
Optimize tomorrow today.TM

1Optimize tomorrow today.

SSTC 2012
Arlene Minkiewicz, Chief Scientist
PRICE Systems, LLC
arlene.minkiewicz@pricesystems.com

Software Sustainment:

Pay Now or Pay Later

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Agenda
• Introduction

• Software Sustainment and Maintenance

• Quality Software

• Quality Practices

• Conclusions and Recommendations

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Introduction

• Budgets are getting tighter – fewer new programs

– More time and effort on maintenance and sustainment

– Need to build more maintainable systems going forward

• Research based on a study in progress intended to study
overall sustainment costs

• Software structural quality identified as significant driver for
software maintenance costs

• Increased software quality decreases software sustainment
costs associated with maintenance of the software

• This paper focuses on quality practices and trade-offs between
development costs and quality of delivered system

3

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Software Sustainment

• Software sustainment refers to anything that needs to be done
to keep a software program delivering its required functionality

• Activities during sustainment include

– Fixing bugs

– Adding new features

– Upgrade for changing environments

– Address technical debt

– Help desk

– Training

– Operational Support

4

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Software Maintenance

• Subset of software sustainment activities

• Software maintenance is defined as the process of modifying,
for update or repair existing operational software while leaving
primary function intact. (SWEBOK)

• Activities included in maintenance:

– Preventive

– Corrective

– Perfective

– Adaptive

5

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Software Quality

• Software quality has two dimensions

– Functional Quality - Doing the right thing

– Structural Quality - Doing it the right way

• Consortium for IT Software Quality (CISQ) is developing
a standard for structural quality of software based on:

– Reliability

– Performance

– Security

– Maintenance

– Size

6

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Structural Quality

• Reliable, efficient software has the following characteristics:

– Well thought out, easy to understand and well documented
architecture

– Minimized complexity

– Error and exception handling pervasive

– Programming best practices applies

– Sound resource management practices

7

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Structural Quality

• Secure software has the following
characteristics:

– Well thought out, easy to understand and
well documented architecture

– Bug free

• 90% of software vulnerabilities result
of defects (SEI 2005)

• Security breaches are caused by faulty
specifications, designs and
implementations

• Buffer overflows continue to top the list
of hacker helpers

8

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Structural Quality

• Maintainable software has the following characteristics:

– Well written

– Well documented and comprehensively commented

– Follows programming best practices

– Organized in a logical fashion

– Modular

– Includes suite of acceptance and regression tests

9

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Quality Best Practices

• Pair programming, peer reviews or inspections

• Test Driven Development

• Continuous integration with automated tests

• Automated static code analysis

• Quality Documentation

• Good Naming conventions

10

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Pair Programming and Peer Reviews

• Pair programming involves two developers working on the code
at any given time

– One computer

– One driver, one navigator

– Roles change frequently

• Peer Reviews or Inspections involve a more formal review of
development artifacts

– One or more person reviews other’s work

– Varying levels of formality

11

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Pair Programming and Peer Reviews

• There is evidence of their value. In several studies the
number of development tests that pass increased by

– 15% , “The Cost and Benefits of Pair Programming”, A. Cockburn

– 14%, “Strengthening the Case for Pair Programming”, L. Williams

– Capers Jones’ list pair programming and inspections at
the top of his list of best practices for defect removal

• The evidence is mixed on productivity impact

– Some studies find an increase while others experience
decreases.

12

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Test Driven Development (TDD)

13

• No code is written for a feature until the tests
for that feature are written

– Originally tests fail since no code has been
written

– Just enough code to make it pass

– Once it passes, refactoring occurs to make it
cleaner, simpler, using test to ensure it
continues to pass

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Test Driven Development (TDD)

14

• Tests conducted at Microsoft in two different environments
showed 2.5x and 4.2x defect rate decreases between
projects of similar size and scope, one using TDD and one
without

• An article in IEEE Software documents 18 studies across the
industry with 10 documenting improved quality with TDD, 7
with inconclusive results and only one with a quality
decrease

• The Microsoft study also indicated that there was a slight
increase in development time for the projects using TDD

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Continuous Integration

• Changes in code base are ‘continuously’ integrated into an
operational system

– Automated process integrated with automated test suite

– Real time feedback for bad behavior

– Broken builds become high priority

– Frequent integrations ease analysis of problem

• No study that specifically declares continuous integration =
high quality

– One expert reports observing projects that use continuous
integration have dramatically less bugs in production

– Steve McConnell suggests that a benefit of frequent builds is
reduced risk of low quality

• Continuous integration requires investments in hardware, software
and human resources

15

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Automated Static Code Analysis

• Static code analysis focuses on the structural soundness of
code

– Pattern matching, best practices and standards

– Quality and maintainability metrics

• Evidence supports the effectiveness of static analysis

– Study by S. Xiao found a 6x defect reduction

• “Performing high efficiency source code static analysis with intelligent extensions”

– Capers Jones cites the use of static analysis tools as best
practice for defect removal, second only to reviews and
inspections

• Static code analysis requires significant investment in software
and effort to configure, maintain and analyze the environment

16

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Good Documentation

• Software is easier to fix and change if it can be understood.

• Software with quality documentation – design, architecture,
requirements, code – is easier to understand

• According to the SWEBOK, 40-60% maintenance effort is spent
determining where to make a change or correction.

• A study in Empirical Software Engineering found that software
engineers with good documentation spent 21.5% less time
understanding the software than those with only source code

17

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Naming Conventions

• Which Line of code would be easier to understand?

X = Y * Z;

Square_Area = Height * Width;

• While it seems like a simple thing, naming conventions are
huge determiners of maintainability

• File structure should also have use sensible naming
conventions

• There’s no indication that good names take longer to think og
than bad ones

18

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Conclusions and Recommendations

• For most software systems more money is spent maintaining
than developing

• Quality infused (or not) during development significantly
impacts the amount of maintenance required and the efficiency
with which it can be maintained and enhanced

• Teams should select best quality practices based on

– Size of project

– Size and distribution of team

– Nature of team and organization

– Investment required

19

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Optimize tomorrow today.TM

Questions?

20

Arlene Minkiewicz, Chief Scientist
PRICE Systems, LLC
arlene.minkiewicz@pricesystems.com

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

