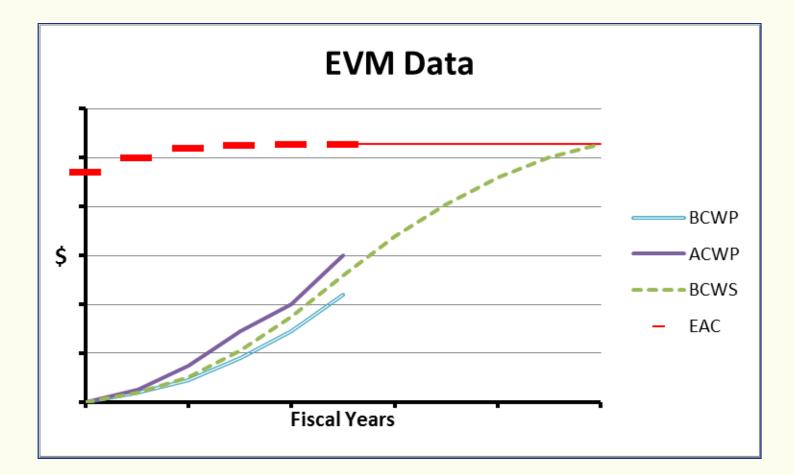
Estimating Cost-To-Go Without Stable EVM Data

Peter C. Frederic, Tecolote Ronald K. Larson, NASA

June 2013

Agenda


Introduction

- The Nominal Situation
- The Off-nominal Situation
- The Solution
- Conclusions

Introduction

- Disclaimer this presentation is not about interpretation of EVM data nor is it meant to be dismissive of EVM as a field of endeavor; we attempt only to provide an approach for estimating cost-to-go when a program's EVM system has not stabilized despite significant work technical work accomplished and significant money spent
- Initial independent estimates for <u>development</u> programs typically created using parametric methods
- In early stages, cost-to-go estimate by simply subtracting sunk cost from the parametrically-estimated total
- As progress accrues, it is necessary to understand progress to-date in order to estimate cost-to-go
- Stable EVM data in a mature project provides measurement of work accomplished
- If EVM data not stable (at the total program level), an alternate approach is required

The Nominal Situation

EAC experienced early growth, but stabilized

The Nominal Approach

$EAC = ACWP_{CUM} + (BAC - BCWP_{CUM}) / CPI$

<u>or</u>

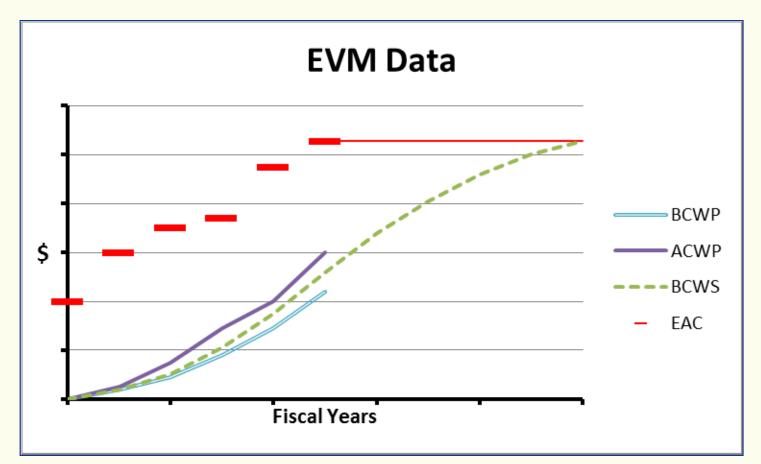
```
EAC = ACWP_{CUM} + (BAC - BCWP_{CUM}) / (CPI * SPI)
```

Where

 $\begin{array}{l} \mathsf{EAC} = \mathsf{Estimate} \ \mathsf{At} \ \mathsf{Completion} \\ \mathsf{ACWP}_{\mathsf{CUM}} = \mathsf{Actual} \ \mathsf{Cost} \ \mathsf{of} \ \mathsf{Work} \ \mathsf{Performed} \ (\mathsf{Cumulative}) \\ \mathsf{BAC} = \mathsf{Budget} \ \mathsf{At} \ \mathsf{Completion} \\ \mathsf{BCWP}_{\mathsf{CUM}} = \mathsf{Budgeted} \ \mathsf{Cost} \ \mathsf{of} \ \mathsf{Work} \ \mathsf{Performed} \ (\mathsf{Cumulative}) \\ \mathsf{CPI} = \mathsf{BCWP}_{\mathsf{p}} \ / \ \mathsf{ACWP}_{\mathsf{p}} = \mathsf{Cost} \ \mathsf{Performance} \ \mathsf{Index} \ \mathsf{over} \ \mathsf{some} \ \mathsf{period} \ \mathsf{of} \ \mathsf{time} \ "\mathsf{p}" \\ \mathsf{SPI} = \mathsf{BCWP}_{\mathsf{p}} \ / \ \mathsf{BCWS}_{\mathsf{p}} = \mathsf{Schedule} \ \mathsf{Performance} \ \mathsf{Index} \ \mathsf{over} \ \mathsf{some} \ \mathsf{period} \ \mathsf{of} \ \mathsf{time} \ "\mathsf{p}" \\ \mathsf{BCWS} = \mathsf{Budgeted} \ \mathsf{Cost} \ \mathsf{of} \ \mathsf{Work} \ \mathsf{Scheduled} \\ \end{array}$

This can be applied at any WBS level for which EVM data is available

A More Independent Approach


$EAC = ACWP_{CUM} + (1 - BCWP_{CUM} / BAC) * TC_{I}$

Where

$$\begin{split} \mathsf{EAC} &= \mathsf{Estimate} \; \mathsf{At} \; \mathsf{Completion} \\ \mathsf{ACWP}_{\mathsf{CUM}} &= \mathsf{Actual} \; \mathsf{Cost} \; \mathsf{of} \; \mathsf{Work} \; \mathsf{Performed} \; (\mathsf{Cumulative}) \\ \mathsf{BCWP}_{\mathsf{CUM}} &= \mathsf{Budgeted} \; \mathsf{Cost} \; \mathsf{of} \; \mathsf{Work} \; \mathsf{Performed} \; (\mathsf{Cumulative}) \\ \mathsf{BAC} &= \mathsf{Budget} \; \mathsf{At} \; \mathsf{Completion} \\ \mathsf{TC}_{\mathsf{I}} &= \mathsf{Independently} \; \mathsf{estimated} \; \mathsf{Total} \; \mathsf{Cost} \end{split}$$

This can be applied at any WBS level for which EVM data is available

The Off-Nominal Situation

- EAC has grown as fast as work has been accomplished!
- Estimated portion of EVM data (BAC, EAC) clearly unreliable
 - Must use independent estimate of total, not EVM EAC
 - Need to account for progress achieved without EVM BAC The opinions expressed herein are solely those of the authors.

Possible Causes

Performance requirements growth

Should be reflected in changes in cost-driving performance parameters

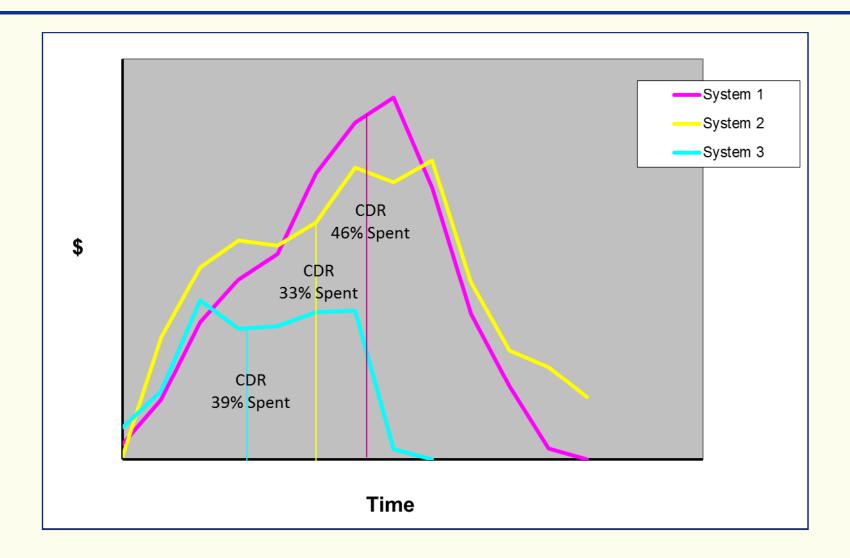
Design requirements growth

Should be reflected in changes in cost-driving design parameters

Execution requirements growth

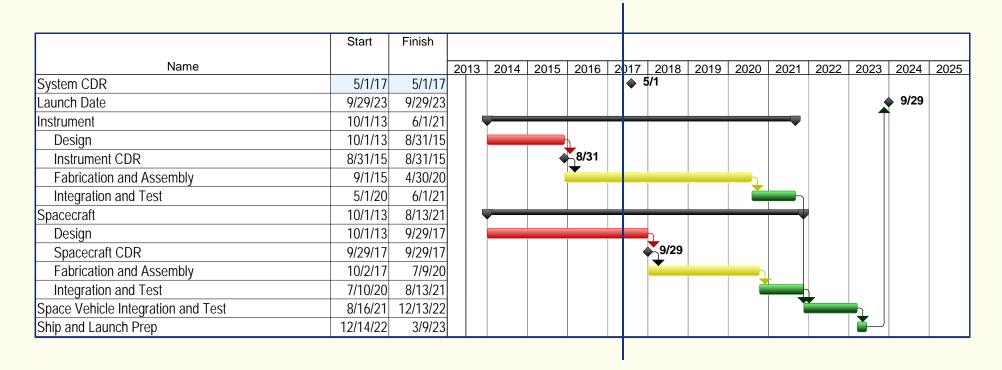
- Unforeseen additional tasks required to complete the development
- May not be captured in typical cost-driving parameters
- Poor understanding or/or definition of the effort required, resulting in really bad early cost estimating
- Requirements growth results in ECPs and contract modifications and is incorporated in performance measurement baseline
- Regardless of cause of cost growth, BAC and EAC can't be trusted if growth has not stabilized

The Solution


Key facts

- Sunk costs are auditable... they are what they are... however, they may not represent actual work accomplished
- □ The purpose of schedule milestones is to measure progress
- If definitions of key milestones are consistent with historical projects, then key milestones can be assumed to represent a consistent portion of overall work

Three step process


- 1. Look at historical data for similar projects and determine typical portion of work represented by key milestones
- 2. Look at schedule for current project and calculate completion factors based on when current milestones were or will be accomplished
- 3. Apply *in*completion factors to independently estimated totals to estimate cost-to-go

Historical Data For Similar Projects

Average percent spent at CDR: 39.3% The opinions expressed herein are solely those of the authors.

Sample Project Status

Time Now

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Sample Actual and Estimated Costs by WBS

		Spent			
WBS	CDR Date	Before CDR	ACWP	EAC	TC
Instrument	8/31/2015	155.0	178.0	203.0	237.0
Spacecraft	9/29/2017	122.0	112.0	170.0	184.0
Space Vehicle Integration and Test	N/A	N/A	10.0	65.0	70.0
Launch	N/A	N/A	0.0	90.0	100.0
Total			300.0	528.0	591.0

Application of Incompletion Factors

			Percent				
			Complete				Value of
		Spent	Based on			Independent	Work
WBS	CDR Date	Before CDR	CPR Date	ACWP	TCi	Cost To-Go	Performed
Instrument	8/31/2015	155.0	45.1%	178.0	237.0	130.0	107.
Spacecraft	9/29/2017	/ 122.0	/ 36.1%	112.0	184.0	117.6	66.
Space Vehicle Integration and Test	N/A	N/A	N/A	10.0	70.0	60.0	10.
Launch	N/A	N/A	N/A	0.0	100.0	100.0	0.0
Total		c		a 300.0	^b 591.0	407.7	183.
	d = 39.3% * a / c			b * (100% - d) b * d			

Calculate completion factors based on when current milestones were or will be accomplished

- \Box "a/c" represents effort completed relative to CDR, e.g. a/c = 112.0 / 122.0 = 91.8%
- ➡ Historical effort represented by CDR is 39.3% of total effort, so overall Percent Complete is 91.8% * 39.3% = 36.1%.
- Apply incompletion factors to independently estimated totals to estimate cost-to-go
 - multiply inverse of Percent Complete times the independent total cost: (100% 36.1%)
 * 184.0 = 117.6

Conclusions

- It is possible to make sound estimates of costs to-go without stable EVM data
- Higher fidelity historical schedule data allows for higher fidelity estimating of progress based on milestone dates