

EVM for the Rest of Us

Webinar presented by:

Javier Sloninsky

CEO & Managing Director

June 2012 @ SCEA/ISPA Annual Conference

Agenda

- EcoSys Introduction
- EVM For the Rest of Us
 - Principles, Building Blocks, and What to Strive for
- Earned Value Case Studies
- Q & A

EcoSys Company Background

Founded in 2000

Enterprise Project Controls Software Experts

Designers & Developers of original Primavera P6 and EcoSys EPC

Professional Services

Enterprise Consulting Expertise: Project Portfolio & Cost Management Best Practices

Systems Implementation and Integration Leader

Partnerships with Oracle, SAP, Microsoft, IBM

250 Customers in Global 1000 and Public Sector

Global Technology Partners

EcoSys EPC Certified to run seamlessly with SAP and Oracle:

Professional Partnerships with Global Tech Leaders:

Representative Customers

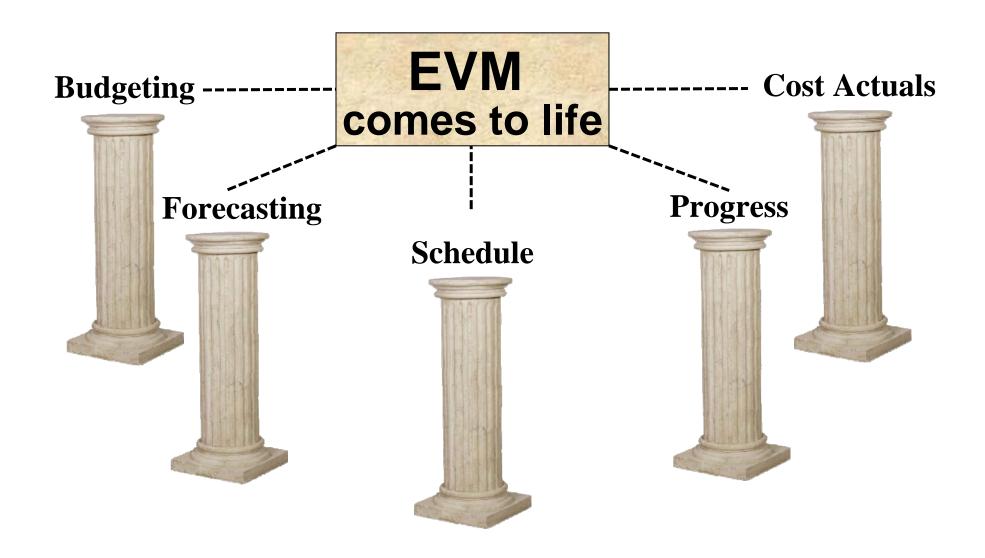
EcoSys 7

Is EVM Really This Scary?

Overhead
Difficult
Unintelligible
Inappropriate
Mine field
Incorrect
Headaches

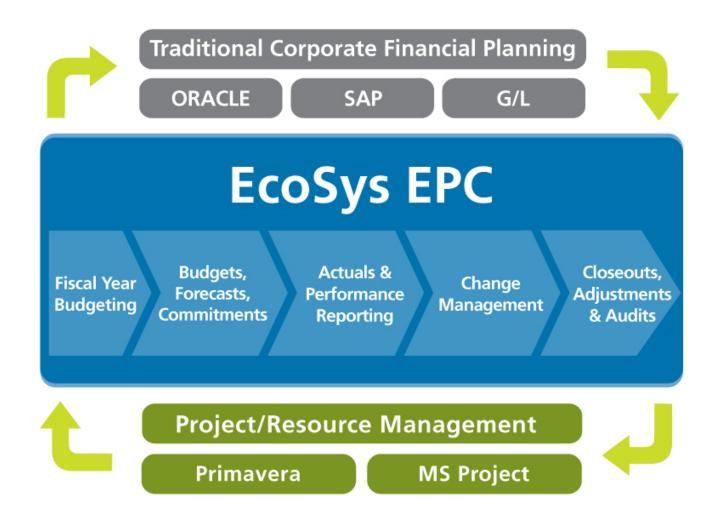
What is EVM for the Rest of Us?

- Earned Value is a measure of project performance comparing work completed against work planned, as of a given date.
- Earned Value Management is using Earned Value to measure, forecast, and improve project performance.
- Principles of EVM are positive predictors of project success.
- EVMFRU: Focus on those principles and remove anything extraneous.

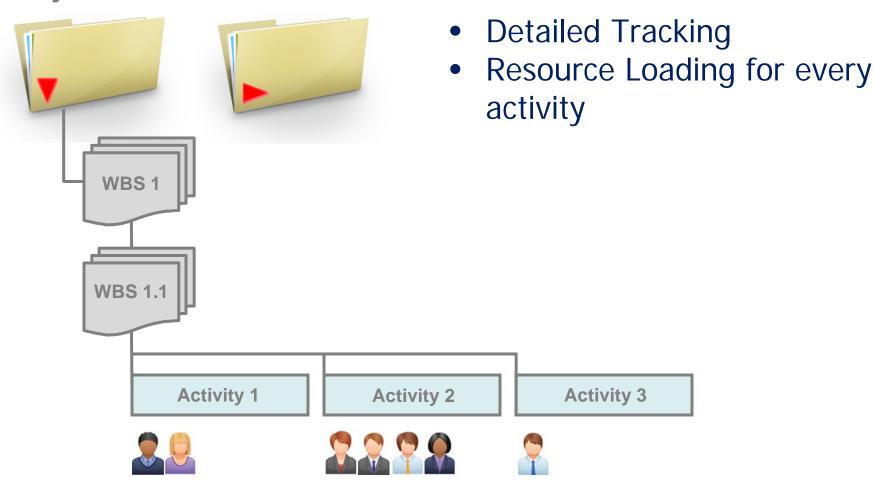


EVMFRU

- EVM is not separate from the overall project management lifecycle. Builds upon a solid project controls framework:
 - Process standards
 - Performance metrics
- EVM principles lead to better scope definition
- EVM should be accessible by being well integrated to project controls lifecycle and user-friendly



The Pillars that Support EVM


Controls Platform

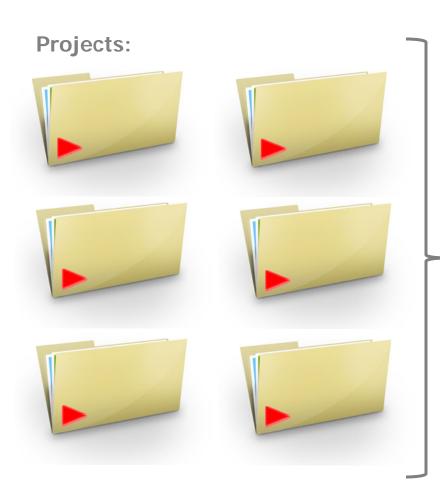
EV Tracking

Projects:

11

EV Tracking

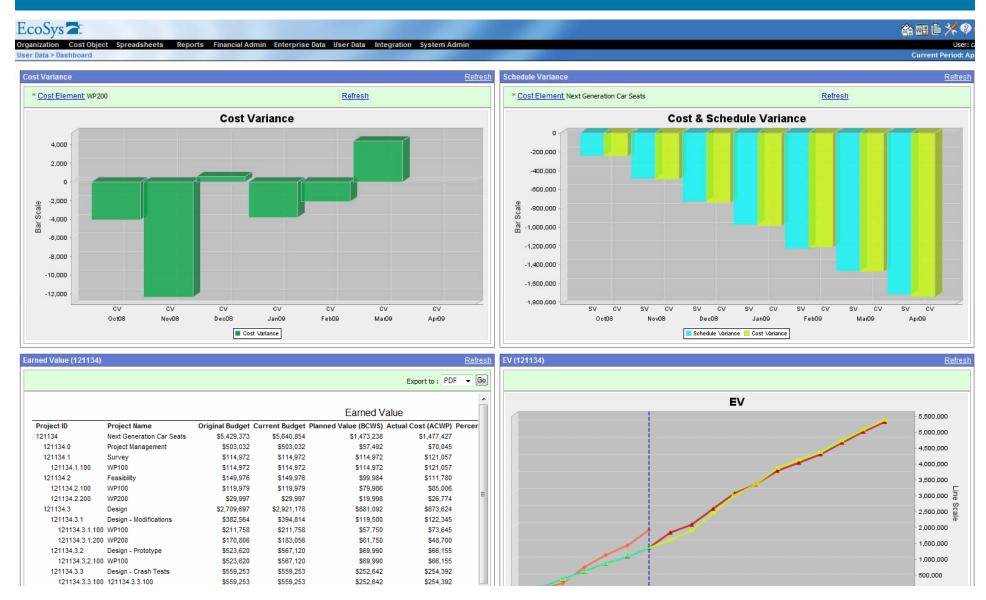
Projects:



- Milestone Driven Progress
- Simpler Execution

EV Tracking

- Portfolio Visibility
- EV Metrics for Each Project
- Rolled-up for aggregate performance analysis


EcoSys 7

EVM: A Tool for Business Decisions

- Actionable information that's appropriate for executives
- Summary, graphical, drilldown views
 - Find ways to roll up EVM across projects: portfolio, divisions, etc.
- Streamline terminology/descriptive information
 - Encourages decision makers to WANT to dig into info further
- With Executive buy in, EVM can succeed
 - Without it, EVM often becomes relegated to project controls back office.
 - Don't sell EVM, sell performance.

EVM Dashboards

EVM Building Blocks

- 1. Budgeting & Forecasting at the Right Level
 - Intelligent Work Breakdown Structure (WBS)
 - Fine enough to identify trends
 - Not so granular as to add burden without adding value
- 2. Accurate and Timely Progress Measurement
- 3. Integrated source of Actual Costs
- 4. Change Management integrated into EVM

What to Strive For

- Forecast EAC/ETC
- Ability to perform Scenario Impact Analysis
 - If... [scope/design] changes
 - Then... performance will be impacted [to what degree]
- Ability to compare performance against performance baselines
 - Original budget, current budget, current forecast, etc.
- Tracking Trends over time / over different times
 - Look at performance to date, but also more recent, appropriate trends
- Change behavior

Example Independent EACs

Project: 10-016 - Bluefire Fulton Construction Schedule															sh Save		
															⊝⊕		
WBS	WBS Name	WBS Type	PMT	% Complete Rollup	BCWP Calculated	ACWP	BAC	ETC	EAC	IEAC1	IEAC2	IEAC3	IEAC4	CPI	SPI	Cost Variance	Schedule Variance
					\$82,350	\$67,552	\$1,773,785	\$1,668,185	\$1,735,737	\$1,455,042	\$1,801,915	\$0	\$0				
⊡ 🔲 10-016	Bluefire Fulton Cons	Projects		4.64	\$82,350	\$67,552	\$1,773,785	\$1,668,185	\$1,735,737	\$1,455,042	\$1,801,915	\$0	\$0	1.22	0.00	\$14,798	\$82,350
	SUB PROJECT	Sub Projects		4.64	\$82,350	\$67,552	\$1,773,785	\$1,668,185	\$1,735,737	\$1,455,042	\$1,801,915	\$0	\$0	1.22	0.00	\$14,798	\$82,350
_	CONSTRUCTION	WBS		4.64	\$82,350	\$67,552	\$1,773,785	\$1,668,185	\$1,735,73	\$1,455,042	\$1,801,915	\$0	\$0	1.22	0.00	\$14,798	\$82,350
	Administrative Bldg	Control Account		0.00	\$0	\$0	\$0	\$0	5.0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
	Warehouse Bldg	Control Account		0.00	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
_ , ,	Water Treatment	Control Account		0.00	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
⊟ (•) , D	Acid Neutralizaiton/L	Control Account		4.64	\$82,350	\$67,552	\$1,773,785	\$1,668,185	\$1,735,737	\$1,455,042	\$1,801,915	\$0	\$0	1.22	0.00	\$14,798	\$82,350
2 014500	Scaffold	Discipline		0.00	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
⊡ 👺 020000	Civil	Discipline		0.00	\$0	\$0	\$59,420	\$59,420	\$59,420	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
■ 2300-D	Pile Driving	Work Package	<u>50/50</u>	0.00	\$0	\$0	\$26,520	\$26,520	\$26,520	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
■ 2500-D	Excavate/Backfill	Work Package	50/50	0.00	\$0	\$0	\$32,900	\$32,900	\$32,900	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
⊡ 👺 030000	Concrete	Discipline		46.02	\$82,350	\$67,552	\$178,950	\$73,350	\$140,902	\$146,793	\$166,604	\$0	\$0	1.22	0.00	\$14,798	\$82,350
■ 3250-D	Anchor bolts/Groutin	Work Package	<u>25/75</u>	0.00	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
■ 3311-D	Pile Caps	Work Package	<u>25/75</u>	100.00	\$45,000	\$53,252	\$45,000	\$45,000	\$98,252	\$53,252	\$53,252	\$53,252	\$0	0.85	0.00	(\$8,252	\$45,000
■ 3312-D	Footings/Foundatior	Work Package	50/50	100.00	\$30,600	\$14,300	\$30,600	\$26,100	\$40,400	\$14,300	\$14,300	\$14,300	\$0	2.14	0.00	\$16,300	\$30,600
■ 3313-D	Mat Foundations	Work Package	Level	0.00	\$0	\$0	\$76,350	5 0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0
■ 3315-D	Building Slab & Con	Work Package	25/75	25.00	\$6,750	\$0	\$27,000	\$2,250	\$2,250	\$0	\$0	\$0	\$0	0.00	0.00	\$6,750	\$6,750
■ 3300-D	Wet cure / Coatings	Work Package	[none]	0.00	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0.00	0.00	\$0	\$0

- IEAC1, assumes future cost performance will be same as past performance
- IEAC2, assumes future cost performance will be influenced by 80% past cost and 20% past schedule performance
- IEAC3, assumes future cost performance will be influenced by the last 3 months cost performance
- IEAC4, assumes future cost performance will be influenced by past cost and schedule performance

IEAC₁ =
$$AC + \frac{(BAC - EV)}{CPI} = \frac{BAC}{CPI}$$

IEAC₂ = $AC + \frac{(BAC - EV)}{0.8 \times CPI + 0.2 \times SPI}$


IEAC₃ = $AC + \frac{(BAC - EV)}{(CPI_1 + CPI_2 + CPI_3) / 3}$

IEAC₄ = $AC + \frac{(BAC - EV)}{(CPI \times SPI)}$

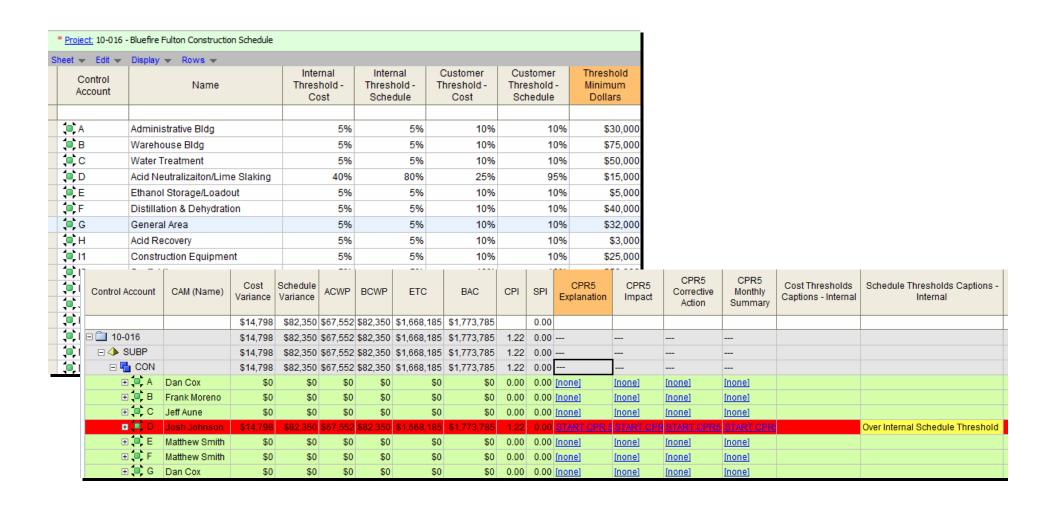
Reporting

From Summary to Variance Analysis

EcoSys =

How to Deploy the "Right Amount" of EVM

- Build a solid platform for budgeting, forecasting, and change management
- Use templates for WBS and progress measurement rules
- Standard reports and views for periodic and cumulative trends
- Match terminology to organization culture
 - CPI can be "Earned/Burned," "Productivity," etc.
 - Skip the burden of using ANSI standards when organization has already developed own know how and processes


EcoSys =

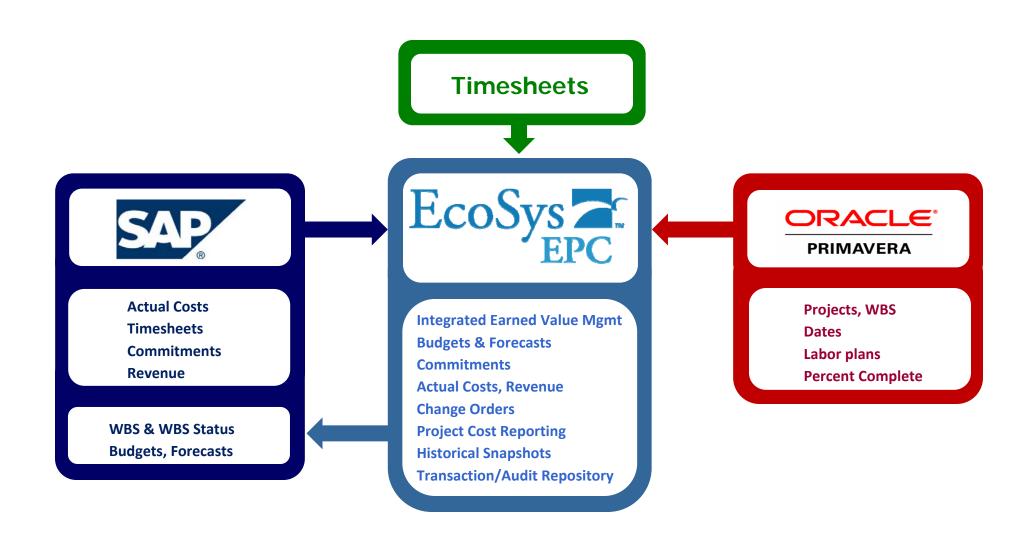
How to Deploy the "Right Amount" of EVM

- Monitor non-EV KPIs in conjunction with EV metrics
 - Develop a full project performance picture
- Provide ability to provide EVM on costs, hours, or quantities
 - Be able to roll up EVM accordingly
- Document variance analysis and justification
 - Beyond only reporting on trends and variances

Variance Analysis Tools

Earned Value Case Studies

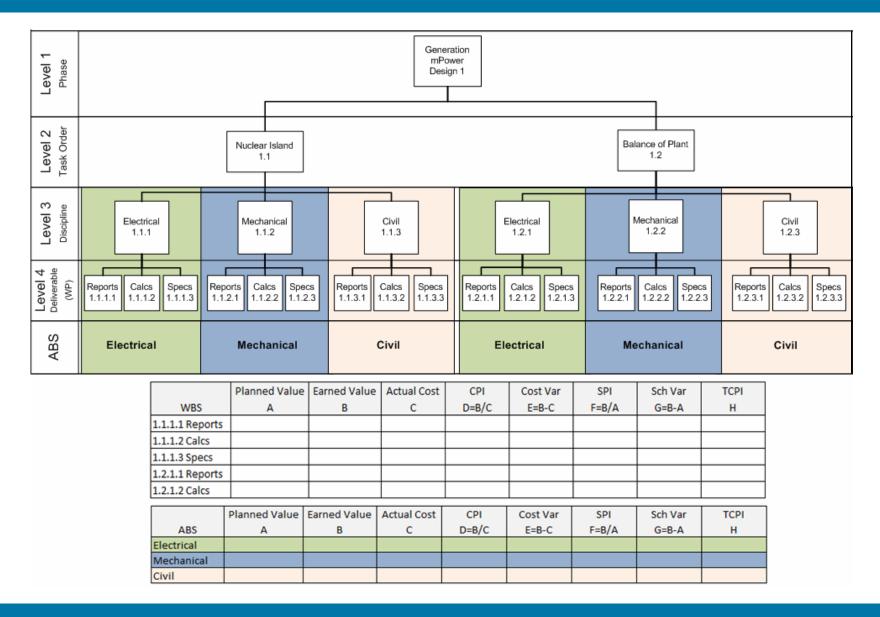
- Engineering & Construction / Utilities
- Federal Agency / Transportation



Case Study: Nuclear Utility Joint Venture

- Nuclear Power Generation & Operations company with major R&D, Construction, and Services projects in Canada & US
- Standardized on SAP and Primavera P6
- Requirement for centralized platform went beyond need for integration
- Deployed EcoSys for integrated EVM/ performance management, reporting, and controls

Integration Approach

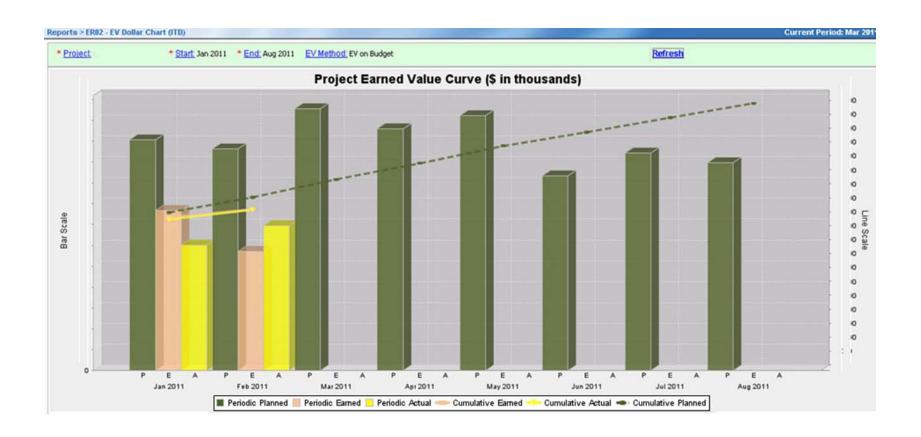


Highlights of Approach

- EV Technique Varies by Work Package
- Full Time-Phased History of Earned Value by Month
- EV Measures based on both Hours and Costs
- Performance analysis by Month, Year, and Project Life
- Change & Trend Management integrated into Current Budget & Current Forecast
- EV Reports can be run by toggling Baseline Budget = Cur Budget or Cur FC
- Ability to analyze performance & ETC by Alternate Breakdown Structures:
 - Discipline
 - 。 OBS
 - Cost Type (Labor, Material, ODCs, etc)

Planning Process: WBS and ABS

EcoSys Standardized Performance Reporting


Cumulative & Periodic Performance

ER01 - Project Earned Value Report - Summary EV on Budget - Dollars in Thousands Cumulative Performance Periodic Perfomance Original Sched Earned Actual Sched % Earn % Sched Actual Sched % Earn % Current **Budget Changes** Budget Trends Forecast Cost Cost Cost Comp Value Value Cost Comp Comp $M = \{G/C\}$ N = (H/C)U =(P/C) $C = \{A+B\}$ $E = \{C+D\}$ $T = \{O/C\}$ Nuclear Island 16,808 16,808 16,808 1,100 1,163 1,145 1.06 6.9% 184 246 228 1.34 1.1% 1.5% Turbine Island 2,017 350 2,367 2,367 264 281 272 1.07 1.03 11.9% 40 57 48 1.43 1.19 1.7% 2.4% 660 1.13 2.0% Balance of Plant 11,389 13,889 762 6.7% 145 231 1.59 1.80 1.3% 1,629 1.4% Support Services 13,931 13,931 13,931 1,630 1,621 11.7% 11.6% 206 197 205 0.96 0.96 1.5% 6,954 7,074 7,074 856 12.1% 12.1% 110 110 100 1.10 1.6% 1.6% Core Team 9,437 3.6% 1.4% 301 115 0.38 0.97 3.6% 1.4% Nuclear Steam Supply System 8,337 8,337 1,100 301 119 Component Design 9,456 1,100 10,556 10,556 0.99 3.7% 2.0% 388 206 135 0.53 1.53 3.7% 2.0% Component Testing 2,189 2,189 2,189 1.00 1.7% 0.2% 37 1 0.12 8.01 1.7% 0.2% ECCS Condensor 1,065 1,065 1,065 1.00 0 2,443 2,443 2,443 1.36 2.73 0.94 7.0% 9.6% 234 1.36 2.73 7.0% 9.6% IST 5,071 5,071 5,071 0.93 1.01 46.9% 730 564 551 0.77 1.02 14.4% 11.1% 1.00 50.2% CHF 835 835 835 2.13 9.64 0.99 0.6% 1.2% 5 10 2.13 9.64 0.6% 1.2% 1 8,313 0.0% 0.0% Misc - NRC Fees etc 8,313 8,313 0.02 1.00 1.00 0.5% 0.02 1.00 0.5% Support Services 4,444 3,317 3,290 1.00 1.01 0.98 74.6% 74.6% 98 71 1.00 1.38 2.2% 2.2% 302,648 1,570 304,218 307,818 10,551 3.6% 2,458 2,074 1,675 0.841.24 0.7%

Flexible Earned Value Analysis

By Project, Category Code, and EV Method

EVM Dashboards

Comparisons By Alliance Partner

Case Study

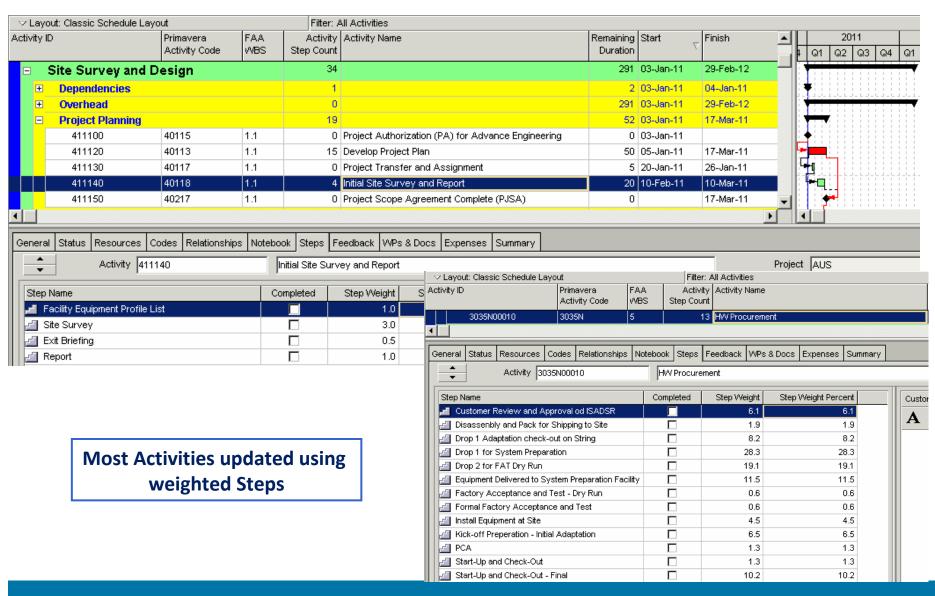
FAA TAMR Program

Overview:

- Terminal Automation Modernization and Replacement (TAMR) Program within Air Traffic Control – Terminal (ATO-T) Organization
- Modernize Air Traffic Control Systems at Nation's Major Airports
- High Visibility Capital Program

Capital Program Management Innovations:

- Standardize Contractor Submissions with Oracle Primavera P6 Templates
 - EVM Reporting performed based upon FAA's structures
 - Resource loaded schedules drive budgets, forecasts and EVM in EcoSys
- EcoSys Database Consolidates Funding Allocations, Budgets, Estimates, Forecasts, Obligations, Commitments, Expenditures, Performance/EVM
- ATO-T Maintains Vendors and Own Cost and Schedule Forecasts as Separate Versions
- G/L Actuals Are Reconciled against Vendor Submissions



FAA's P6 and EcoSys Solution

- Project activities reported in Primavera based on standard EVM techniques such as
 - Physical % complete based on weighted Steps
 - Level of Effort % duration
 - Milestone % complete
- Integrated with EcoSys to import Units, % complete and dates
 - Primavera planned, Actual and Remaining units used to calculate forecast, Actual and Remaining costs by project
 - Schedule and Performance % complete info that is calculated based on duration or Steps used for EVM metrics
 - Dates imported used for reporting purposes

Performance Measurement

Questions?

Thank you!

www.ecosys.net info@ecosys.net