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1,2Abstract— This paper describes a model and methodology developed for Tecolote Research, 
Inc. by this paper’s author and referred to as the Tecolote DSLOC Estimate Growth Model v06. 
The model provides probabilistic growth adjustment to single-point Technical Baseline Esti-
mates (TBEs) of Delivered Source Lines of Code (DSLOC), for both New software and Pre-
Existing Reused (PER) software, that is sensitive to the maturity of the estimate; i.e., when, in 
the Software Development Life Cycle (SDLC), the DSLOC TBE is performed. The model is 
based on Software Resources Data Report (SRDR) data collected by Dr. Wilson Rosa of the U.S. 
Air Force Cost Analysis Agency (AFCAA). This model provides an alternative to other software 
code growth methodologies such as Mr. Barry Holchin’s (2003) code growth matrix. 
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1.  INTRODUCTION 

The Tecolote DSLOC Estimate Growth Model v06, developed for Tecolote Research, Inc. by the 
author of this paper, provides probabilistic growth adjustment to single-point Technical Baseline 
Estimates (TBEs) of Delivered Source Lines of Code (DSLOC), for both New software and Pre-
Existing Reused (PER) software, that are sensitive to the maturity of the estimate; i.e., when, in 
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the Software Development Life Cycle (SDLC), the DSLOC TBE is performed. It is a data driven 
model and methodology that is based on Software Resources Data Report (SRDR) data collected 
by Dr. Wilson Rosa of the U.S. Air Force Cost Analysis Agency (AFCAA). This model provides 
an alternative to other software code growth methodologies such as Mr. Barry Holchin’s (2003) 
code growth matrix. 

The paper includes custom Cumulative Distribution Function (CDF) tables that can be copied 
into tools such as Tecolote’s ACEIT or Oracle’s Crystal Ball in order to create the Custom CDFs 
that are needed to model the baseline New DSLOC growth factor distribution and to model the 
baseline Pre-Existing Reused DSLOC growth factor distribution. The paper also includes a set of 
DSLOC growth factor multipliers as a function of Estimate Maturity for each of New DSLOC 
and Pre-Existing DSLOC such that appropriate application of these factors to a DSLOC TBE 
yields corresponding Least, Likely, and Most DSLOC values that, if input to Galorath’s SEER-
SEM, will reasonably model growth and uncertainty consistent with the SRDR historical data. 

2. MODEL SUMMARY 

The Tecolote DSLOC Estimate Growth Model v06 equations for applying growth and uncertain-
ty to TBE New and PER DSLOC are3 

   1 1bt
D_NewS e  D_Adj_New GF_NewS K  (1) 

and 

   1 1bt
D_PERS e  D_Adj_PER GF_PERS K  (2) 

where 

 growth-adjusted New DSLOC estimate distribution

 growth-adjusted PER DSLOC estimate distribution

 Technical Baseline Estimate (TBE) of New DSLOC
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3 We use the Arial bold italic font to denote random variables; i.e., variables that can take on values according to 
some probability distribution. 
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The equations for providing the appropriate New and PER , ,Least Likely Most  DSLOC inputs 

to Galorath’s SEER-SEM tool are 
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 
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 



   

(3) 

The remainder of this paper describes the basis of these equations. 

3. COMPONENTS OF THE MODEL 

Normalized Estimate Maturity 

The single parameter input to the Tecolote DSLOC Estimate Growth Model is normalized Esti-
mate Maturity t . By default, Estimate Maturity is quantified by the scale contained in Table 1 
below. This scale is consistent with the model defaults for the baseline New and Pre-Existing 
DSLOC growth factor distributions (which is based on the SRDR data) and with the uncertainty 
decay factor (which is based on Boehm’s (1981) Cone of Uncertainty. Tailored instances of the 
model can be created for different SDLCs as long as historical data exists where the projects 
followed that particular SDLC and where this data has been used to determine corresponding 
baseline growth factor distributions and uncertainty decay factor values or distributions. 

Table 1  Default Normalized Estimate Maturity Scale 

 

DSLOC Baseline Growth Factor Distributions 

DSLOC estimate growth is modeled at the computer program (CSCI) level and is applied by 
multiplying the TBEs of New and Pre-Existing DSLOC by the appropriate decay-adjusted 
growth factor distribution. The baseline (zero Estimate Maturity) growth factor distributions for 
New DSLOC and for Pre-Existing DSLOC have the following characteristics (Table 2) and cus-
tom CDFs (Table 3). 

Estimate Maturity Scale
t = 0%

t = 20%

t = 40%

t = 60%

t = 80%

t = 100%

Software Preliminary Design Review
Software Critical Design Review
Software Acceptance

Begin SDLC
System Requirements Review
System Design Review / Software Requirements Review
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Table 2:  SRDR Data Set Distribution Statistics 

 

Table 3:  DSLOC Estimate Growth Factor Distribution CDFs4 

 

The default DSLOC baseline growth factor distribution statistics and CDF tables shown above 
are developed from historical data reported in SRDRs and collected by Dr. Wilson Rosa at 
AFCAA. This data is filtered first by eliminating all data points where the New or PER growth 
factor is zero or undefined (i.e., the estimated value cannot be zero and the final actual value 
cannot be zero): 

 0  0  0  0i i i i iCandidate Est_New Est_PER Act_New Act_PER         (4) 

The resulting filtered data is then filtered again to eliminate all data points that are outside above 
and below two multiplicative standard deviations of the filtered data set mean: 

                                                 
4 A 1001-element version of each CDF can be obtained by e-mail request to mross@tecolote.com. 

56 45

1.75 1.43

1.75 1.42

69% 71%

69% 71%

29% 29%

1.20 1.04

1.204296 1.037044

1.33 0.91

1.32 0.90

0.76 0.64

0.75 0.63CDF CV (C′[V]) CDF CV (C′[V])

CDF Mean (m′) CDF Mean (m′)

%ile @ CDF Mean (P(m′)) %ile @ CDF Mean (P(m′))

CDF Median m′[~]
Define a baseline growth factor 

distribution in ACE by using this value 
as the "Equation / Throughput" field 
entry with a custom CDF containing 

corresponding median-normalized 
growth factor values.

CDF Median m′[~]
Define a baseline growth factor 

distribution in ACE by using this value 
as the "Equation / Throughput" field 
entry with a custom CDF containing 

corresponding median-normalized 
growth factor values.

Data Set Median m[~] Data Set Median m[~]

Data Set Std Dev s Data Set Std Dev s

Data Set CV (C[V]) Data Set CV c[V]

%ile @ Data Set Mean (P(m)) %ile @ Data Set Mean (P(m))

%ile @ Point (P(pt)) %ile @ Point (P(pt))

CDF Std Dev s′ CDF Std Dev s′

Data Set Mean (m) Data Set Mean (m)

ACE DSLOC Baseline Growth Factor Distribution Statistics
New DSLOC Growth Factor Pre-Existing DSLOC Growth Factor

Number of Data Points (N) Number of Data Points (N)

%ile
Raw Growth 

Factor

Median-
Normalized 

Growth 
Factor %ile

Raw Growth 
Factor

Median-
Normalized 

Growth 
Factor

0.0 0.547902 0.4549560272208 0.0 0.655131 0.6317293787416

10.0 0.676993 0.5621483902387 10.0 0.725186 0.6992822451771

20.0 0.968243 0.8039911843758 20.0 0.947745 0.9138907707378

30.0 1.001516 0.8316194196262 30.0 1.000010 0.9642887324668

40.0 1.061531 0.8814541263447 40.0 1.000096 0.9643717324103

50.0 1.204296 1.0000000000000 50.0 1.037044 1.0000000000000

60.0 1.403391 1.1653207912851 60.0 1.118300 1.0783540487449

70.0 1.791218 1.4873573359220 70.0 1.394266 1.3444623081028

80.0 2.516756 2.0898160858878 80.0 1.775599 1.7121742117209

90.0 3.710696 3.0812166786418 90.0 2.571689 2.4798271957032

100.0 6.253957 5.1930414674842 100.0 5.265691 5.0775979934902

ACE DSLOC Baseline Growth Factor Distribution CDFs
Copy red columns into ACE Custom CDF Dialog Box Copy red columns into ACE Custom CDF Dialog Box

New DSLOC Growth Factor CDF Pre-Existing DSLOC Growth Factor CDF
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DSLOC Estimate Uncertainty Decay 

Decrease (decay) of the uncertainty implied by DSLOC estimate growth factor distributions as a 
project progresses from start to finish is modeled by the general form 

  1 1bte  GF_Adj GFK K  (5) 

where 

t    normalized Estimate Maturity (percentage of the development process duration 
at which the estimate is performed); 0 0%startt t   and 100%finisht   

b    decay parameter; by default is set to a value of 3.466 which emulates the decay 
behavior of Boehm’s “Cone of Uncertainty”.5 

GFK    growth factor distribution at time 0t  

GF_AdjK    decay-adjusted growth factor distribution at Estimate Maturity t  

The practical effect of applying this model is time-progressive compression of the DSLOC esti-
mate distribution about the TBE position approaching no uncertainty at process completion. 

In order to render Equation (5) useful in a particular estimating situation, we need to assume 
some value (or distribution) for the uncertainty decay function proportionality constant b . Two 
methods for accomplishing this are 1) perform a regression analysis of relevant historical data to 
determine an expected value or distribution for b  and 2) assume uncertainty decay consistent 
with Dr. Barry Boehm’s (1981 pp. 310-311) Cone of Uncertainty. The latter is assumed to be the 
model default and can be accomplished by assuming 3 466.b   (see Figure 1 below) and by as-

                                                 
5 Note that the model only uses the rate of uncertainty decay implied by Boehm’s “Cone of Uncertainty”. The model 
does not use Boehm’s growth factors but instead uses growth factors derived from the SRDR data. 
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suming time t  to be normalized according to the SDLC Estimate Maturity scale in Table 1 
above. 

Figure 1:  Boehm “Cone of Uncertainty” – Top Half 

 

Decay-Adjusted DSLOC Growth Factor Distributions 

Uncertainty Decay 

We assume some normalized uncertainty scale factor function UK  of time t  where 

   0 1UK ,t  , where  0 1UK |t t    represents maximum (full scale) uncertainty, and hypo-

thesize  UK t  decreases (decays) at a rate proportional to its value (i.e., uncertainty tends to 

decay faster during the early stages of a process when experience is low and tends to decay 
slower during the later stages of a process when experience is high). We model this hypothetical 
behavior mathematically as 
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where b  is the constant of proportionality. Solving the ordinary differential Equation (6) yields 
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Since we have already posited the constraint  0 1UK |t t    we can solve Equation (7) for the 

constant of integration c  

    00 1 1 0UK b c ce e e c       (8) 

Substituting the equivalent of c  in Equation (8) for c  in Equation (7) yields 

      0
U UK Kbt btt e e t e     (9) 

Applying Uncertainty Decay to Growth Factor Distributions 

Suppose we have a baseline DSLOC estimate growth factor distribution GFK , which has been 

developed from historical data and which models the amount of uncertainty that exists about the 
TBE of DSLOC assuming that this estimate is done at the beginning of a software development 
process; i.e., Estimate Maturity is zero, consistent with the processes from which the historical 
data was collected. Suppose this baseline distribution is represented as a CDF; i.e., a mapping of 
growth factor values to percentiles. We would like to model what happens to the uncertainty 
modeled by this baseline distribution as activities in the process progress to completion. We have 
already hypothesized that uncertainty decays over time and have developed a model for this de-
cay in Equation (9). Since the function  UK t  in Equation (9) is normalized (i.e., yields uncer-

tainty factors that are percentages of full scale), we can scale our baseline DSLOC estimate 
growth factor distribution by the transformation 

   1 1UK t  GF_Adj GFK K  (10) 

where 

GFK    baseline growth factor distribution at 0t   (0% Estimate Maturity) which is 

given as a custom CDF (see Table 3) 

GF_AdjK    decay-adjusted growth factor distribution at some Estimate Maturity t  

This transformation effectively scales the percentage differences between the growth factors in 
the baseline growth factor distribution and no growth (a growth factor of 1). 

Substituting the value of  UK t  in Equation (9) for  UK t  in Equation (10) yields 

  1 1bte  GF_Adj GFK K  (11) 

As stated earlier, in order to render Equation (11) useful in a particular estimating situation, we 
need to assume some value (or distribution) for the uncertainty decay function proportionality 
constant b ; either by assuming 3 466.b   (Boehm’s “Cone of Uncertainty”) or by analyzing 
relevant historical data to model decay as a single value b  or as a distribution B . 

Figure 2 and Figure 3 below illustrate the behavior of Equation (11) with decay constant 
3 466.b   over the range of possible Estimate Maturity values  0 1,t . 
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Figure 2:  New DSLOC Growth Factor Decay 

 

Figure 3:  Pre-Existing Reuse DSLOC Growth Factor Decay 
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Applying Growth Factor Distributions to TBEs of New and PER DSLOC 

We can now transform single-point TBEs of New D_NewS and PER D_PERS  DSLOC into growth-

adjusted distributions of New D_Adj_NewS  and PER D_Adj_PERS  DSLOC by simply scaling the ap-

propriate instantiation of Equation (11) above (a distribution) by the corresponding single-point 
TBE: 

   1 1bt
D_NewS e  D_Adj_New GF_NewS K  (12) 

and 

   1 1bt
D_PERS e  D_Adj_PER GF_PERS K  (13) 

Figure 4 and Figure 5 below illustrate the behaviors of the growth-adjusted New DSLOC esti-
mate distribution (Equation (12)) and the growth-adjusted PER DSLOC estimate distribution 
(Equation (13)) for given New and PER TBEs and a given Estimate Maturity. 

Figure 4:  Example Growth-Adjusted New DSLOC Distribution vs. Estimate Maturity 
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Figure 5:  Example Growth-Adjusted PER DSLOC Distribution vs. Estimate Maturity 
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tively be described as a random variables (distributions) B  using ACE’s custom CDF 
feature based on some program-specific historical data. The model default is a constant 
value for b  of 3.466. 

 Define a variable for each CSCI for each of New and PER; e.g., 
SI010101_New_Adj_GUF and SI010101_PER_Adj_GUF; that will represent the uncer-
tainty-decay-adjusted version of the New DSLOC and PER DSLOC growth factor distri-
butions for that CSCI. The equation field for each of these variables implements Equation 
(11); e.g., exp(–SI010101_New_GF_Decay * SI010101_New_Sd_Est_Mat) * 
(SI010101_New_BL_GF – 1) + 1. 

 If the decay constant is being described as a random variable B  (distribution) then, be-
cause each decay constant random variable is inversely related to its corresponding 
growth factor random variable, as can be seen in Equation (11), we would need to nega-
tively correlate each growth factor / decay constant pair in order for the convolution of 
these two variables to work properly in ACEIT6. For example, we would group 
SI010101_New_GF_Decay and SI010101_New_BL_GF and call the group 
SI010101_Growth_Decay_Group. We would then set the Group Strength of 
SI010101_New_GF_Decay to “–1” and set the Group Strength of 
SI010101_New_BL_GF to “D”. Note that none of this step is necessary if using the 
model defaults based on SRDR data and assuming the decay to be constant with a value 
of 3.466. 

Figure 6:  Example ACEIT Model Application of New DSLOC Estimate Growth 

 

5. MODELING DSLOC GROWTH IN GALORATH’S SEER-SEM 

TOOL 

SEER PERT Distribution 

The Galorath, Inc. SEER family of estimating tools incorporate a rather unique probability dis-
tribution to model input uncertainty. I refer to this distribution here as a SEER PERT distribu-
tion; Program Evaluation and Review Technique (PERT) because it borrows from the mathemat-

                                                 
6 Note that bte  is equivalent to 1 bte . 

-       New Growth-Adjusted DSLOC SI010101_New_Adj_Sd SI010101_New_Adj_GUF * SI010101_New_Sd
-           Technical Baseline DSLOC Point Estimate SI010101_New_Sd 25000 [Given]

-           Maturity at DSLOC Estimate SI010101_New_Sd_Est_Mat
0.20 [Sys Req Rev Complete = 20% Estimate 
Maturity]

-           Baseline Growth Factor SI010101_New_BL_GF

1.204296 [Tecolote DSLOC Estimate Growth 
Model v06 Median of SRDR New DSLOC Data 
Set]

-           Decay Constant SI010101_New_GF_Decay
3.466 [Tecolote DSLOC Estimate Growth Model 
v06 Default]

-           Adjusted Growth Factor SI010101_New_Adj_GUF

exp(-SI010101_New_GF_Decay * 
SI010101_New_Sd_Est_Mat) * 
(SI010101_New_BL_GF - 1) + 1 [Tecolote 
DSLOC Estimate Growth Model v06]
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ics that the PERT methodology uses to relate elicited expert opinion about the input parameters 
Least, Likely, and Most. The SEER PERT distribution combines the left half of one Normal 
(Gaussian) distribution with the right half of another Normal distribution. Because Normal dis-
tribution Probability Density Functions (PDFs) are range symmetrical, the mean of the left (low 
side) half-distribution L  is always equal to the mean of the right (high side) half-distribution 

H . However, the low side half-distribution standard deviation L  need not equal the high-side 

half-distribution standard deviation H . When H L   the overall SEER PERT distribution is 

skewed to the right, when L H   the distribution is skewed to the left, and when L H   the 

distribution is symmetrical and classically Normal. Because the two halves of the distribution are 
Normal, because each of their means is always equal, and because the mean of a Normal distri-
bution is always its median (50th percentile) value, it follows that each half-distribution contains 
half of the probability density of the overall SEER PERT distribution. Therefore, L  and H  are 

always equal to the overall SEER PERT distribution’s median value %. Note, however, that % 
is not necessarily equal to the overall SEER PERT distribution’s mean  ; this is only true when 

L H  . 

The PDF of the SEER PERT distribution can thus be described as 

  

 
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 (14) 

the CDF can be described as 
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
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 (15) 

and the inverse CDF (quantile function) can be described as 

 
   
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,
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L H

H
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p
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 
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 






    
  






  (16) 

The SEER PERT distribution borrows from PERT methodology in how it relates the distribution 
parameters %, L , and H  to expert opinion elicitations of estimated values that describe a 

CSCI’s DSLOC range; these values being referred to as Least L , Likely M , and Most H . The 
resulting relationships are 

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



 13

 
 4

6

L M H


 
%  (17) 

and 

 
3L

L 


%
 (18) 

and 

 
3H

H  


%
 (19) 

It is important to note here that the PERT relationship in Equation (17) constrains the amount of 
skew that can be modeled by the SEER PERT distribution. Maximum right (high side) skew 
occurs when M L  and maximum left (low-side) skew occurs when M H . Examples of the 
SEER PERT PDF can be seen in Figure 7 and Figure 8 below. 

Least, Likely, Most Multipliers 

SEER-SEM requires that the uncertainty about a DSLOC estimate be characterized as a Least, 
Likely, Most triple. Since SEER-SEM provides no facility for specifying DSLOC growth and 
growth uncertainty decay, DSLOC inputs to SEER-SEM must already be growth and uncertainty 
adjusted. Therefore, in order to model DSLOC growth in SEER-SEM according to the Tecolote 
DSLOC Estimate Growth Model, DSLOC Least, Likely, and Most values must be chosen that 
cause SEER-SEM’s SEER PERT distribution to match, as closely as possible, the distributions 
described in Table 2 and Table 3 and adjusted for uncertainty decay as a function of Estimate 
Maturity. 

Growth-adjusted Least AdjL , Likely AdjM , and Most AdjH  DSLOC inputs to SEER-SEM can be 

calculated for each of New and PER as functions of the given New and PER DSLOC TBEs 

D_NewS  and D_PERS  with given Estimate Maturity t . For each of New and PER we define a set of 

three DSLOC estimate growth multipliers L_AdjK , M_AdjK , and H_AdjK  using Equation (11): 

  3 466 1 1. t
L_Adj LK e K    (20) 

and 

  3 466 1 1. t
M_Adj MK e K    (21) 

and 

  3 466 1 1. t
H_Adj HK e K    (22) 

such that 

 and and_Adj L Adj D Adj M_Adj D Adj H_Adj DL K S M K S H K S    (23) 

We first instantiate Equations (18), (19) and, (17) with LK , HK , and MK  respectively to yield: 
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 3
3

L
L L L

K
K

  
   

%
%  (24) 

and 

 3
3

H
H H H

K
K

  
   

%
%  (25) 

and 

 

     4 6 3 36

6 4 4
4 3 3

4

L M H L HL H
M M

L H
M

K K K K K
K K

K

    

  

      
    

 
 

% % %%
%

%
(26) 

Recall that % is always equal to the overall SEER PERT distribution median. We wish to force 
this value to be equal to the SRDR data set median m%; therefore, 

 
4 3 3

3 and 3 and
4

L H
L L H H M

m
K m K m K

    
    

%
% %  (27) 

Substituting the equivalents of LK , HK , and MK  in Equations (27) for LK , HK , and MK  in 

Equations (20), (22), and (21) respectively yields 

  3 466 3 1 1. t
L_Adj LK e m    %  (28) 

and 

 3 466 4 3 3
1 1

4
. t L H

M_Adj

m
K e

         
  

%
 (29) 

and 

  3 466 3 1 1. t
H_Adj HK e m    %  (30) 

Appropriate values for m% can be found in Table 2 above. Appropriate values for L  and H  

have been determined by using the Microsoft Excel Solver add-in to minimize the percentage 
standard error of estimate %SEE  between each SRDR data set CDF and its corresponding SEER 
PERT CDF varying L  and H . The results from running Solver and then calculating LK , MK , 

and HK  are shown in Table 4 below. 
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Table 4:  SEER PERT Distribution Parameters and Resulting Multiplier Values 

 

Substituting the computed values of LK , MK , and HK  in Table 4 for LK , MK , and HK  in Equa-

tions (20), (21), and (22) for each of New and PER DSLOC yields: 

 For New DSLOC: 

 

3 466

3 466

3 466

0 828071 1

0 828071 1

5 366128 1

.

.

.

.

.

.

t
L_Adj

t
M_Adj

t
H_Adj

K e

K e

K e







  

  

 

 (31) 

 For Pre-Existing DSLOC: 

 

3 466

3 466

3 466

0 687191 1

0 687192 1

3 658219 1

.

.

.

.

.

.

t
L_Adj

t
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t
H_Adj

K e

K e

K e







  

  

 

 (32) 

Substituting the multiplier expressions in the sets of Equations (31) and (32) for the multiplier 
variables in Equations (23), yields the sets of equations for determining the appropriate Least, 
Likely, and Most DSLOC values to input into SEER-SEM such that growth, growth uncertainty, 
and growth uncertainty decay are modeled consistent with the Tecolote DSLOC Estimate 
Growth Model and with the SRDR data upon which it is based. 

 For New DSLOC: 

 

 
 
 
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0 828071 1

0 828071 1

5 366128 1
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
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 (33) 

 For Pre-Existing DSLOC: 

 

 
 
 

3 466

3 466

3 466

0 687191 1

0 687192 1

3 658219 1

.

.

.
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.
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D_PER
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t
D_PER
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





  

  

 

 (34) 

Solver Target 
(Objective)

DSLOC Type σ[A] σ[B]
|μ[ACE]-
μ[SEER]| K[L] K[M] K[H]

New 0.344122 1.720611 0.017010 -0.828071 -0.828071 5.366128

Pre-Existing 0.241411 1.207058 0.014898 -0.687191 -0.687192 3.658219

Solver Change Values 
(Results)

SEER-SEM Multiplier Expression
Scale Factors
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Figure 7 and Figure 8 below illustrate maximally-right-skewed SEER PERT distribution PDFs 
that approximate the New DSLOC and PER DSLOC growth factor distributions implied by the 
SRDR data set CDFs contained in Table 3 above. Figure 9 and Figure 10 below show compari-
sons between the resulting SEER PERT CDFs and the corresponding SRDR data set CDFs. 

Figure 7:  SEER PERT PDF of New DSLOC Growth Factor at 0% Estimate Maturity 
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Figure 8:  SEER PERT PDF of PER DSLOC Growth Factor at 0% Estimate Maturity 

 

Figure 9:  Comparison of New DSLOC Growth Factor CDFs – SEER PERT vs. SRDR Data 
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Figure 10:  Comparison of New DSLOC Growth Factor CDFs – SEER PERT vs. SRDR Data 

 

6. CONCLUSION 

It is this author’s opinion that the Tecolote DSLOC Estimate Growth Model as described in this 
paper represents a quantum improvement to the field of available software code growth metho-
dologies. Specifically, advantages of this model over the Holchin (2003) code growth matrix are: 

 The Tecolote model is based on AFCAA-collected SRDR data versus Holchin’s Delphi 
survey of experts approach. 

 The Tecolote model requires only one parameter, Estimate Maturity, which is reasonably 
objective versus Holchin’s rather subjective and vaguely-defined Complexity and Maturi-
ty parameters. 

 The Tecolote model produces a growth factor distribution result (embodies uncertainty) 
versus Holchin’s single-point growth factor result. 

 The Tecolote model provides growth factor distribution decay based on updated Estimate 
Maturity parameter versus Holchin’s single-point growth factor reduction based on up-
dated Complexity and Maturity parameters. 

 This model differentiates between New and Pre-Existing DSLOC growth versus Hol-
chin’s one-growth-factor-fits-all approach. 

This model is currently used as part of the basis for several USAF program office estimates and 
independent cost estimates. Planned enhancements to this model include rerunning the data anal-
ysis using a recently-updated version of the AFCAA SRDR data set. The number of programs 
and possible stratifications in this new data set may lead to unique baseline growth factor distri-
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