
Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Cost Effective Analysis: The role of discounting in government investing

> By: Brandon Shepelak Date: May 20, 2013

Cost effective analysis

- A program is considered cost effective if it is determined to have the lowest cost in PV terms for a given amount of benefits
 - Applicable when it is unnecessary to consider the dollar value of the benefits under each alternative

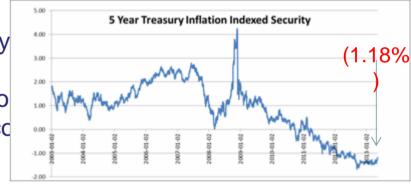
Cost effective analysis (cont'd)

- All cost effective investments are discounted back to today's dollars using a PV formula
 - One method : Cash flow × Discount Factor
- Appropriately setting up the discount faction is critical in valuing a cost effective investment
 - Discount factorinal of Real Treastury rate
- Over or under valuation can result when misappropriate inputs are applied
- Items to consider when computing an appropriate discount factor :
 - 1. Discount rates
 - 2. Timing of expenditures
 - 3. Inflation

Discount Rates

- Government discount rates are guided by OMB in Circular A-94 Appendix C
 - United States government cost of capital (treasury borrowing rate)
 - Treasury rates are given on a nominal and real basis for the 3, 5, 7, 10, 20 and 30 year
- Circular A-94 guides us to match the life cycle cost to the maturity of the treasury rate
 - A 20 year cost estimate would use a 20 year treasury rate
 - If the lifecycle extends beyond 30 years a 30 year treasury rate is applied

Discount Rates(cont'd)


- Linear interpolation shall be used when the life cycle falls between the given Treasury rates
 - Inter-period rate is computed by using a linear equation
 - Linear interpolation X3 + (R5 R3) / (X5 X3)
- Linear interpolation is vital in coming up with an appropriate discount rate
 - If using a different rate than what should be applied your PV
 - Use higher rate then underestimate cost
 - Use lower rate then overestimate cost
- 15 year investment using OMB's 2004 10 and 20 year real treasury rates :

		1	2	3	4	5	6	7	8	9	FY 10-15	Σ (Sum)	Δ Delta
T-Note	15yr - 3.1%	485	470	456	443	429	416	404	392	380	\$2,051	\$5,926	0
	10yr - 2.8%	486	473	460	448	436	424	412	401	390	\$2,127	\$6,056	2%
	20yr - 3.4%	484	468	452	437	423	409	396	383	370	\$1,978	\$5,800	-2%

Note¹: Constant dollar base of \$500

Discount Rates(cont'd)

- Negative real rates
 - In periods of low nominal rates real rates can be negative expected inflation exceeds the nominal rate
 - At negative real rates on treasury debt discounting on a cost effective investment will lead to a higher cost than your initial amount
- 5 year investment using OMB's 5 year treasury
 - 2013 OMB real rate negative at (.8%)
 - Discounted cost will higher than base amo
 - Cost effective investment deemed more cd

	1	2	3	4	5	\sum (Sum)	Δ Delta
5yr - (.8%)	504	508	512	516	520	\$2,561	2.45%

Note¹: Constant dollar base of \$500

Timing of Expenditures

- The timing of your cash flow is important and will have an impact on your present value
 - Three scenarios to consider:
 - Beginning of the year payment
 - Mid year payment
 - End of the year payment
- Depending on when your agency or project expends its cash:
 - If the expenditure occurs at the beginning of the year discount

beg. of year

mid year discount

- If the expenditure occurs in the middle of the year factor
 - If the expenditure occurs at the end of the year end of year discount factor

Timing of Expenditures (cont'd)

- Beginning of the year cash flows are treated as the previous end of the year expenditure
 - Year 1 beginning cash flow will not be discounted (t-1 = 1 1 = 0 N⁰ = 1)
 - Raise to the power of t-1
 CF/(1+R)^{t-1}
- Mid year payments are applied when a constant stream of expenditures are made throughout the year or a single expenditure is made mid-year
 - Raise to the power of t .5
 CF/(1+R)^{t-.5}
- End of the year payments are applied when expenditures is made at the end of the year
 - Raise to the power of t
 CF/ (1+R)^t

Inflation

- Circular A-94 guides us to use nominal or real discount rates
 - Nominal rates expected inflation is included in the discount rate
 - Real rates expected inflation is excluded in the discount rate
- Nominal rates should be used with Then Year cost (current dollars) and Real rates should be used with base year cost (constant dollars)
- It is imperative to match nominal rates with current dollars because the higher nominal rate will adjust for inflation
 - If current dollars are discounted by a real rate it will lead to overestimation
- It is imperative to match real rates with constant dollars
 - If constant dollars are discounted by a nominal rate it will lead to underestimation

Model Inputs and Model Run Through

Walkthrough of VBA model that performs discounting procedure

Sources

Office of Management and Budget (2012). Circular A-94 Appendix C. Retrieved November 10, 2012, from http://www.whitehouse.gov/omb/circulars_a094/a94_appx-C