Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Domain-Driven Software Cost, Schedule, and Phase Distribution Models: Using Software Resource Data Reports

> Wilson Rosa (DHS) Barry Boehm (USC) Brad Clark (SEI-CMU) Ray Madachy (NPS) Joseph P Dean (AFCAA)

2013 ICEAA Professional Development & Training Workshop June 19, 2013 (New Orleans, LA)

Introduction

- Instead of developing software cost and schedule estimation models with many parameters, this paper describes an analysis approach based on grouping similar software applications together called Productivity Types.
- Productivity types are groups of application domains that are environment independent, technology driven, and are characterized by 13 COCOMO product attributes.
- Consideration is also given to the operating environment it operates within.
- Over 200 actual software projects from DoD's Software Resource Data Reports (SRDRs) were fully inspected and analyzed to produce a comprehensive set of Cost Estimation Relationships, Schedule Estimation Relationships, and Software Productivity Benchmarks.

\checkmark Analysis results will be discussed in this presentation.

- Research Method
- Data Demographics
- Software Productivity Benchmarks
- Effort and Schedule Estimation Models
- Conclusion
- Backup

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Research Method

Instrumentation

• Questionnaire:

- Software Resource Data Report" (SRDR) (DD Form 2630)
- Source:
 - Defense Cost Analysis Resource Center (DCARC) website: <u>http://dcarc.pae.osd.mil/Policy/csdrReporting.aspx</u>
- Content:
 - Allows for the collection of project context, company information, requirements, product size, effort, schedule, and quality

Data Collection and Validation

- Initial Dataset
 - 800 completed software projects were collected from DCARC
 - Of the 800 projects, 345 were fully reviewed using GAO Best Practices
 - Of the 345 reviewed, 141 were excluded based on the following limitations:
 - Inadequate information on reused and modified code
 - Projects cancelled or terminated before delivery
 - Missing/Inaccurate effort and schedule data
 - Same duration (start and end dates) across software projects/components
 - Missing Adaptation and Adjustment Factors (DM, CM, IM)
 - Duplicate records or submissions
 - Estimates At Completion vice Actual Data
- Final Dataset
 - 204 of 345 projects included in the analysis as these passed quality inspection

 Data was normalized to "account for cost and sizing units, mission or application, technology maturity, and content so they are consistent for comparisons" (source: GAO)

7

Segment Data by Operating Environment (OE)

Operating Environ	ment	Acronym	Examples
Ground Site	Fixed	GSF	Command Post, Ground Operations Center, Ground Terminal, Test Faculties
Ground Site	Mobile	GSM	Intelligence gathering stations mounted on vehicles, Mobile missile launcher
Ground Vahiela	Manned	GVM	Tanks, Howitzers, Personnel carrier
Ground venicle	Unmanned	GVU	Robots
Maritima Vasad	Manned	MVM	Aircraft carriers, destroyers, supply ships, submarines
Manume vesser	Unmanned	MVU	Mine hunting systems, Towed sonar array
Aprial Vahiala	Manned	AMV	Fixed-wing aircraft, Helicopters
Aenal venicle	Unmanned	AVU	Remotely piloted air vehicles
Ordinance Vehicle	Unmanned	OVU	Air-to-air missiles, Air-to-ground missiles, Smart bombs, Strategic missiles
	Manned	SVM	Passenger vehicle, Cargo vehicle, Space station
Space Vehicle	Unmanned	SVU	Orbiting satellites (weather, communications), Exploratory space vehicles

Segment Data by Productivity Type (PT)

- Different productivities have been observed for different software application types.
- SRDR dataset was segmented into 14 productivity types to increase the accuracy of estimating cost and schedule
 - 1. Sensor Control and Signal Processing (SCP)
 - 2. Vehicle Control (VC)
 - 3. Real Time Embedded (RTE)
 - 4. Vehicle Payload (VP)
 - 5. Mission Processing (MP)
 - 6. System Software (SS)
 - 7. Telecommunications (TEL)

- 8. Process Control (PC)
- 9. Scientific Systems (SCI)
- 10.Planning Systems (PLN)
- 11.Training (TRN)
- 12.Test Software (TST)
- 13.Software Tools (TUL)
- 14.Intelligence & Information Systems (IIS)

See Slides 35 & 36 for productivity type definitions and examples

9

Convert Size (NCSS) to Logical Count

Convert Size (Physical) to Logical Count

 Logical SLOC normalized to Equivalent SLOC (ESLOC) to reflect the actual degree of work involved:

Formula:

ESLOC = New SLOC + Modified SLOC*AAF_M + Reused SLOC*AAF_R + Generated SLOC*AAF_G + Converted SLOC*AAF_c

Where:

 $AAF_{i} = 0.4*DM + 0.3*CM + 0.3*IM$

And:

AAF	=	Adaptation Adjustment Factor
i	=	Refers to the size type: Modified (M), Reuse (N), Generated (R), Converted (C)
DM	=	Design Modified (DM), also known as re-design
СМ	=	Code Modified (CM), also known as re-code
IM	=	Integration Modified (IM), also known as re-test

Formula adapted from COCOMO II Reuse Model

Model Input Parameters (DM, CM, IM) provided by Data Sources (System Developers)

Analyze the Data

Data is analyzed using the following taxonomy

Select Best Model Form (Measures)

Accuracy of the Models verified using seven different measures:

Measure	Symbol	Description
Standard	SEE	Standard Error of the Estimate is a measure of the difference between the observed and
Error		CER estimated effort. The SEE is to linear models as the standard deviation is to a sample
		mean.
Coefficient of	CV	Percentage expression of the standard error compared to the mean of dependent variable. A
Variation		relative measure allowing direct comparison among models.
Mean	MAD	Measures the average percentage by which the regression overestimates or underestimates
Absolute		the observed actual value. Mitigates against the "cancellation" effect from the sign and
Deviation		magnitude of a single % error.
Prediction	PRED	PRED (L): Prediction accuracy is the percentage of CER estimates that are within L
Accuracy	(L)	percentage of the actual effort observations. L is commonly set to 30%.
Variance	VIF	Indicates whether multicollinearity (correlation among predictors) was present in a multi-
Inflation		regression analysis. Multicollinearity is problematic because it can increase the variance of
Factor		the regression coefficients, making them unstable and difficult to interpret.
Coefficient of	R ²	The Coefficient of Determination shows how much variation in dependent variable is
Determination		explained by the regression equation. Not applicable for Non-Linear regression.
F-test	F-test	The value of the F test is the square of the equivalent t test; the bigger it is, the smaller the
		probability that the difference could occur by chance. Not applicable for Non-Linear
		regression.

Three effort model forms were examined for each dataset

$$PM = A *Size^B$$
 $PM = C + A *Size^B$ $PM = C + Size^B$ Log-Linear ModelNon-Linear Model 1Non-Linear Model 2WherePM =Software development effort (in Person-months)Size =Size in Thousand Equivalent Source Lines of Code (KESLOC)A =Calibrated Productivity constant (ESLOC/PM)B =B-exponent (Normally greater than one, indicating diseconomies of scale)

Rules of Thumb for Selecting Best Model

=

С

Measure	Rules of Thumb
# Observations	>7
B-Exponent	> 1.0
CV	< 50%
MAD	< 50%
PRED (30)	> 40%
R ²	> 60%

Select Best Schedule Model Form (Rules of Thumb)

Two schedule model forms were examined for each dataset

$TDEV = A * PM^{\mathrm{F}}$	

 $TDEV = A * Size^{B} * FTE^{C}$

Non-Linear Model

COCOMO 81 Model

Where

TDEV	=	Time (in months) to develop the Software Product
Size	=	Software Size in Equivalent Source Lines of Code (ESLOC)
FTE	=	Full Time Equivalent (FTE) Staffing Levels
PM	=	Total Estimated Effort in Person-Months (PM)
А	=	is a duration constant
В	=	Scaling factor to account for changing productivity as size increases
С	=	C-Scaling Factor accounts for the non-linear relationship between increasing staffing levels and shortening development time, TDEV
F	=	Scaling factor for effort changes

Rules of Thumb for Selecting Best Model

Measure	Rules of Thumb
# Observations	> 10
C-Scaling Factor	< 0.0
MAD	< 50%
PRED (30)	> 40%

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

DATA DEMOGRAPHICS

Productivity Range (Median)

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

SOFTWARE PRODUCTIVITY BENCHMARKS

Software Productivity Benchmarks

 Software productivity refers to the ability of an organization to generate outputs using the resources that it currently has as inputs. Inputs typically include facilities, people, experience, processes, equipment, and tools. Outputs generated include software applications and documentation used to describe them.

 $PROD = \frac{ESLOC}{PM}$

 Metric used to express software productivity is equivalent source lines of code (ESLOC) per person-month (PM) of effort. While many other measures exist, ESLOC/PM will be used because most of the data collected by the Department of Defense (DoD) on past projects is captured using these two measures. While controversy exists over whether or not ESLOC/PM is a good measure, consistent use of this metric provides for meaningful comparisons of productivity.

Software Productivity Benchmarks (ALL)

Productivity Benchmarks by PT, across Operating Environments

		ESLOC/PM					KESLOC			
			1 st		3 rd		Std.			
PT	OE	MEAN	Quartile	Median	Quartile	Obs.	Dev.	CV	MIN	MAX
SCP	ALL	71	34	64	83	36	53	74%	0.8	221
MP	ALL	143	86	109	187	28	84	59%	1	225
VC	ALL	147	94	119	184	25	91	62%	1.4	189
RTE	ALL	141	59	148	185	52	87	61%	1	449
TEL	ALL	196	132	179	265	11	110	56%	1	312
SYS	ALL	325	130	212	310	13	347	107%	6.8	475
SCI	ALL	267	94	230	351	15	218	82%	1.8	218
IIS	ALL	365	306	342	419	10	72	20%	2	417
PLN	ALL	419	324	370	546	11	164	39%	29	310

Software Productivity Benchmarks (GSF)

Productivity Benchmarks by PT, Ground Site Fixed (GSF)

			ESLO	C/PM					KESI	_0C
			1 st		3 rd		Std.			
PT	OE	MEAN	Quartile	Median	Quartile	Obs.	Dev.	CV	MIN	MAX
SCP	GSF	64	30	67	82	13	1	48%	1	72
MP	GSF	163	98	133	223	14	86	53%	5	225
SCI	GSF	192	129	164	246	12	102	53%	5	125
RTE	GSF	174	140	168	199	16	61	35%	2	87
TEL	GSF	196	132	179	265	11	110	56%	1	312
SYS	GSF	325	155	237	304	10	98	105%	1	475
PLN	GSF	419	324	370	546	11	164	39%	29	310
IIS	GSF	379	313	372	433	8	74	20%	2	417

Software Productivity Benchmarks (GSF)

Productivity Benchmarks by PT, Aerial Vehicle Manned

		ESLOC/PM							KESLOC	
			1 st		3 rd		Std.			
PT	OE	MEAN	Quartile	Median	Quartile	Obs.	Dev.	CV	MIN	MAX
SCP	AVM	95	46	74	115	9	80	85%	2	107
MP	AVM	128	67	106	173	12	84	66%	1	201
VC	AVM	173	118	157	214	9	71	41%	1	87
RTE	AVM	180	135	170	188	17	63	35%	5	132

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Effort and Schedule Estimation Models

Effort Estimation Models, ALL OE

Effort Estimation Models by PT, All Operating Environment (OE)

				R ²	MAD	CV	PRED	KES	SLOC
PT	OE	Model Form	Obs.	(%)	(%)	(%)	(30)	MIN	MAX
IIS	ALL	PM= 3.102 * KESLOC ^ 0.9713	10	98	16	19	80%	2	417
MP	ALL	PM= 9.229 * KESLOC ^ 1.019	28	68	45	44	43%	1	225
PLN	ALL	PM = 30.61 + KESLOC ^ 1.165	11	***	35	41	60%	29	310
SYS	ALL	PM= 61.13 + 2.306 * KESLOC ^ 1.089	13	***	47	36	54%	6.8	475
VC	ALL	PM= 7.836 * KESLOC ^ 1.002	25	86	48	57	52%	1.4	189

Effort Estimation Models, GSF

Effort Estimation Models by PT, Ground Site Fixed

				R ²	MAD	CV	PRED	KES	SLOC
PT	OE	Model Form	Obs.	(%)	(%)	(%)	(30)	MIN	MAX
IIS	GSF	PM = 3.081 * KESLOC ^ 0.9619	8	99	15	17	88%	2	417
MP	GSF	PM = 5.617 * KESLOC ^ 1.085	14	77	39	37	50%	5	225
PLN	GSF	PM = 30.61 + KESLOC ^ 1.165	11	***	35	41	60%	29	310
RTE	GSF	PM = 23.62 + KESLOC ^ 1.433	16	**	35	26	56%	2	87
SCI	GSF	PM = 128.7 + KESLOC ^ 1.223	12	**	36	30	67%	5	125
SYS	GSF	PM = 49.54 + KESLOC ^ 1.264	10	**	39	45	50%	1	475

Effort Estimation Models, AVM

Effort Estimation Models by PT, Aerial Vehicle Manned (AVM)

				R ²	MAD	CV	PRED	KES	SLOC
PT	OE	Model Form	Obs.	(%)	(%)	(%)	(30)	MIN	MAX
MP	AVM	PM = 4.364 + 5.398 * KESLOC ^ 1.194	12	**	46	49	42%	1	201
RTE	AVM	PM = 29.19 + KESLOC ^ 1.439	17	**	29	39	48%	5	132
SCP	AVM	PM = 23.85 + 3.89 * KESLOC ^ 1.402	9	**	39	38	40%	2	107
VC	AVM	PM = 4.613 * KESLOC ^ 1.111	9	97	28	23	78%	1	87

Effort Estimation Models, GVM

Effort Estimation Models by PT, Ground Vehicle Manned (GVM)

				R ²	MAD	CV	PRED	KES	SLOC
PT	OE	Model Form	Obs.	(%)	(%)	(%)	(30)	MIN	MAX
VC	GVM	PM = 6.751 * KESLOC ^ 1.153	12	76	26	29	67%	1.4	39

Office of Program Accountability and Risk Management 31

Schedule Estimation Models, ALL OE

Schedule Estimation Models by PT, All Operating Environment (OE)

				SE	MAD	CV	PRED	KES	LOC
PT	OE	Model Form	Obs.	(%)	(%)	(%)	(30)	MIN	MAX
IIS	ALL	TDEV = 4.122 * KESLOC ^ 0.8447 * FTE ^ (-0.8992)	10	20	15	17	90%	2	417
PLN	ALL	TDEV = 5.468 * KESLOC ^ 0.5876 * FTE ^ (-0.3771)	10	37	24	29	60%	36	310
SCI	ALL	TDEV = 19.11 * KESLOC ^ 0.2123 * FTE ^ (-0.2572)	16	36	25	20	63%	1.8	218
MP	ALL	TDEV = 12.83 * KESLOC ^ 0.5471 * FTE ^ (-0.4314)	24	39	30	29	58%	1	225
VC	ALL	TDEV = 7.059 * KESLOC ^ 0.8331 * FTE ^ (-0.7281)	15	34	26	25	69%	1.4	189
RTE	ALL	TDEV = 31.28 * KESLOC ^ 0.06865 * FTE ^ (-0.0761)	35	31	23	20	80%	.3	100

Conclusion

- Regression analyses in this presentation indicate that Size and Productivity Type are valid predictors of software development effort for the time period beginning with program initiation up to the point of development test & evaluation.
- Variation in software development effort becomes more significant when dataset is grouped by Operating Environment. Thus, the effect of size on software development effort shall be interpreted along with Productivity Type and Operating Environment.
- Extending the analysis to schedule estimation, Productivity Type again was shown as a valid predictor of duration when used in combination with staffing levels (full time equivalents) and software size (ESLOC)
- Schedule analysis also shows that software development duration can be shortened by decreasing scope (Size) and/or increasing staffing levels. In contrast, duration can be lengthened by increasing scope and/or decreasing staffing levels.

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Productivity Type Definitions (1 of 2)

TVDE	DESCRIPTION
Sensor Control and	Software that requires timing-dependent device coding to enhance transform filter convert
Signal Processing (SCP)	or compress data signals. Examples: Beam steering controller, sensor receiver/transmitter
Signal Flocessing (SCF)	control sensor signal processing sensor receiver/transmitter test. Examples, of sensors:
	antonnas lasors radar sonar acoustic electromagnetic
Vahiela Control (VC)	Antennas, lasers, radal, solial, acoustic, electrolinayitetto.
	devices and surfaces. Examples: Digital Elight Control, Operational Elight Programs. Ely By
	Wire Elight Control System, Elight Software, Executive
L Vehiele Devlaged (V/D)	Wile Flight Control System, Flight Software, Executive.
venicie Payload (VP)	naroware & software which controls and monitors vehicle payloads and provides
	communications to other vehicle subsystems and payloads. Examples: weapons delivery
	and control, Fire Control, Airborne Electronic Attack subsystem controller, Stores and Self-
	Derense program, Mine Warfare Mission Package.
	Real-time data processing unit responsible for directing and processing sensor input/output.
	Examples: Devices such as Radio, Navigation, Guidance, Identification, Communication,
	Controls And Displays, Data Links, Safety, Target Data Extractor, Digital Measurement
	Receiver, Sensor Analysis, Flight Termination, Surveillance, Electronic Countermeasures,
	Terrain Awareness And Warning, Telemetry, Remote Control.
Mission Processing (MP)	Vehicle onboard master data processing unit(s) responsible for coordinating and directing the
	major mission systems. Examples: Mission Computer Processing, Avionics, Data Formatting,
	Air Vehicle Software, Launcher Software, Tactical Data Systems, Data Control And
	Distribution, Mission Processing, Emergency Systems, Launch and Recovery System,
	Environmental Control System, Anchoring, Mooring and Towing.
Process Control (PC)	Software that manages the planning, scheduling and execution of a system based on inputs,
	generally sensor driven.
System Software (SYS)	Layers of software that sit between the computing platform and applications.
	Examples: Health Management, Link 16, Information Assurance, Framework, Operating
	System Augmentation, Middleware, Operating Systems
Homeland Security	Office of Program Accountability and Risk Management 35

Productivity Type Definitions (2 of 2)

ТҮРЕ	DESCRIPTION
Training (TRN)	Hardware and software that are used for educational and training purposes. Examples: Onboard or Deliverable Training Equipment & Software, Computer-Based Training
Telecommunications (TEL)	The transmission of information, e.g. voice, data, commands, images, and video across different mediums and distances. Primarily software systems that control or manage transmitters, receivers and communications channels. Examples: switches, routers, integrated circuits, multiplexing, encryption, broadcasting, protocols, transfer modes, etc.
Software Tools (TOOL)	Software that is used for analysis, design, construction, or testing of computer programs. Examples: Integrated collection of tools for most development phases of the life cycle, e.g. Rational development environment
Test Software (TST)	Hardware & Software necessary to operate and maintain systems and subsystems which are not consumed during the testing phase and are not allocated to a specific phase of testing. Examples: Onboard or Deliverable Test Equipment & Software
Intelligence & Information Systems (IIS)	An assembly of software applications that allows a properly designated authority to exercise control over the accomplishment of the mission. Humans manage a dynamic situation and respond to user-input in real time to facilitate coordination and cooperation. Software that manipulates, transports and stores information. Examples: Database, Data Distribution, Information Processing, Internet, Entertainment, Enterprise Services*, Enterprise Information**
Scientific Systems	Non real time software that involves significant computations and scientific analysis.
Training (TRN)	Hardware and software that are used for educational and training purposes. Examples: Onboard or Deliverable Training Equipment & Software, Computer-Based Training

