Discrepancy Report Prioritization and Software Maintenance Impacts

Jenny Woolley Kyle Thomas

SCEA 2012 – Orlando, FL

* The views expressed in this presentation are those of the presenters and do not imply endorsement by the Office of the Director of National Intelligence or any other US Government agency

Table of Contents

- Purpose of Research
- Discrepancy Report (DR) Definition
- DR Levels
- Analysis
- Conclusions
- Next Steps

Purpose of Research

- Current budget-constraints necessitate strategies for reducing costs in the Intelligence Community (IC)
 - Cut or defer maintenance costs to avoid sacrificing new capabilities
 - Strategy frequently considered: Deferral of Discrepancy Report (DR) work-offs
 - DR defined as "a change made to software to correct a defect" ¹
- Research considers the cost and estimating impacts of deferring DR work offs in order to lower staffing levels

¹Oman, Paul W., & Pfleeger, Shari Lawrence. *Applying Software Metrics*. Los Alamitos: Institute of Electrical and Electronics Engineers, 1997. p. 61.

Discrepancy Reports

- DRs are a commonly accepted method for tracking custom software maintenance requirements in the IC and DoD
 - DRs ranked according to severity by a panel/board
 - 1, 2, 3, etc.
 - A, B, C, etc.

DR data collection can be challenging

- Large DRs considered as maintenance or new development depending on WBS, Program Manager, or politics
- Work may fall under multiple people

DR Levels

Level	Description
1	Emergency – Poses an imminent threat to system health, safety, or security. Takes precedence over all other work and justifies overtime (OT) if necessary. Default due date = 1 day.
2	<u>Urgent</u> – Poses a very significant limitation on an operational system function or performance. Is a priority for developers. Default due date = 3 days.
3	<u>Moderate</u> – A defect that prevents the system from performing as designed or intended. Some form of workaround may be available. Typically applied as an ad-hoc fix once available. Default due date = 14 days.
4	<u>Minor</u> – System functionality is impaired, but it does not impact current or near term activities. May be incorporated as an ad-hoc fix or be incorporated in the next block/release. Default due date = 30 days.
5	<u>Trivial</u> – Routine documentation update or development/ops defect that has only minor operational or development impact.
6	<u>Enhancement</u> – Minor enhancement or routine maintenance task. Completed as time and budget permit.

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Analysis

- Reviewed data from many government programs and narrowed sample down to 15 programs
 - Includes programs for which complete date information was available

DR #	Description	Priority/Severity	Status	Defect Origin	Date Opened	Date Closed	Hours to Fix
A000156	Completion error message	2	Closed	West Coast	3/20/2009	4/7/2009	7.5

- Includes programs of varying age
 - Some programs performing DRs since 1999, others only for the last two years
 - Includes programs in both the acquisition and O&M timeframes
- Includes programs that provide a variety of capabilities
- Includes programs of varying size

Number of DRs by Level

Majority of DRs are level 3

- Level 3 DRs may not pose a direct threat to the mission, but they can affect mission support or make functioning more difficult
- Very few DRs categorized as Level 1 or 6
- Distribution relatively consistent across all programs analyzed

Level	Description
1	Emergency – Poses an imminent threat to system health, safety, or security
2	<u>Urgent</u> – Poses a very significant limitation on an operational system function or performance
3	Moderate – A defect that prevents the system from performing as designed or intended; workaround may be available
4	Minor – System functionality is impaired, but it does no impact current or near term activities
5	<u>Trivial</u> – Routine documentation update or development/ops defect that has only minor operational or development impact
6	Enhancement – Minor enhancement or routine maintenance task

Time to Close DRs

- Average time to close a DR tends to increase as the DR level increases
 - Experience a range for all levels due to variety of activities
 - Overall average number of days to close a DR = 164.3
 - Historical averages exceed suggested time for closing DRs

DR Level	Default Due Date (Days)	Average # Days to Close DR
1	1	95
2	3	65
3	14	185
4	30	135
5	N/A	280
6	N/A	450

Change in DRs Over Time

- Change in the number of DRs over time was not consistent across programs
 - Programs scheduled for retirement showed a decrease in DRs
 - Other programs, both in acquisition and O&M timeframes, displayed a variety of trends
 - Steady state
 - Peaks with new releases/security changes
 - Dramatic increase
 - No significant change in distribution of DR levels over time

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Program X

In-depth Analysis: Program X

- Single program provided data on the number of hours required to fix each DR
 - Historical data available from 2007-2010
 - Program only experienced DRs ranging from Levels 1-4
 - Program is currently in a purely O&M state (i.e., no new development)
 - Program has proposed deferring/delaying lower priority DRs in order to accommodate budget constraints

Program X Details

Program X is consistent with other programs analyzed in terms of DR breakout and completion patterns

Decreasing DRs except for Level 3

Priority	Program X Avg. # Days Open	General Avg. # Days Open
DR1	65.2	95
DR2	67.2	65
DR3	83.5	185
DR4	113.5	135

Behind schedule, but better than average completion time

Time to Fix vs. Time to Close

- Program X demonstrates challenges with analyzing programs that do not record data on Time to Fix
 - One Level 3 DR took 521.5 days to close, but only 3 hours to fix
 - Differences possibly due to
 - Optimal order for fixes
 - Staffing limitations
 - Etc.

Conclusions

Decreasing maintenance staffing and deferring the completion of DRs may lead to challenges in the future

- To date, there is no record of a program experiencing a devastating failure due to the deferral of DRs
 - Concern exists that delaying work will lead to spikes in maintenance further down the road
 - · Conflicting opinions from industry
- Cannot assume number of DRs will decrease over time
- Leadership should ensure enough funding is available to satisfy at least Level 1 and 2 DRs, but funding at least a portion of Level 3 DRs is advisable

The unique characteristics and data limitations of each program make estimating by DR Levels difficult

- Different phasing and time required for DR completion
- Lack of available data on hours required to fix a DR prohibits effort calculations
- Blurred line between maintenance and new development
- Budgetary influences

Next Steps

- Continue to follow the programs considered in this research, as well as new programs
 - Obtain larger sample size
 - Consider programs as they enter O&M timeframes
- Evaluate methods for calculating anticipated maintenance costs in conjunction with the IC SW Standards Study
 - Because DRs vary significantly by program, individual program DR analysis may be more useful when combined with other methods for maintenance estimation

Contact Information

- Jenny Woolley: jennifgw@dni.gov
- Kyle Thomas: <u>Kyle.D.Thomas@dni.gov</u>

Recognition

Contributors

- Will Black
- Paul Cymerman

Acknowledgments

- Brian Wells
- Sandra Williams
- Tom Van Horn