Headquarters U.S. Air Force

Integrity - Service - Excellence

Spacecraft Estimating Considerations Class A vs Class C

2007 SCEA/ISPA Joint Conference

June 2007

U.S. AIR FORCE

Purpose

- To analyze the differences (cost/technical) between Class C and Class A space systems
 - Characterized CLASS A vs. CLASS C satellites
 - Data set included Air Force, NASA and Commercial data
 - Determined average size, life, power and cost of Class A / Class C

U.S. AIR FORCE

Class A vs Class C Typical Space Vehicle Characteristics

	CLASS C	CLASS A
Mission priority	Medium to High	Highest
Allowed risk	Medium Lowest feasible	
Flight-type vehicle or experiment	Single unit for flight	Two: one for flight, one for qualification tests
Acquisition cost	Medium	Highest
Vehicle complexity	Low to medium complexity; usually only a single experiment	High, usually with full up mission(s) or two or more different experiments
Typical launch time	Not critical	Narrow launch windows
Typical orbit	Attached to host vehicle	Free-flyer
Typical on-orbit time	Months	Years
Experiments carried on vehicle	Usually one or more Class C, but could include other classes	Usually several Class A, but may include Class B, Class C, and/or Class D
Use of redundancy in vehicle	Usually a single string: redundancy used if safety critical	Used to assure critical functions, & independent failure of experiments
Probable failure mode of vehicle	Partial or total loss of data	Soft or only partial loss of data
Retrievability or in-orbit maintenance	Usually retrievable or maintainable in orbit	Not usually possible
Experiment complexity	Usually low or medium complexity	Usually complex, or with complex interfaces, or both
Use of redundancy in experiment	Usually a single string: redundancy used if safety critical	Redundancy used in all critical functions, where practical
Probable failure mode of experiment	Partial or total loss of data	Soft or only partial loss of data

SOURCE: MIL-HDBK-343, Table IV

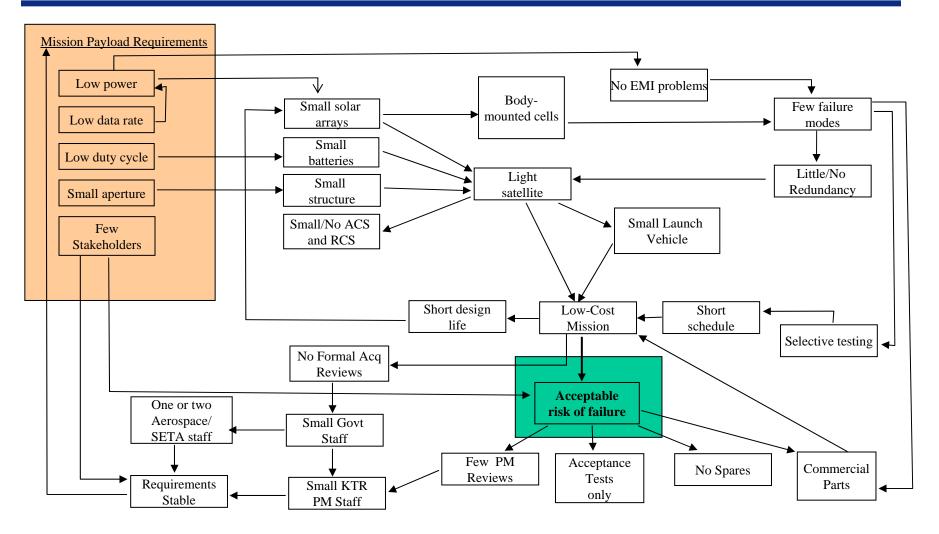
U.S. AIR FORCE

Class A vs Class C Typical Space Vehicle Test Requirements

	CLASS C	CLASS A	
Maximum Operating Environments	MIL-STD-1540 definitions for each assembly level	MIL-STD-1540 definitions for each assembly level	
Testing Tolerances	MIL-STD-1540	MIL-STD-1540	
Development tests	As required	As required	
Component acceptance	MIL-STD-1540 (component acceptance)	MIL-STD-1540 (component acceptance)	
Component qualification	Not required (acceptance test only)	MIL-STD-1540 to design levels	
Qual thermal margin	0 deg C	10 deg C	
Qual vibration margin	0 dB	6 dB	
Qual acoustic margin	0 dB	6 dB	
Qual shock margin	0 dB	6 dB	
Experiment acceptance	MIL-STD-1540 (vehicle acceptance)	MIL-STD-1540 (vehicle acceptance)	
Experiment qualification	Not required (acceptance test only)	MIL-STD-1540 (vehicle qualification)	
Qual margins (environ)	0 deg C; 0 dB	10 deg C; 6 dB	
Vehicle acceptance	MIL-STD-1540 (vehicle acceptance)	MIL-STD-1540 (vehicle acceptance)	
Vehicle qualification	Not required (acceptance test only)	MIL-STD-1540 (vehicle qualification)	
Qual. Margins (environ)	0 deg C; 0 dB	10 deg C; 6 dB	

SOURCE: MIL-HDBK-343, Table VIII

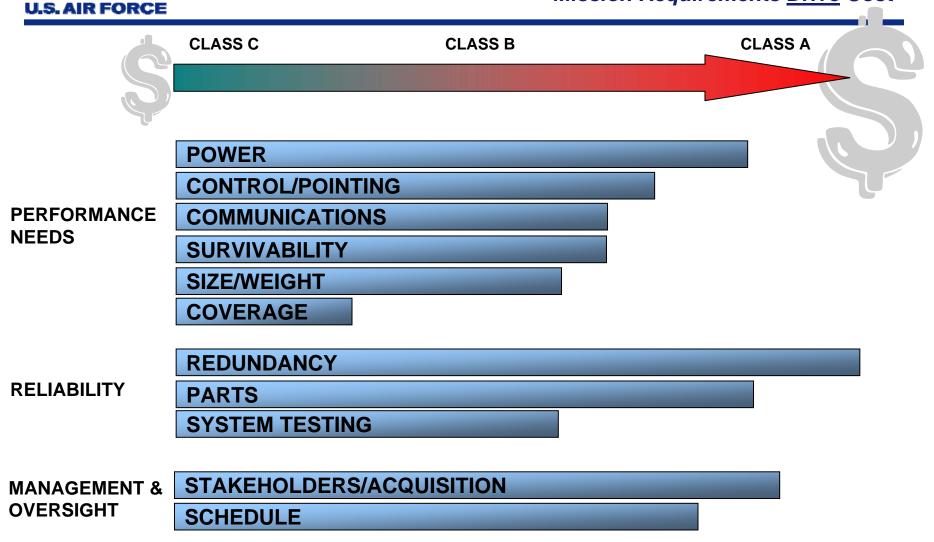
Class A vs Class C Characteristics


U.S. AIR FORCE

	CLASS C to CLASS A
Avg. Design Life	6.2X
Avg. BOL Power	8.5X
Avg. Weight	10.9X
Avg. Months Award to Initial Launch	1.8X
Avg. NR+T1 Space Vehicle Cost per Pound (\$/Ib)	1.6X

"Class C" Starts with Less Mission


U.S. AIR FORCE


U.S. AIR FORCE

What makes a Satellite Become "Class A"

Class A vs Class C Mission Requirements <u>Drive</u> Cost

U.S. AIR FORCE

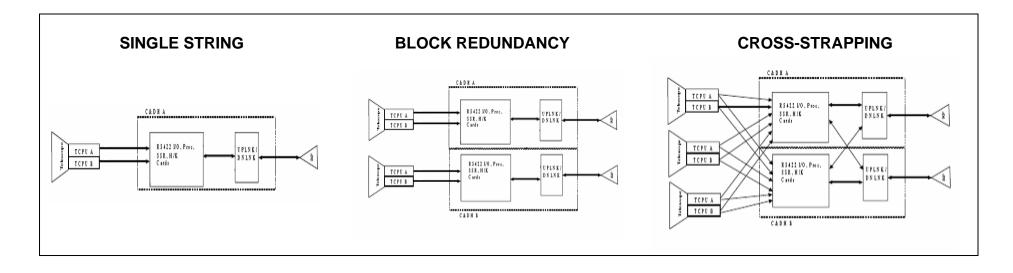
Power

BOL POWER	Large payloads require more power
EPS	More power requires larger EPS systems, with more redundancy, to accommodate larger and more critical payloads
EMI CONFLICTS	Larger EPS systems lead to more EMI conflicts
THERMAL ISSUES	More power leads to more thermal issues

Size/Weight

U.S. AIR FORCE

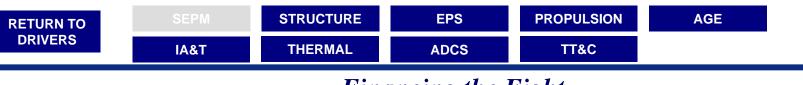
PAYLOAD SIZE vs FIELD OF VIEW	The structure must support the payload, but cannot block view of sensors
SOLAR ARRAY SIZE vs LAUNCH VEHICLE FAIRING	Class A spacecraft structure may be constrained by the size of
MASS REQUIREMENTS vs LAUNCH VEHICLE CAPABILITY	the launch vehicle fairing; requiring tighter structure design and increased thermal costs



Redundancy

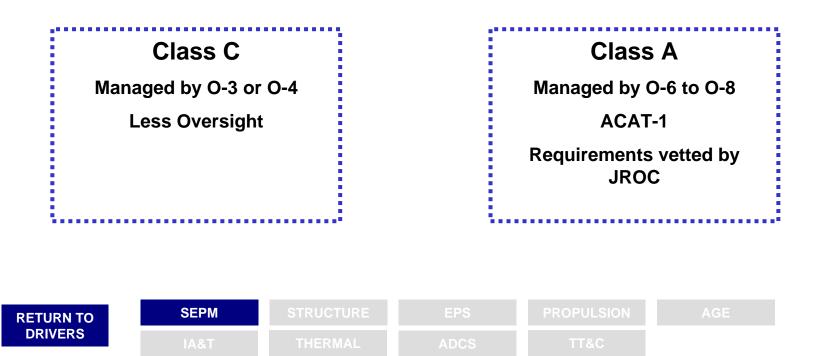
U.S. AIR FORCE

ТҮРЕ	CLASS C	CLASS A
SINGLE-STRING (NONE)	VERY LIKELY	NOT LIKELY
BLOCK REDUNDANCY	LIKELY	NOT LIKELY
CROSS-STRAPPING	NOT LIKELY	VERY LIKELY


Parts

U.S. AIR FORCE

ТҮРЕ	CLASS C	CLASS A
PART SELECTION (BUY vs BUILD)	Generally use off-the-shelf parts	Stricter requirements often demand S-level or custom parts
QUALIFICATION TESTING	Not required at component level	Required at component level



U.S. AIR FORCE

Stakeholders/Acquisition

Number of Stakeholders	Large amount of stakeholders, participating actively, will lead to additional meeting requests, additional program	
Participation of Stakeholders		
Documentation	management costs, and higher documentation costs	

Schedule

U.S. AIR FORCE

PROGRAM LENGTH	Class A programs have a considerably longer duration from award to launch; Program management will be required through the duration of the program
COMPLEX PAYLOADS	Complex payloads often incur delays; those delays may lead to a standing-army IA&T and SEPM

U.S. AIR FORCE

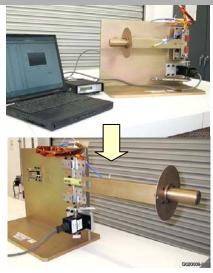
- Analysis consistent with and provides 1st order quantification of MIL-STD guidelines
- Provides starting point for future analysis and cost modeling

BACKUP

U.S. AIR FORCE

Control/Pointing

POSITIONING	Class A spacecraft, generally with longer mission durations, require more accurate and reliable attitude determination
STABILITY	Class A spacecraft performing high-resolution imaging require increased stability
POINTING ACCURACY	Pointing accuracy may drive the need for deployable antennas

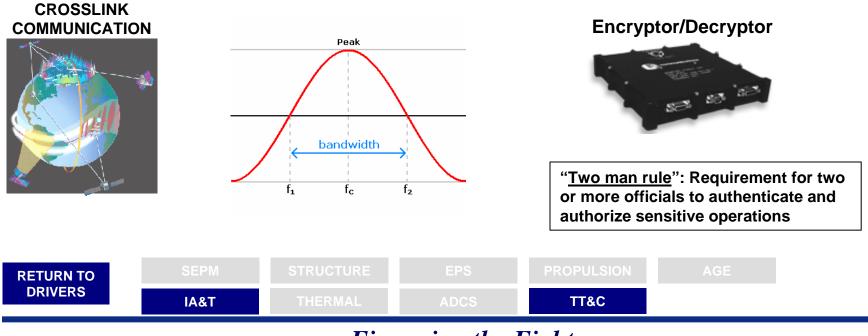

Determination Sensors

- Inertial Reference/ Measurement Units
 - Star Trackers
 - GPS Receivers
 - Earth Sensors
 - Sun Sensors
- Cost Magnetometers

Control Actuators

- Gimbaled Flywheels (Integrated Power & ACS)
- Control Moment Gyros (CMG)
- Reaction Wheels
- Thrusters (REA)
- Gimbal Drives
- Electromagnetic Torque Rods

Antenna Deployment Test


RETURN TO	SEPM	STRUCTURE	EPS	PROPULSION	
DRIVERS	IA&T	THERMAL	ADCS	TT&C	

U.S. AIR FORCE

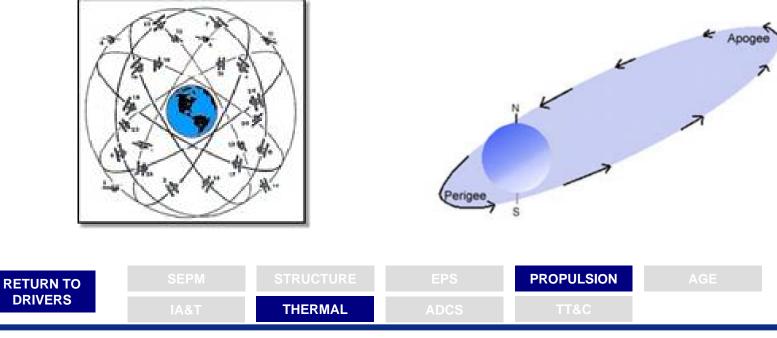
Communications

TIMING OF COMMUNICATIONS	Class A missions requiring real-time information may require crosslinks; complex simulation models must be developed
DATA RATE / FREQUENCY	Class A payloads communicating at high data rates may require more power, more testing, and possibly custom components
BIT ERROR RATE	Class A systems will require a lower Bit Error Rate
ENCRYPTION	COMSEC equipment requires additional persons for testing or other handling

Survivability

U.S. AIR FORCE

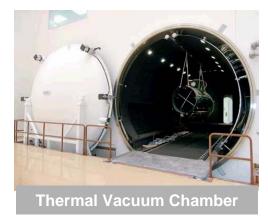
HARDENING	Class A vehicles are more "hardened" to sustain a longer mission life
AUTONOMOUS OPERATIONS	Class A defense satellites may need to operate autonomously in the event of temporary disconnect with ground stations
DEFENSE	Class A satellites will use additional defense mechanisms to defend itself from intentional damage



Coverage

U.S. AIR FORCE

NUMBER OF SPACECRAFT	
ORBIT	National Security-critical missions may require additional spacecraft to reduce risk; and may require more costly orbits
ALTITUDE	



System Testing

U.S. AIR FORCE

ТҮРЕ	CLASS C	CLASS A
QUALIFICATION TESTING	Required to meet standards; can over-design structure and eliminate need for DTV	Mil-Std-343 requires spacecraft to be built to exceed specifications
EMI CONFLICTS	Fewer EMI conflicts	Larger payloads use more power and increase likelihood of EMI/EMC conflicts

MIL-HDBK-343 TESTING RQMTS

Class A vs Class C Approach

REVIEWED MIL-HDBK-343 & OTHER GUIDANCE

- Reviewed MIL-HDBK-343, Design, Construction, and testing Requirements for One of a Kind Space Equipment
- Reviewed NASA Procedural Requirements 8705.4, Risk Classification for NASA Payloads; also reviewed General Environment Verification Specification for STS & ELV Payloads, Subsystems, and Components

COMPARED USCM CLASS A & USCM CLASS C

- Reviewed means of size, life, power and cost of Class A and Class C spacecraft;
- Built estimates & actuals of USCM Class A & C spacecraft at component level; compared Class A & C at component level

U.S. AIR FORCE

Class A vs Class C MIL-HANDBOOK 343

DIFFERENCES IDENTIFIED IN MIL-HDBK-343 GUIDANCE:

- Class A vehicles have a higher documentation requirement, with monthly reviews of the contractor, where Class C vehicles many only require quarterly reviews
- Class A vehicles are tested at the part level, where Class C vehicles are tested at the component level
- Class A vehicles are required to be tested for acceptance AND qualification, where Class C vehicles are only required to be tested for acceptance
- Class A vehicles must withstand 10 deg C beyond requirements
- Class A vehicles must have a 6 db margin for: acoustics, vibration and shock