 2)

- P Covarus Business - Moth - Science
- Logistic regression provides ability to predict binary nature of the data, and improve CER statistics
- Logistic-regression-enhanced CER improved the error statistics of the regression
 - Noise is reduced PSE decreased 32% from the Factor Method and decreased 19% from the CER Method
 - Better modeling of binary nature of data hit rate improved 22% over the other methods
 - Inherent correlation between actuals and estimates is starting to improve (through increased R²), although still quite low, it is much greater than the other methods

Outline

- Introduction
- Data
- Non-Recurring Estimate Methods
 - Factor Method
 - CER Method
 - Logistic Regression
 - Logistic-Regression-Enhanced CER
- Comparison
- Conclusion
- Works Cited

CR Works Cited

- Covert, R. & Wright, N. (2012). Estimating Relationship Development Spreadsheet and Unit-as-an-Independent Variable Regressions. 2012 ISPA/SCEA Conference, Orlando, FL.
- Lucas, B. & White, E. (2009). Macro Approach to Estimate Engineering and Manufacturing Development Cost Growth. Cost Engineering, 51(6), 30-34.
- White, E., Sipple, V. & Greiner, M. (2004). Using Logistic and Multiple Regression to Estimate Engineering Cost Risk. Journal of Cost Analysis and Management, Summer, 67-79.

Questions?

