Estimating Life-cycle Cost of West Virginia Fiber Reinforced Polymer (FRP) Bridge Decks

Sidharta Sahirman Jenderal Soedirman University, Purwokerto 53123, Indonesia

WV Bridge Deck Alternatives

Concrete Deck

FRP Deck

FRP for Bridge Deck : Why not?

The application of fiber-reinforced polymer (FRP) composites to replace concrete bridge decks has been successfully demonstrated on a technological basis.

The issue that must be determined is : Are FRP bridge decks competitive on a cost basis with SRC decks?

Economic Feasibility

There are two approaches one could use for cost analysis:

- Initial Cost Analysis and
- Life-cycle cost Analysis
- Life-cycle cost (Business Dictionary.com) Sum of all recurring and one-time (non-recurring) costs over the full life span or a specified period of a good, service, structure, or system. It includes purchase price, installation cost, operating costs, maintenance and upgrade costs, and salvage value at the end of ownership or its useful life.

Importance of Life -cycle cost Analysis

- Comparison of infrastructural projects that have high investment costs and a long life expectancy requires using a Life-cycle costing (LCC) methodology. There are costs beyond the initial construction costs that should be considered.
- The Federal Highway Administration (FHWA) encourages states to use LCC when determining which roadway projects to fund.
- This technique can be used for many reasons, but its primary uses are:
 - * Comparison of competing alternatives
 - * Long range planning and budgeting
 - * Selection among competing contractors
 - * Decisions about replacement of ageing equipment
 - * Control over ongoing programs

Life Cycle Cost Estimations for WV FRP Bridge Decks:

 Include 3 important features not covered in existing studies/ LCC models:

(1) Estimation of FRP deck cost (based on Learning curve method)
 (2) Consideration of cost savings from reduced substructure costs when FRP is used
 (3) Estimation of FRP bridge deck service life using the factor method.

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com FRP Deck Cost Estimation

Bridge #	Year	Cost/ft sq	Ft Sq	Cum ft sq	Total cost	Cumtot cost	Average unit cost	log cum ft sq	log avg unit (C)
(1)	(2)	(3)	(4)	(5)	$(6)=(3)\times(4)$	(7)	(8)=(7)(5)	(9)=log(5)	(10)=log(8)
1	1997	\$147.00	320	320	\$47,040	\$47,040	\$147.00	2.51	2.17
2	1997	\$140.00	651	971	\$91,140	\$138,180	\$142.31	2.99	2.15
3	2000	\$69.90	1245	2,216	\$87,026	\$225,206	\$101.63	3.35	2.01
4 5	2002 2002	\$55.70 \$57.47	1100 780	3,316 4,096	\$61,270 \$44,827	\$286,476 \$331,302	\$86.39 \$80.88	3.52 3.61	1.94 1.91
6	2003	\$54.00	1000	5,096	\$54,000	\$385,302	\$75.61	3.71	1.88

$C = a * N^b$

 $\log (C) = \log(a) + b*\log(N)$

Where

- a =cost for 1st unit
- b = exponent of learning curve
- C = average cumulative cost of X (\$/ft2)
- N = cumulative square feet produced. 53

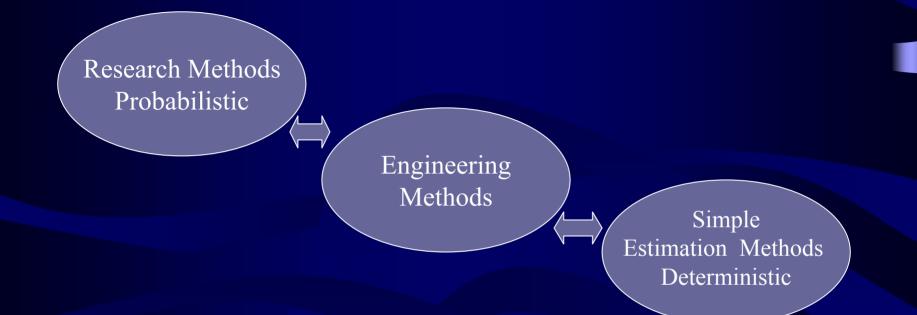
Where

Ct = total cumulative cost to produce N units The equation for unit cost basis, Cu, was: Cu ($\frac{1}{t2}$) = dCt/dN = d(a * Nb⁺¹)/dN = (b+1)*a* N^b Cu ($\frac{1}{t2}$) = a*(b+1)* N^b. Using the West Virginia data found: Cu($\frac{1}{t2}$) = 540.95*N-^{0.26}

 $Ct = N^* (a * N^b) = a * N^{b+1}$

Cost Saving Calculation

FRP Deck 🔶


Required Stringer Sections (Deflection, Stresses, Shear) Concrete Deck →

Required Stringer Section

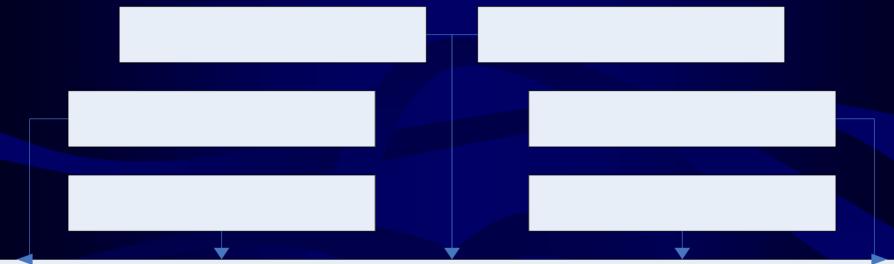
PR6-7

Service Life Prediction Methods

The factor method was developed as a tool to support service life prediction when there is a lack of adequate or reliable data.

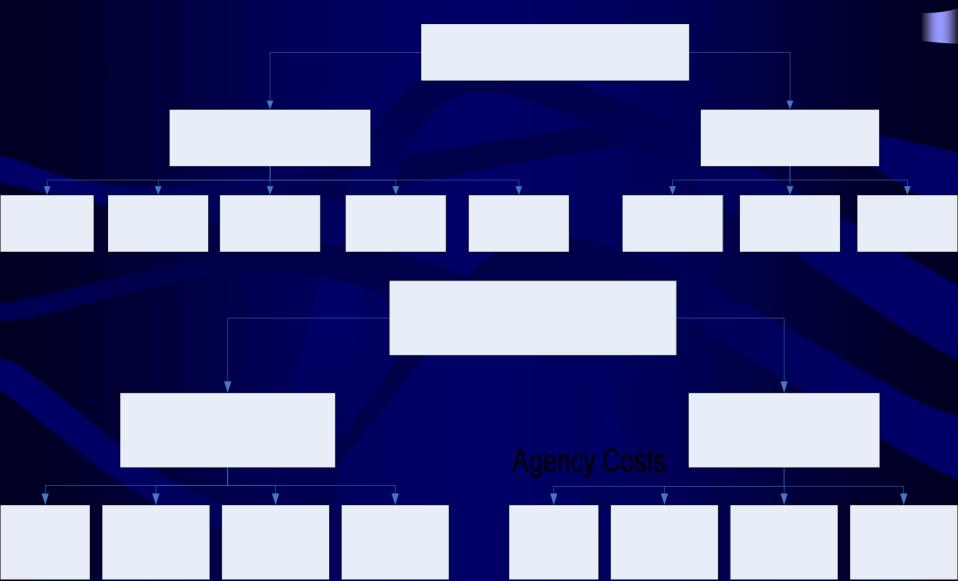
This method is based on a reference service life and modifying factors that relate to the specific condition of the element.

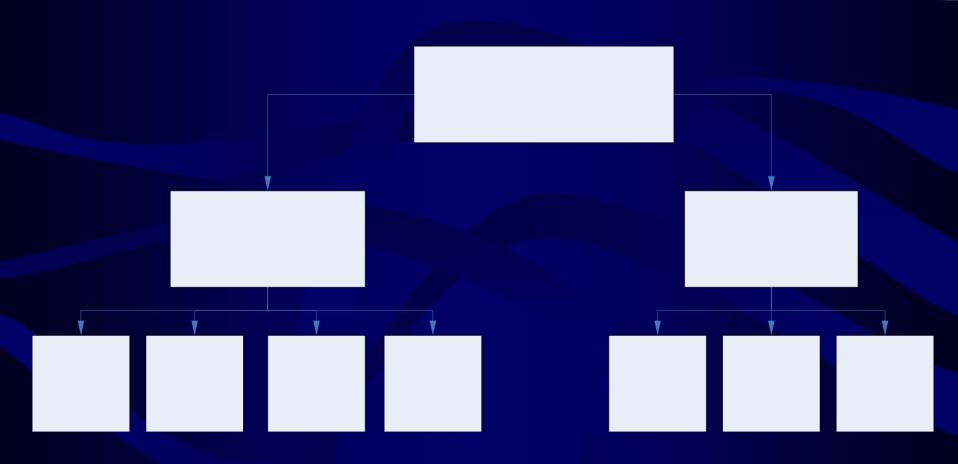
Estimate Service Life = RSLC * A * B * C *(factors)

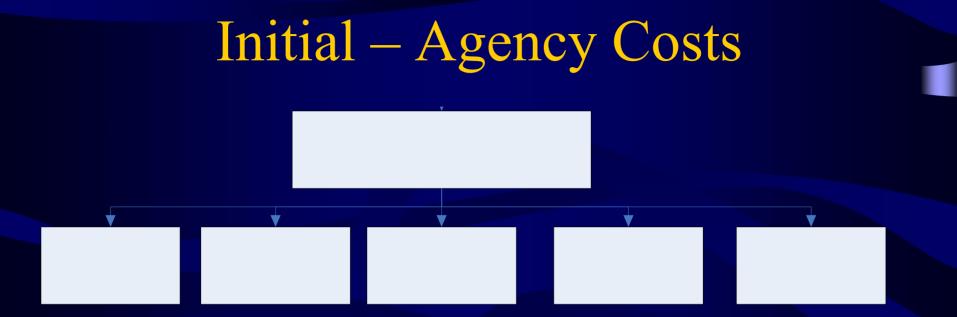

Life Cycle Cost

Life Cycle Cost for FRP bridge deck include

- Initial fabrication and erection costs
- Maintenance/Inspection/Repair costsTRUCTION
- Disposal costs


Life Cycle Cost Model


Service Life Prediction

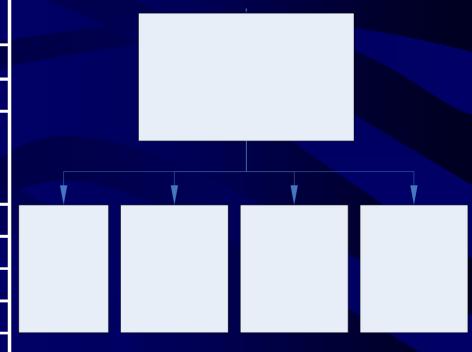


LCC Breakdown

LCC Breakdown

Manufacturing cost = f (manufacturing cost/sq ft, deck area) Transportation costs = f (distance between manufacturer and project site) Installation costs = f (installation cost/ sq ft, deck area) Safety costs = f (construction time, labor cost)

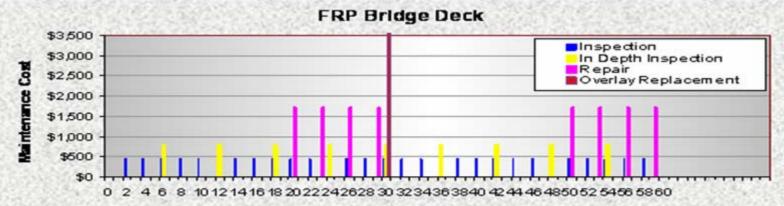
User Costs


Driver Delay Costs= (RL/CS – RL/NS) * ADT * N * HC (Equation 3-10)

Vehicle Operating Costs=(RL/CS – RL/NS) * ADT * N * VC (Equation 3-11)

Increased Accident Costs=RL * ADT * N * (CA – NA) * AC (Equation 3-12)

Maintenance, Inspection, Repair

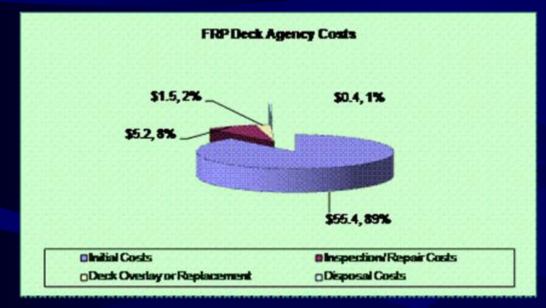

INSPECTION/MAINTENAN			
Concrete Bridge Deck	start year	end year	time between
Periodic Inspection	2nd	28th	2 yrs
In Depth Period Inspection	6th	24th	6 yrs
Anticipated Repairs	20th	29th	3 yrs
Deck Replacement	30th	30th	
FRP Bridge Deck			
Periodic Inspection	2nd	58th	2 yrs
In Depth Period Inspection	6th	54th	6 yrs
Repair	20th	59th	3 yrs
Overlay Replacement	30th	30th	

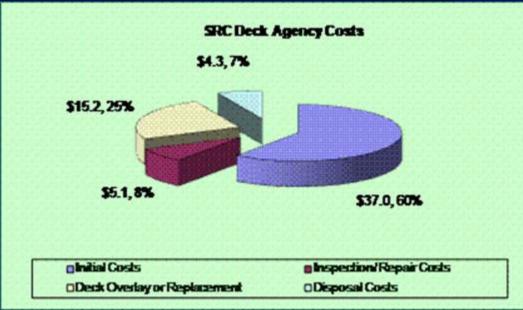
MIR Agency Costs

FRP Maintenance/Inspection/Anticipated Repair Costs

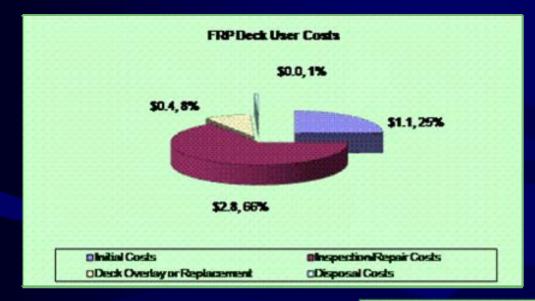
Basic Inspection	=	\sum SIC * (1+ DR) ⁻ⁿ
		n=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,58
Supplemental Inspection	$\mathbf{n} = $	$\sum PIC * (1+DR)^{-n}$
		n=6,12,18,24,30,36,42,48,54
Anticipated Repair	=	$\sum DRC * (1+DR)^{-n}$
		n=20,23,26,29,50,53,56,59
Overlay Replacement		\sum WSC * DA * (1+ DR) ⁻ⁿ
		n=30

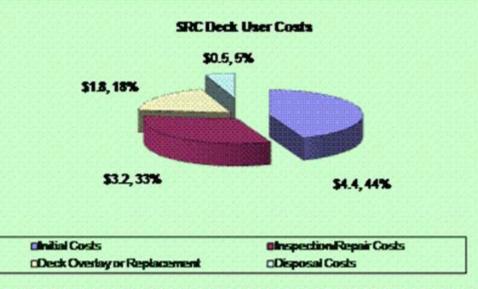
Year


Deconstruction Cost Safety cost Transportation Cost

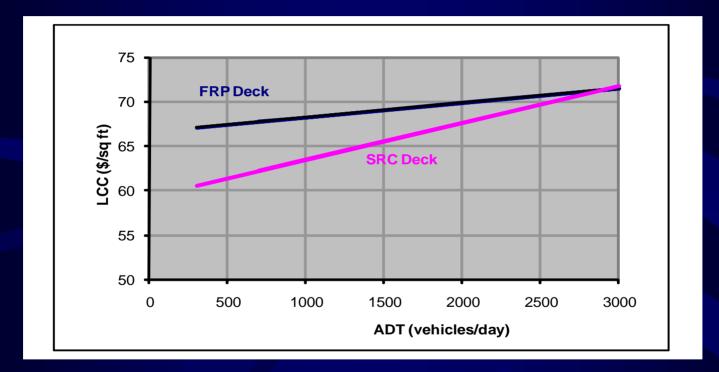

Landfill Cost

= f (deconstruction time, labor cost/hr)
= f (deconstruction time, labor cost/hr)
= f (number of truck trips required, distance between project site and disposal site)
= f (landfill fee and number of truck loads)

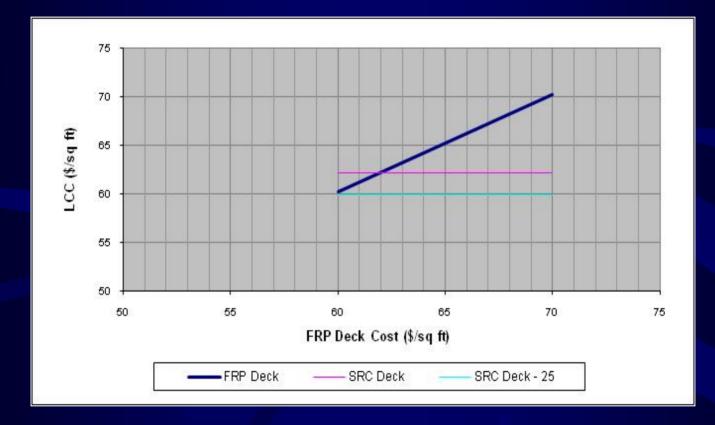

icrosoft Excel - SS_LCC_KATYTRUSS_FINAL	M09 [Read-On	ıly] [Com	patibility Mo	de]			
А В	С	D	E	F	G	H I J	KLMN OPQ
Katy Truss(Year 2000) BRIDGE GEOMETRY			INPUT I	'A R AME'	TERS DETAIL OF FRP DECK		DETAIL OF CONCRETE DECK
Span of Bridge	91.3	ft			Yr the Bridge Deck is Built (choose:)	2000	Thickness of Deck 8 in
Out to Out Bridge Width	14.3	ft					Self weight of Deck 100 psf
Number of Span	1				Thickness of Deck	8 in	Cost of Deck 26.49 \$ psf
					Self weight of Deck	16 psf Default	
Deck Overhang	10	in			Cost of Deck Manufacturer	67.47 \$ psf 67.469 BRP	PROJECT SITE County
TRAFFIC AND ACCIDENT INFORMATION					DETAIL OF WEARING SURFACE		COUNTY
Average Daily Traffic (=ADT)	700				Material	polymer concrete overlay	Marion Co
Normal Traffic Speed	55	mph			Weight	3 psf Default	
Normal Accident Rate	0.268 p	er million-	vehicle-miles		Wearing Surface Cost	\$3.25 psf	STUDY PERIOD
Traffic Speed during Construction	45	Default			FRP DECK INSTALLATION		60
Accident Rate during Construction	0.463	Default			Labor cost per hour	\$10.97	set=service life FRP
Average Cost per Accident	\$29,018	\$				(and a constant)	REF SERVICE LIFE
Hourly Vehicle Operating Cost	8.40	\$/hr			DISCOUNT AND INFLATION RATES		70 yrs
Hourly Time Value of Driver	13.98	\$/hr			Discount Rate	3.0%	
DETAIL OF STEEL STRINGER FOR FRP BRI							
		esign Che	eck		ENVIRONMENTAL CONDITIONS		
Stringer Properties (Choose :)	W27 + 217				Freeze Thaw Cycles	moderate	
Number of Stringers	4						
Spacing of Stringers	4	ft [2	in	OVERALL TRAFFIC		
Cross Sectional Area	63.8	100			ADT	low	
Flange Width Web Thickness	14.115 0.83	in			OTHER COST INFO		
Stringer Depth	28.43	in in			Gasoline	\$1.50 / gallon	
Moment of Inertia	8870	in*			Landfill	\$33.29 /ton	(MIR) AND
Stringer Weight	0.217	k/ft			Federal Minimum Wage	\$5.15 hr	The second se
Section Modulus	624	in ³			Inspection cost	\$397	
Young's Modulus of Elasticity	2.90E+07	psi			In Depth Inspection Cost	\$706	
DETAIL OF STEEL STRINGER FOR CONCRE		1. 10 10 10 10			Repair Cost	\$32	Maintenance Inputs Calculate LCC Sensy Analysis
	OK D	esign Che	eck				
Stringer Properties for Concrete (Choose:)	W30 + 235						
Stringer Cost	1.29	\$Ab					


Agency Costs – Pie Charts

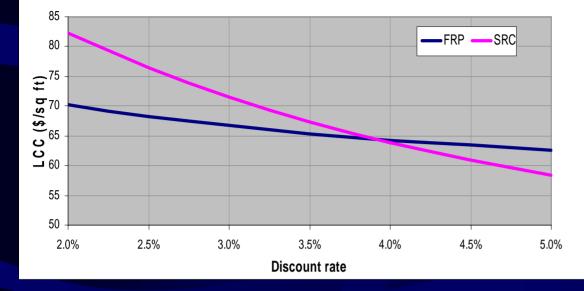
User Costs – Pie Charts



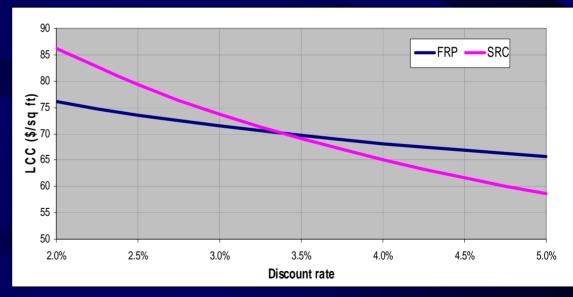
Bridge Deck Project	Katy Truss	Katy Truss
Yr	2000	2000
Bridge Deck Alternative	FRP	SRC
ADT (vehicles/day)	700	700
Study Period (yrs)	60	60
Service Life (yrs)	60	30
Deck Cost (\$/sq ft)	\$67.5	\$26.5
Initial Costs		
Agency Costs		
Total Agency Costs	\$69.3	\$33.6
User Costs		
Total User Costs	\$0.2	\$1.3
Structural Savings		
Total Structural Savings	\$11.4	\$0.0
Total Initial Costs	\$58.1	\$34.9
Maintenance/Repair Costs		
Agency Costs		
Inspection/Repair	\$6.9	\$6.6
Deck Overlay or Replacement	\$1.3	\$13.9
Total Agency Costs	\$8.2	\$20.5
User Costs		
Total User Costs	\$0.9	\$1.5
Total Maintenance/Repair Costs	\$9.1	\$21.9
Disposal Costs		
Agency Costs		
Total Agency Costs	\$0.3	\$5.1
User Costs	(C
Total User Costs	\$0.0	\$0.1
Total Disposal Costs	\$0.3	\$5.2
LIFE CYCLE COST		
		
Total Agency Costs	\$66.4	\$59.1
Total User Costs	\$1.2	\$2.9
Total Life Cycle Costs	\$67.6	\$62.0


Example of Life Cycle Cost Breakdown

General Findings : ADT and LCC



The higher the ADT, the better competitiveness of FRP deck to SRC deck


Deck Cost and LCC

FRP deck manufacturing cost has significant effect on LCC

Discount Rate and LCC

The higher the discount rate, the less likely FRP deck be a viable alternative to SRC deck.

Conclusions

- Fiber reinforced polymer (FRP) bridge decks have higher initial costs than traditional steel reinforced concrete (SRC) bridge decks. The improved corrosion resistance of FRP decks increases the deck life over that of SRC bridges, but this by itself does not offset the effect of the higher initial costs.
- The weight reduction would have an effect on the initial costs, as the structure to support the deck would be reduced because the weight of an FRP deck is approximately 20 to 25 percent that of a SRC deck.
- The higher the ADT, the more competitive the FRP deck becomes.
- The higher the discount rate, the less competitive the FRP deck is.
- FRP deck viability is a function of its service life, initial price ratio, ADT and discount rate.
- Overall, the results suggest that a \$61/sq ft FRP deck is a viable alternative to a \$30/sq ft SRC deck.

Acknowledgment

 The US Department of Transportation, Federal Highway Administration sponsored this work under the Center of Excellence Project (Contract No. DTFH61-01-R-00002) by the Constructed Facilities Center at West Virginia University