

Review of Three Small-Satellite Cost Models

Melvin Broder, Eric Mahr The Aerospace Corporation

Dan Barkmeyer, Eric Burgess, Wilmer Alvarado NRO Cost Analysis Improvement Group

Samuel Toas, Gregory Hogan Air Force Cost Analysis Agency

Presentation to the 2010 ISPA/SCEA Conference San Diego, CA June 2010

© The Aerospace Corporation 2008

SmallSat Costing Must Adapt a Different Model

	SmallSat		
Technical Parameters	Range	Design Impact	Cost Impact
	<8 cu		
Size	meters	\checkmark	\checkmark
Weight	< 500 kg	$\checkmark\checkmark\checkmark$	<i>√√√</i>
Power	< 1000 w	$\checkmark\checkmark\checkmark$	√√
Pointing Accuracy	> 1 degree	$\checkmark\checkmark$	\checkmark
	0 to < 300		
Total Impulse (Delta V)	m/sec	\checkmark	\checkmark
	< 10		
Down Link Rate	Mbits/sec	\checkmark	\checkmark
Programmatic Parameters			
	LEO (or		
Orbit Regime	MEO)	$\checkmark \checkmark \checkmark$	\checkmark
Satellite Class (A to D)	C or D	$\checkmark \checkmark \checkmark$	\checkmark
Design Life	< 3 years	\checkmark	\checkmark
Redundancy	Single String	\checkmark	✓
Qualification Testing	None	$\checkmark \checkmark$	\checkmark

Small Satellite Cost Models Covered in this Paper have Different Approaches to the Issues

- 1. The Small Satellite Cost Model (SSCM)
 - Eric Mahr, The Aerospace Corporation

- 2. The Demonstration System Cost Model (DSCM)
 - Dan Barkmeyer, The NRO Cost Analysis Improvement Group

- 3. Parametric Sizing and CAIV Cost Model
 - Sam Toas, Air Force Cost Analysis Agency and the Operationally Responsive Space Program Office

There are underlying data points that are in the "DNA" of all three models

Small Satellite Cost Model (SSCM)

Eric Mahr SSCM Principal Investigator Engineering Specialist The Aerospace Corporation Website: http://www.aero.org/capabilities/sscm/

Presentation to the AIAA Space 2009 Conference Pasadena Convention Center September 15, 2009

© The Aerospace Corporation 2008

atellite Cost Model

Motivation

- Paradigm shift in early 1990's saw a move from traditional large satellites to small satellites
 - NASA Faster, Better, Cheaper (FBC)
 - Commercial communications
 - Universities
 - Technology demonstrations
- Parametric weight-based cost models based on traditional large satellites do not accurately predict the costs of small satellites
 - Overlook strategies that are an integral part of the small satellite design process
 - Highly focused missions
 - Streamlined development process and reduced programmatic oversight
 - Shorter design lifetimes and lower reliabilities
- Need existed for a model that could credibly estimate costs of small satellites

atellite Cost Model

SSCM Description

- Parametric cost model
- Estimates development and production cost of a spacecraft bus for small (<1000 kg total wet mass) Earth-orbiting or near-Earth planetary missions
- Subsystem-level Cost Estimating Relationships (CERs) derived from technical and cost database of historical small spacecraft
- CERs include cost drivers that are not strictly weight-based
 - Performance
 - Configuration
 - Technology
 - Programmatics
- Applies to civil, commercial and military missions

Small Satellite Characteristics

<u>Characteristic</u> Physical Light (Mass) Small (Volume)

Functional Specialized design Dedicated mission

Procedural Short project schedule Streamlined organization

Developmental Existing components/facilities Software advances

Risk Acceptance Low to moderate mission value Higher tolerance for mission risk

Launch Small vehicle or piggyback

Ground Terminals Simplified/autonomous Cost Related Observation

Reduced spacecraft cost Simplified systems engineering

Reduce interface requirements, complexity Fewer users, shorter lifetimes

Satellite Cost Model

Focused design effort, minimize optimization Less management structure

No development of new parts or technologies Extensive software reuse

Rely on existing technology Reduced redundancy, complexity

Avoid launch date slips, stand-downs

Need fewer personnel

Elements Estimated

Satellite Program Satellite **Spacecraft Bus** Attitude Determination and Control Subsystem (ADCS) **Propulsion Power Telemetry, Tracking and Command (TT&C)** Command and Data Handling (C&DH) Structure Thermal Payload Integration, Assembly and Test (IA&T) Program Management (PM)/Systems Engineering (SE) Launch and Orbital Operations Support (LOOS) Launch Service **Ground Segment**

Elements estimated shown in **bold**

Satellite Cost Model

Small Satellite Cost Model

Element Definitions

ADCS	Control electronics, attitude sensors (earth, sun, star, magnetometers, gyroscopes), actuators (torque coils, reaction/momentum wheels) and gravity gradient booms
Propulsion	Tanks, thrusters, servo electronics and propellant feed plumbing
Power	Batteries, power control electronics, power converters, wire harness and solar arrays
TT&C/C&DH	Antennas, transponders, baseband units, receivers, transmitters, telemetry encoders/decoders, command processors, power amplifiers, signal and data processing equipment and magnetic or solid state data recorders
Structure	Support structure for spacecraft and payload, launch adapter or deployment mechanism, other deployment mechanisms and miscellaneous minor parts
Thermal	Thermostats, heaters, insulation (tape, blankets), special conductors and heat pipes. Does not include payload-specific cooling equipment.
IA&T	Research/requirements specification, design and scheduling of IA&T procedures, ground support equipment, spacecraft bus and payload-to-bus integration, systems test and evaluation and test data analyses. Typical tests include thermal vacuum and cycle, electrical and mechanical functional, acoustic, vibration, electromagnetic compatibility/interference and pyroshock.
PM/SE	Systems engineering (quality assurance, reliability, requirements activities), program management, data/report generation, and special studies not covered by or associated with specific satellite subsystems
LOOS	Prelaunch planning, trajectory analysis, launch site support, launch-vehicle integration (spacecraft portion) and initial on-orbit operations before ownership is turned over to the operational user (typically 30 days)

CER Development

- Identification of cost drivers in each subsystem
 - Technical database contains 100+ technical parameters
 - Narrowed field of potential cost drivers using statistics, sound engineering judgment and common sense
- Several forms of CER were considered for each set of inputs
 - One-variable linear and non-linear
 - Multi-variable, using non-correlated cost drivers
- Data from a particular subsystem was segregated if it made engineering sense
 - e.g., Spin-stabilized vs. 3-axis stabilized attitude control subsystems

lite Cost Model

Small Satellite Cost Model

SSCM07 User Interface

NATIONAL RECONNAISSANCE OFFICE

Demonstration Satellite Cost Model (DSCM)

Presented at: AIAA Space 2009 Pasadena, CA

VIGILANCE FROM ABOVE

UNCLASSIFIED

Background

- + Costs of small satellites for demonstration or short-term scientific missions do not follow trends of operational satellites
- + Recent tendency to develop larger, more operational-like demos
- + NRO CAIG wants to know:

How successfully can cost-reduction strategies employed for small demo satellites be extended to larger ones?

- + Approach
 - Develop cost model based on SSCM database expanded to include large demonstration-type satellites
 - Compare against established cost model for operational satellites

What is a Demo?

- + One-of-a-kind satellites
- + Short design lives
- + Not designed for a JROC-validated or pre-existing mission need
- + Not designed to deliver sustained science product (e.g., Hubble, IRAS, GRO, AXAF)
- + Stand-alone communication, control, and processing ground segment
- + Government sponsored
- + Earth-orbiting

DSCM Cost Estimating Relationships

Subsystem	CER / SER Form		
SE / PM	[Cost (FY06\$K)] = 0.26 [Base (FY06\$K)] ^{1.03}		
I&T	[Cost (FY06\$K)] = 33.0 [S/C Dry Weight (Ib)] ^{0.66} * 1.32 ^[Contract Includes Payload Integration] * 1.40 ^[Optical Payload] * 1.70 ^[Propulsion]		
Structure	[Cost (FY06\$K)] = 45.1 [Subsystem Weight (Ib)] ^{0.77} * 1.34 ^[Solar Array Mechanics]		
Thermal	[Cost (FY06\$K)] = 62.7 [Subsystem Weight (lb)] ^{0.70} * 1.63 ^[Optical Payload] + 144		
EPS	[Cost (FY06\$K)] = 37.1 [Subsystem Weight (Ib)] ^{0.89} * 1.44 ^[Nickel-Hydrogen Battery]		
ADCS	[Cost (FY06\$K)] = 288 [Subsystem Weight (Ib)] ^{0.59} * [Number of Attitude Sensors] ^{0.23}		
Propulsion	[Cost (FY06\$K)] = 398 [Propellant Weight (lb)] ^{0.22} * [Number of Thrusters] ^{0.37}		

Subsystem	CER / SER Form
TTC&DH	[Cost (FY06\$K)] = 15.5[Subsystem Weight (lb)] ^{0.86} * [Vehicle End of Life Power (W)] ^{0.41}
Software	[Cost (FY06\$K)] = 16.8[TT&C Subsystem Weight (lb)] ^{1.18}
Launch Support	[Cost (FY06\$K)] = 82.3[Base (FY06\$K)] ^{0.22} * [Number of Payloads] ^{0.51} * 1.60 ^[Hydrazine Propellant]
Optical Payload	[Cost (FY06\$K)] = 760 [Payload Weight (lb)] ^{0.69} * (log[Spectral Range (A)]) ^{0.37} * 0.28 ^[Cryostat]
RF Payload	[Cost (FY06\$K)] = 119 [Payload Weight (lb)] ^{0.97} * [Design Life (mo)] ^{0.28}
Schedule	[Time to First Launch (mo)] = 9.4 [S/C Dry Weight (lb)] ^{0.14} * [Design Life (mo)] ^{0.19} * 1.13 ^[Optical Payload] - 5.6 ^[Option on Extant Contract]

* CERs based on a mixture of NASA, DoD, and NRO data

- + CERs/SERs based on technical inputs
- Determined through regression analysis supported by engineering judgment
- + Selected based on accuracy across entire dataset

Comparison Against Operational Satellites

- + Operational satellites (red) and demos (blue) estimated using cost model designed for operational satellites
- + Behavior of residuals ($R = \frac{\text{Actual Estimate}}{\text{Estimate}}$) shows trend with weight in demo satellite cost relative to operational satellites
- As weight increases, demo satellites are more accurately modeled by operational satellite model
 - Implies cost reduction due to demo-like practices becomes less effective as satellite approaches operational-like scale

Comparison Against Operational Satellites

- + Trend is more pronounced when examining only hardware cost
- Largest (most complex) demos have hardware cost in line with operational systems

- Systems engineering, integration & test, and program management (SEITPM) shows a significant savings for demos across the dataset
 - Streamlined, more risk-tolerant design and I&T is where the payoff is for demo-like development

Weight

UNCLASSIFIED

Conclusions

- + Costs of demonstration satellites can be modeled similarly to those of operational satellites, but trend differently with technical drivers
- + Demonstration satellites approach the cost of operational satellites as they increase in size
 - Hardware costs only able to achieve efficiency if the scope of the program is less ambitious
 - SEITPM costs responsible for the bulk of savings associated with more risk-accepting programs

Headquarters U.S. Air Force

Integrity - Service - Excellence

AFCAA Parametric Sizing Model

AIAA Conference & Exposition Sept 2009

Sam Toas AFCAA / TASC <u>samuel.toas@ngc.com</u> Phone: 703-336-2766

Greg Hogan AFCAA / Booz Allen Hamilton hogan_gregory@bah.com Phone: 703-609-9134

Background

"I don't know the inputs"

- Streamlined Acquisition strategy for Small Sats requires Government and Contractors to complete detailed cost estimates much earlier in the life cycle than Large Sats
- At the concept phase, many inputs required to complete a high fidelity estimate are not available . . . but general mission requirements and/or target budget are known

" "Now what should I do?"

 Determine the relationship between known parameters and typical cost model inputs for the technical baseline

Weight and Power Drivers

- Determine set of design parameters that could be used to estimate CER inputs (e.g., weight and power)
 - Gathered through existing literature (e.g., SMAD¹), interviews with design engineers, and in-house knowledge
 - Drivers do not have to be fixed \rightarrow Trade studies

Subsystem	Drivers			
EPS	EOL Power, Design Life, Solar Array Type and Efficiency, Orbit,			
	Battery Type, Bus Voltage			
ADCS	Stabilization Method, Satellite Mass, No. Sensors, Orbit Type			
Propulsion	Satellite Mass, Delta V, ISP, Propulsion Type (XIP vs. Mono)			
CDH/TTC	Processing Capability, Data Storage Requirement, Frequency			
	Band			
STR	Satellite Weight, Orbit Type			
TCS	Satellite Weight, Orbit Type, BOL Power			
Optical Assembly	Target Range, Resolution, Wavelength, FOV, Limiting			
	Magnitude, Target Velocity			
Simple Comm Link	Range, Frequency, No. Channels, Data Rate, Required Margin			

¹Wertz, J.R., and Larson, W.J. (Eds). (1999). Space Mission Analysis and Design (3rd ed.). Microcosm Press, El Segundo, CA.

Weight Estimating Relationships

- Example below shows a weight estimating relationship developed for an optical sensor
 - Direct link from requirement (resolution, FOV) to weight / cost

Sizing Model Interactions Ensures the Design Closes

Integrity - Service - Excellence