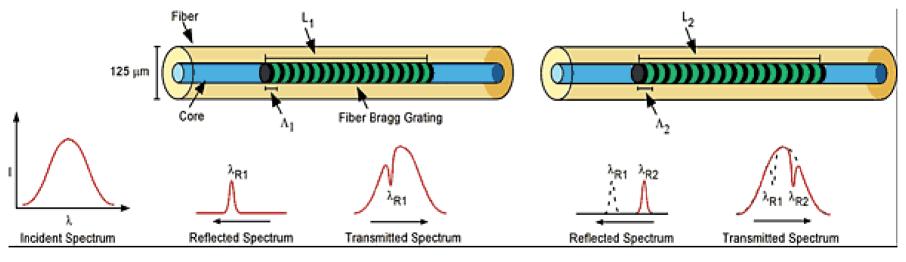
Customer Success Is Our Mission

Copyright © 2010 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Using Prognostics In a System

- Definition
 - The sensing, recording or interpreting or a systems operational parameters to monitor the operational health of that system.
 - Example: Engine Temperature gauge
- Potential Benefits
 - Prognostics must defer or prevent maintenance
 - Maintenance is either postponed until regularly scheduled service or not performed because the system is still operational.
 - Deferred or prevented maintenance can save support costs and\or increase system availability.
- Are Prognostics Beneficial?
 - Perform a Cost Benefit Analysis to document the cost and availability impact of prognostics

Prognostics Can Potentially Save Maintenance Costs

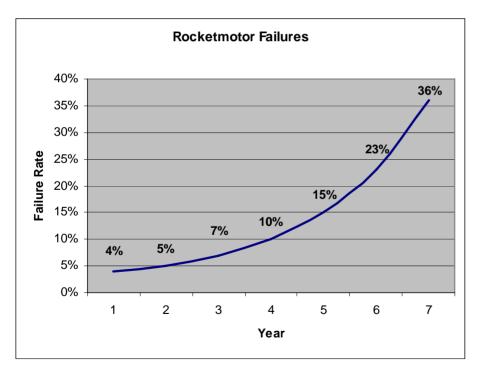

Prognostics Example

- The Ace Missile Company Markets the Mighty Missile
 - Superior speed, range and payload
 - Acme Rocketmotors LLC produces a solid rocketmotor that provides the performance the Mighty Missile requires.
- Solid Rocketmotors Are Susceptible To Damage
 - Delamination (layers coming apart), twisting, cracking
 - Damage is caused by humidity, vibration and age
- Optic Fiber Prognostics Device
 - An optic fiber is mounted on the outer surface of the rocketmotor propellant
 - Delamination, twisting or cracking of the rocketmotor propellant strains the optic fiber which can be detected by testing

Prognostics Can be Incorporated into Rocketmotors

Optic Fiber Function

- The fiber is interrogated by sending light through it and reading the wavelength of the reflected light.
 - Light reflected by an unstrained fiber has a known wavelength.
 - Light reflected by a strained fiber will have a different wavelength.


UNSTRAINED FIBER

STRAINED FIBER

Damaged Rocketmotors can be Identified

Rocketmotor Failure Rates

- The Mighty Missile rocketmotor has a guaranteed useful life of 10 years.
 - The rocketmotors fail at increasing rates over the next seven years

		Storage	Fielded
Year	Failure %	118	125
1	4%	5	5
2	5%	6	6
3	7%	8	9
4	10%	12	12
5	15%	17	19
6	23%	27	29
7	36%	43	45
Totals	100%	118	125

Population Failures Over 7 Years

Mighty Missile Operations

- Production
 - 250 missiles are produced each year
 - 125 go into storage (seven are used for test and training each year)
 - 125 are fielded
- Rocketmotors will be replaced once
 - Replace rocketmotors lot by lot each year as the ten year service life expires
 - Equip the rocketmotors with an Optic Fiber test the missiles each year and replace failed rocketmotors
- Does using the Optic fiber provide a cost savings or increase in missile availability?

Prognostics Cost Benefit Analysis

Defining Cost Elements

Cost Element	Cost ('09 \$s)
Rocketmotor	\$20,500
Optic Fiber installation (per rocketmotor)	\$250
Fiber Optic Test Set	\$100,000
Depot Labor (touch) per hour	\$68
Depot Labor (engineering support) per hour	\$118
Customer Storage Facility labor per hour	\$92
Ground Transportation; dollars per pound per mile	.000418792
Inflation (annual)	2.4%

- Cost Definition Projection of Actuals
 - Costs are actual quotes provided by vendors and contractors
- Risks
 - Uncertainty about availability of parts
 - Rocketmotors and test set (bought in Program year 11)

Actual Costs Produce the Most Accurate Cost Estimate

Missile Systems

Program Year 11

Α	В	С
1	Program Year	11
2	Assets used for testing (cumulative)	77
3	Prognostics cost	\$712,218
4	Test set	\$126,765
5	Depot Rocketmotor replacement cost	\$29,425
6	Storage test labor cost	\$9,554
7	Fielded test labor cost	\$13,899
8		
9	Rocketmotors with Optic Fiber replacement	
10	Failed rocketmotors - storage	48
11	Failed rocketmotors - fielded (tested)	5
12	Rocketmotors replaced	53
13	Rocketmotor test\replacement (in storage) cost	\$1,768,522
14	Rocketmotor test\replacement (fielded) cost	\$643,899
15	Total Yearly Cost	\$2,412,420
16	Available missiles	2,423
17		
18	Lot by Lot rocketmotor replacement	
19	Rocketmotors replaced	173
20	Rocketmotor replacement (in storage) cost	\$1,412,413
21	Rocketmotor replacement (fielded) cost	\$3,678,158
22	Total Yearly Cost	\$5,090,571
23	Available missiles	2,423

First Year of Rocketmotor Replacements

Missile Systems

Program Years 20 and 21

Α	В	С	D
24	Program Year	20	21
25	Assets used for testing (cumulative)	140	147
26	Depot Rocketmotor replacement cost	\$36,427	\$37,301
27	Storage test labor cost	\$11,827	\$12,111
28	Fielded test labor cost	\$17,930	\$18,444
29			
	Rocketmotor with Fiber Optic Cable		
30	replacement		
31	Failed rocketmotors - storage	118	113
32	Failed rocketmotors - fielded (tested)	125	120
33	Rocketmotors replaced	243	233
34	Rocketmotor test\replacement (in storage) cost	\$4,310,179	\$4,227,119
35	Rocketmotor test/replacement (fielded) cost	\$4,571,269	\$4,494,559
36	Total Yearly Cost	\$8,881,448	\$8,721,678
37	Cumulative Cost	\$45,320,010	\$54,041,688
38	Available missiles	2,360	2,307
39			
40	Lot by Lot rocketmotor replacement		
41	Rocketmotors replaced (in storage)	118	0
42	Rocketmotors replaced (fielded)	125	0
43	Rocketmotors replaced	243	0
44	Rocketmotor replacement (in storage) cost	\$4,298,352	\$0
45	Rocketmotor replacement (fielded) cost	\$4,553,339	\$0
46	Total Yearly Cost	\$8,851,692	\$0
47	Cumulative Cost	\$77,681,592	\$77,681,592
48	Available missiles	2,360	2,187

Final Year of Lot by Lot Rocketmotor Replacements

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Program Years 22 – 30 Missile Inventory Missile Systems

Comparison

Α	В	С	D	E	F	G	Н	I	J	K
49	Program Year	22	23	24	25	26	27	28	29	30
50	Depot Rocketmotor replacement cost	\$38,196	\$39,113	\$40,052	\$41,013	\$41,997	\$0	\$0	\$0	\$0
51	Storage test labor cost	\$12,402	\$12,699	\$13,004	\$13,316	\$0	\$0	\$0	\$0	\$0
52	Fielded test labor cost	\$18,974	\$19,518	\$20,078	\$20,655	\$0	\$0	\$0	\$0	\$0
53	Rocketmotors with Optic Fiber replacement									
54	Rocketmotors replaced	221	204	180	144	88	0	0	0	1
55	Total Yearly Cost	\$8,472,731	\$8,011,246	\$7,242,370	\$5,939,819	\$3,695,749	\$0	\$0	\$0	\$0
56	Cumulative Cost	\$62,514,419	\$70,525,665	\$77,768,035	\$83,707,853	\$87,403,602	\$87,403,602	\$87,403,602	\$87,403,602	\$87,403,602
57	Available missiles	2,291	2,260	2,209	2,127	1,999	1,799	1,556	1,313	1,070
58										
59	Lot by Lot rocketmotor replacement									
60	Rocketmotors replaced	0	0	0	0	0	0	0	0	0
61	Total Yearly Cost	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
62	Cumulative Cost	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592	\$77,681,592
63	Available missiles	1,944	1,701	1,458	1,215	972	729	486	243	0

Final Years of Optic Fiber Rocketmotor Replacements

5/4/2010 Page 10

Missile Systems

Program Year 36

Α	B	С
64	Rocketmotors with Optic Fiber replacement	
65	Rocketmotor test\replacement (in storage)	\$41,087,608
66	Rocketmotor test\replacement (fielded)	\$46,315,994
67	Cumulative Cost	\$87,403,602
68	Available missiles (years)	45,031
69	Rocketmotor Maintenance (per missile)	\$37,035
70	Rocketmotor Maintenance (per year)	\$1,941
71		
72	Lot by Lot rocketmotor replacement	
73	Rocketmotor replacement (in storage)	\$36,662,374
74	Rocketmotor replacement (fielded)	\$41,019,219
75	Cumulative Cost	\$77,681,592
76	Available missiles (years)	34,850
77	Rocketmotor Maintenance (per missile)	\$32,916
78	Rocketmotor Maintenance (per year)	\$2,229

Final Maintenance and Operational Data

Conclusions

- Additional Missile Availability at Additional Cost
 - Rocketmotors can be replaced at a lower per unit cost, or
 - More missiles can be available for longer time
- Rocketmotor Replacement is One Logistics Issue
 - All Logistics issues need to be considered together to determine the overall support cost for a program

The Cost Benefit Analysis Shows Maintenance Options