DEFENCE

An Application of Data Mining Algorithms For Shipbuilding Cost Estimation

Bohdan L. Kaluzny Centre for Operational Research & Analysis Defence Research & Development Canada

April 2011

Acknowledgements:

S. Barbici, G. Berg, and U. Johnsson (Sweden)
R. Chiomento (France)
D. Derpanis (Greece)
R.H.A.D. Shaw (Canada)
F. Ramaroson (OCCAR)
M. Smit (Netherlands)

Background

- NATO Research & Technology Organization (RTO) Systems Analysis and Studies (SAS) 076 Task Group:
 - NATO Independent Cost Estimating and its Role in Capability Portfolio Analysis
 - <u>NATO SAS 076 Goal</u>: Demonstrate practicality of NATO cost estimation guidelines
 - Various systems (new and existing) analyzed.
 - Including:

The Acquisition Cost of the

Netherlands' Rotterdam class Landing Platform Dock Ships

Government of Canada Copyright

Background (cont.)

• The Netherlands' Landing Platform Dock (LPD) ships:

Rotterdam L800 Commission in 1997

Johan de Witt L801 Commission in 2007

- Blind, ex post analysis:
 - The Netherlands withheld actual costs until after cost estimation exercise was completed.

Government of Canada Copyright

DEFENCE

- Background
- Comprehensive data gathered for similar ships
- Two Data Mining methods applied:
 - M5 Model Tree (Parametric Approach)
 - Hierarchical Clustering (Costing by Analogy)
- Comparison: Actual vs. Estimated
- Conclusions

Data

Ships "similar" to The Netherlands' LPDs:

- Database of 57 ships in 16 classes from 6 nations
- 136 descriptive, technical, and cost attributes per ship

	Category	Number of Attributes
Ι	DESCRIPTION	6
Π	CONSTRUCTION	8
Ш	DIMENSIONS	5
IV	PERFORMANCE	8
V	PROPULSION	9
VI	ELECTRICAL POWER GENERATION	3
VII	LIFT CAPACITY	35
νш	FLIGHT DECK	19
IX	ARMAMENT	13
Х	COUNTERMEASURES	5
XI	RADARS / TACAN / IFF / SONARS	13
XII	COMBAT DATA SYSTEMS	1
ΧШ	WEAPONS CONTROL SYSTEMS	1
XIV	OTHER CAPABILITIES	7
XV	COST DATA	3

Data (ships)

• Database of military or civilian auxiliary vessels of similar size / function to Rotterdam class ships:

Name	Number	Type	Rank	Commissioned	Country						
Thomaston	LSD 28	LSD	1	1954	United States	8 41	1.00.4	1.55		1000	TTTT
Plymouth Rock	LSD 29	LSD	2	1954	United States	Austin	LPD 4	LPD	1	1965	United States
Fort Snelling	LSD 30	LSD	3	1955	United States	Ogaen Dalaih	LPDS	LPD	2	1902	United States
Point Defiance	LSD 31	LSD	4	1955	United States	Claudand	LPD 0	LPD	2	1902	United States
Spiegel Grove	LSD 32	LSD	5	1956	United States	Dubucut	LPD/	LPD	4	1907	United States
Alamo	LSD 33	LSD	6	1956	United States	Danvar	LPD 8	LPD	3	1907	United States
Hermitage	LSD 34	LSD	7	1956	United States	Junean	LPD 10	LPD	7	1969	United States
Monticello	LSD 35	LSD	8	1957	United States	Coronado	LPD 11	LPD	8	1970	United States
Anchorage	LSD 36	LSD	1	1969	United States	Shreveport	LPD 12	LPD	g	1970	United States
Portland	LSD 37	LSD	2	1970	United States	Nashville	LPD 13	LPD	10	1970	United States
Pensacola	LSD 38	LSD	3	1971	United States	Trenton	LPD 14	LPD	11	1971	United States
Mount Vernon	LSD 39	LSD	4	1972	United States	Ponce	LPD 15	LPD	12	1971	United States
Fort Fisher	LSD 40	LSD	5	1972	United States	Svalbard	W303	Icebreaker	1	2001	Norway
Whidbey Island	LSD 41	LSD	1	1985	United States	Carlskrona	M04	LPD	1	1982	Sweden
Germantown	LSD 42	LSD	2	1986	United States	Atle	_	Icebreaker	1	1985	Sweden
Fort McHenry	LSD 43	LSD	3	1987	United States	Oden	_	Icebreaker	1	1989	Sweden
Gunston Hall	LSD 44	LSD	4	1989	United States	Protecteur	AOR 509	AOR	1	1969	Canada
Comstock	LSD 45	LSD	5	1990	United States	Preserver	AOR 510	AOR	2	1970	Canada
Tortuga	LSD 46	LSD	6	1990	United States	Albion	L14	LPD	1	2003	United Kingdom
Rushmore	LSD 47	LSD	7	1991	United States	Bulwark	L15	LPD	2	2005	United Kingdom
Ashland	LSD 48	LSD	8	1992	United States	Largs Bay	L3006	LSD	1	2006	United Kingdom
Harpers Ferry	LSD 49	LSD	ĭ	1995	United States	Lyme Bay	L3007	LSD	2	2007	United Kingdom
Carter Hall	LSD 50	LSD	2	1995	United States	Mounts Bay	L3008	LSD	3	2006	United Kingdom
Oak Hill	LSD 51	LSD	ã	1996	United States	Cardigan Bay	L3009	LSD	4	2006	United Kingdom
Daarl Uarbour	15052	LSD	4	1008	United States	Ocean	L12	LPH	1	1998	United Kingdom
Palajah	LBD J2	LDD	1	1062	United States	Siroco	L9012	LSD	2	1998	France
Vancouwar	LPD 2	IPD	2	1063	United States	Mistral	L9013	AAS	1	2006	France
La Salla	LPD 2	LPD	â	1905	United States	Tonnerie Diamada (DDCa)	19014	AAS	2	2007	France
La Salle	LPD 5	LPD	3	1904	United states	Dixmude (BPC3)	19012	AAS	2	2010	France

Government of Canada Copyright

DEFENCE

DEFENCE

DÉFENSE

Data (sample of technical info)

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Defence De

- Ship costs normalized: fictitious notional common currency (NCC)
- Histogram of known costs for ships in database:

• Costs were log-transformed prior to analysis

Government of Canada Copyright

Cost Estimation Methods

I. Parametric Approach: M5 Model Tree Algorithm

II. Costing by Analogy: Hierarchical Clustering DEFENCE

I. M5 Model Tree Approach

- Quinlan (1992) pioneered the M5 Model Tree Algorithm for numeric prediction
 - Combines decision trees and linear regression
 - Each tree node is a multivariate linear regression model
 - Only attributes used in decisions are used in regression

- Small, easy to understand. Exploit local linearity.
- Can excel with limited data. Handle numeric, notional, or missing data.

Government of Canada Copyright

DEFENCE

DEFENCE

DÉFENSE

I. M5 Model Tree Approach (cont.)

• M5 Model Tree Algorithm

Input: data set of ships (technical and cost data)

- 1. Tree constructed recursively: choose attribute that best splits the data set in two (minimize estimation error)
- 2. Construct multivariate linear regression models at each node
- 3. Tree pruning (eliminate sub-trees if parent node estimates better)
- 4. Smoothing process: make adjacent linear regression models smooth and continuous

I. M5 Model Tree Approach (cont.)

- Output:
 - net result is a tree type structure in which each leaf of the tree is a different regression model
 - Simple piece-wise linear (smoothed) models

• Free, easy-to-use M5 Model Tree implementation:

WEKA: Waikato Environment for Knowledge Analysis

http://www.cs.waikato.ac.nz/~ml/weka/index.html

Government of Canada Copyright

DEFENCE

I. M5 Model Tree Approach (cont.)

• Applied to our ship data set:

LCAC: air-cushioned landing craft

DEFENCE

I. M5 Model Tree Approach (cont.)

• Applied to our ship data set:

LM1	LM2	LM3	LM4	LM5	LM6	LM7	LM8	LM9
Svalbard	Carlskrona	Thomaston	Plymouth Rock	Lyme Bay	Anchorage	Whidbey Island	Raleigh	Tortuga
Protecteur	Atle	Largs Bay	Fort Snelling	Mounts Bay	Portland	Germantown	Vancouver	Rushmore
Preserver	Oden	Ocean	Point Defiance	Cardigan Bay	Pensacola	Fort McHenry	La Salle	Ashland
			Spiegel Grove		Mount Vernon	Gunston Hall	Mistral	Denver
			Alamo		Fort Fisher	Comstock	Tonnerre	Juneau
			Hermitage		Harpers Ferry	Austin	Dixmude (BPC3)	Coronado
			Monticello		Carter Hall	Ogden		Shreveport
			Siroco		Oak Hill	Duluth		Nashville
					Pearl Harbour	Cleveland		Trenton
						Dubuque		Ponce
						Albion		
						Bulwark		

Government of Canada Copyright

DEFENCE

I. M5 Model Tree Approach (cont.)

LM1		LM2	
Log(Cost) =	7.4297	Log(Cost) =	7.4208
-	- $0.0112 \times \text{rank}$ in class	-	- $0.0112 \times \text{rank}$ in class
	+ 0.0045 × length (m)		$+0.0045 \times \text{length} (\text{m})$
	- $0.0002 \times \text{range}$ (sailing time in hrs)		- $0.0002 \times \text{range}$ (sailing time in hrs)
	+ 0.0445 \times # of LCAC in well deck		+ $0.0445 \times #$ of LCAC in well deck
	+ 0.1104 \times # of torpedo decoys		+ 0.1104 \times # of torpedo decoys
LM3		LM4	
Log(Cost) =	7.6222	Log(Cost) =	7.7567
	- $0.0167 imes rank in class$		- $0.0172 \times \text{rank}$ in class
	+ 0.0041 \times length (m)		+ $0.0032 \times \text{length} (\text{m})$
	- $0.0002 \times \text{range}$ (sailing time in hrs)		- $0.0002 \times \text{range}$ (sailing time in hrs)
	+ 0.0445 \times # of LCAC in well deck		+ $0.0445 \times #$ of LCAC in well deck
	+ 0.0659 \times # of torpedo decoys		+ 0.0659 \times # of torpedo decoys

- Only attributes referenced in tree decisions appear in LMs
- Intuitive, except for <u>negative coefficient</u> of sailing time range: Data explains anomaly:

Median sailing range is 444hrs. Only 6 of 57 ships have range > 770hrs. The cost of these 6 ships are relatively low. E.g., Sweden's Oden costs 53M NCC and has a range of >2200hrs

Government of Canada Copyright

DEFENCE

I. M5 Model Tree Approach (cont.)

• Good idea to look at stats of all M5 model tree attributes:

Attribute	Minimum	Median	Mean	Maximum
Rank	1	3	3.68	12
Length	103.7	173.8	170.3	203.4
Range (sailing time)	385	444	616	2308
Range (total distance)	7500	10003	8000	30000
# LCAC	0	2	2	4
# torpedo decoys	0	0	2	8
# of helicopters supported	0	5	6	18

DEFENCE

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com DEFENCE DÉFENSE I. M5 Model Tree Approach (cont.) How well does the tree learn the known data? • 700 600 500 Predicted Cost $R^2 = 0.92$ Mean % error: 12% 400 Stnd. Dev.: 46.4M 300 LM1 LM₂ 200 LM3 M4 LM5 LM6 100 M7 LM8 0 0 100 200 300 400 500 600 700 Actual Cost (millions NCC) LM3 LM7 LM8 LM9 LM1 LM2 LM4 LM5 LM6 Mean % error: 27% 17%3% 33% 14% 8% 6% 22% 12% 6.4M Standard deviation 24.3M 16.9M 53.0M 45.6M 43.4M 78.0M 39.3M 24.3 3 3 3 8 3 9 12 10 # of instances: 6

Government of Canada Copyright

I. M5 Model Tree Approach (cont.)

• Applied to Rotterdam and Johan de Witt ships:

Note: Royal Netherlands Navy considers the Rotterdam and Johan de Witt to be of separate classes (both rank = 1)

Government of Canada Copyright

DEFENCE

I. M5 Model Tree Approach (cont.)

• Applied to Rotterdam and Johan de Witt ships:

LM3			
Log(Cost) =	7.6222	Rotterdam	Johan de Witt
-	- 0.0167 $ imes$ rank in class	1	1
	+ $0.0041 \times \text{length}(\text{m})$	162.2m	175.35m
	- $0.0002 \times \text{range}$ (sailing time in hrs)	500 hrs	833 hrs
	+ 0.0445 \times # of LCAC in well deck	0	0
	+ 0.0659 \times # of torpedo decoys	1	1

Cost estimates:

Rotterdam L800:

Johan de Witt L801:

197.7M NCC 212.3M NCC

Government of Canada Copyright

DEFENCE

DEFENCE

DÉFENSE

I. M5 Model Tree Approach (cont.)

Applied to Rotterdam and Johan de Witt ships: ${}^{\bullet}$

Cost Estimation Methods

I. Parametric Approach:

M5 Model Tree Algorithm

II. Costing by Analogy: Hierarchical Clustering

Government of Canada Copyright

DEFENCE

II. Hierarchical Clustering Approach

- Algorithmic way to determine which ships are most similar to the Rotterdam and Johan de Witt
- Nearest Neighbour Cluster Analysis idea:
 - 1. define a distance metric to measure similarity
 - 2. Compute average (weighted by distance) of all known ship costs to obtain an estimate "by analogy"

DEFENCE

DEFENCE

DÉFENSE

II. Hierarchical Clustering Approach (cont.)

22

II. Hierarchical Clustering Approach (cont.)

• Cost estimate using distances:

 d_{ijk} = distance between ship *i* and *j* with respect to attribute k $\in [0,1]$

 d_{ij} = distance between ship *i* and *j*

$$=\sqrt{\sum_{k=1}^{M}d_{ijk}^2}$$

 $C_i =$ known cost of ship *i*

$$\widetilde{C}_{i} = \sum_{j \neq i} \frac{C_{i}}{d_{ij}^{2}} \cdot \frac{1}{\sum_{j \neq i} \frac{1}{d_{ij}^{2}}} = \text{cost estimate of ship } i$$

Government of Canada Copyright

DEFENCE

II. Hierarchical Clustering Approach (cont.)

- Cost estimate using distances:
- Not very smart: all attributes assumed to have equal importance

Government of Canada Copyright

DEFENCE

II. Hierarchical Clustering Approach (cont.)

- Cost estimate using weighted-attribute distances:
- Not all attributes are equal!
- Each attribute k given a weight w_k

 $d_{ij} = \text{weighted distance between ship } i \text{ and } j$ $d_{ij} = \sqrt{\sum_{k=1}^{M} (w_k d_{ijk})^2} \qquad \sum_{k=1}^{M} w_k = 1, \quad w_k \ge 0 \text{ for all } k$ $C_i = \text{known cost of ship } i$ $d_{ij} = \sum_{j \ne i} \frac{C_i}{d_{ij}^2} \cdot \frac{1}{\sum_{j \ne i} \frac{1}{d_{ij}^2}} = (\text{weighted}) \text{ cost estimate of ship } i$ $\text{Minimize } \sum_{i=1}^{42} (C_i - C_i)^2 \quad (\text{prediction error for known cases})$

→ Computationally intensive optimization (with all ~100 attributes) (non-linear convex programming)

Government of Canada Copyright

DEFENCE

II. Hierarchical Clustering Approach (cont.)

• How well does the hierarchical clustering learn the known data?

Government of Canada Copyright

DEFENCE

DÉFENSE

II. Hierarchical Clustering Approach (cont.)

• Applied to Rotterdam and Johan de Witt ships:

Name	Distance	Name	Distance	Name	Distance
Rotterdam	0.000	Vancouver	0.312	Nashville	0.639
Largs Bay	0.034	La Salle	0.316	Trenton	0.646
Lyme Bay	0.034	Harpers Ferry	0.405	Ponce	0.650
Mounts Bay	0.035	Carter Hall	0.431	Whidbey Island	0.655
Cardigan Bay	0.035	Oak Hill	0.435	Germantown	0.659
Oden	0.039	Pearl Harbour	0.439	Fort McHenry	0.664
Carlskrona	0.044	Anchorage	0.546	Gunston Hall	0.668
Johan de Witt	0.046	Portland	0.550	Comstock	0.673
Atle	0.052	Pensacola	0.553	Tortuga	0.678
Albion	0.057	Mount Vernon	0.557	Rushmore	0.682
Bulwark	0.058	Fort Fisher	0.561	Ashland	0.687
Siroco	0.067	Austin	0.601	Thomaston	0.971
Svalbard	0.068	Ogden	0.606	Plymouth Rock	0.975
Protecteur	0.128	Duluth	0.610	Fort Snelling	0.979
Preserver	0.129	Cleveland	0.612	Point Defiance	0.983
Ocean	0.227	Dubuque	0.617	Spiegel Grove	0.987
Tonnerre	0.244	Denver	0.621	Alamo	0.992
Mistral	0.246	Juneau	0.626	Hermitage	0.996
BPC3	0.266	Coronado	0.630	Monticello	1.000
Raleigh	0.309	Shreveport	0.634		

Cost estimates

Rotterdam L800: Johan de Witt L801: 214.6M NCC 243.9M NCC

Government of Canada Copyright

DEFENCE

DÉFENSE

II. Hierarchical Clustering Approach (cont.)

• Applied to Rotterdam and Johan de Witt ships:

Comparison to Actuals

- Once the cost estimates were documented, the Royal Netherlands Navy revealed the actual costs of the Rotterdam and Johan de Witt
- Estimate recap:

M5 model tree	Hierarchical clustering	Actuals
197.7M NCC	214.6M NCC	202.2M
221.3M NCC	243.9M NCC	253.7M
0.96	0.93	
0.92	0.86	
46.4M NCC	55.9M NCC	
11%	16%	
\checkmark	\checkmark	
\checkmark	×	
\checkmark	×	
	M5 model tree 197.7M NCC 221.3M NCC 0.96 0.92 46.4M NCC 11% ✓ ✓ ✓	M5 model tree Hierarchical clustering 197.7M NCC 214.6M NCC 221.3M NCC 243.9M NCC 0.96 0.93 0.92 0.86 46.4M NCC 55.9M NCC 11% 16% \checkmark \times \checkmark \times

Cost figures in fictitious notional common currency

DEFENCE

Comparison to Actuals (cont.)

• Rotterdam LPD estimates and actual:

DEFENCE

Comparison to Actuals (cont.)

• Johan de Witt LPD estimates and actual:

DEFENCE

Estimates via Traditional Approaches

- Simple Linear Regression on data set:
 - Commonly use ship length

 $R^2 = 0.56$

DEFENCE

DÉFENSE

Actuals

202.2M

253.7M

 $Log_{10}(cost) = 6.95 + 0.01 \times$ length of ship (in meters),

- Rotterdam estimate = 219.2M
- Johan de Witt estimate = 289.7M
- Multiple Linear Regression

 $R^2 = 0.85$ $Log_{10}(cost) = 5.7368 - 0.0224 \times rank in class$

- $+0.0121 \times$ length (in meters)
- $+0.0338 \times$ beam (in meters)
- $+0.1071 \times \text{draught} (\text{in meters})$
- $-0.0001 \times$ full load displacement (in tonnes)
- $+0.0012 \times$ crew size
- $-0.0876 \times$ number of propeller shafts
- $-0.0239 \times$ number of guns of calibre ≥ 75 .

Government of Canada Copyright

– Rotterdam estimate = 158.9M

- Johan de Witt estimate = 201.4M

Conclusions

- Two novel approaches to cost estimation using known data mining algorithms
 - M5 Model Tree parametric approach
 - Hierarchical clustering analogy approach
- Proof of concept: blind, ex post analysis
- Incorporate multitude of cost driving factors, but remain topdown (suitable for planning and design phases)
- Should be considered by nations with lots of data (e.g., U.S. for estimating the LHA replacement)

DEFENCE

ጽ

DEFENCE

Comparison to Actuals (cont.)

- Recall discussion on non-intuitive sailing range coefficient in M5 model tree regression?
 - DEFENCE ROD DÉFENS I. M5 Model Tree Approach (cont.) LM1 LM₂ Log(Cost) = 7.4297Log(Cost) = 7.4208- $0.0112 \times \text{rank}$ in class $-0.0112 \times \text{rank}$ in class $+0.0045 \times \text{length}(\text{m})$ $+0.0045 \times \text{length} (\text{m})$ - $0.0002 \times \text{range}$ (sailing time in hrs) $-0.0002 \times \text{range}$ (sailing time in hrs) + 0.0445 × # of LCAC in well deck $+0.0445 \times \#$ of LCAC in well deck + $0.1104 \times \#$ of torpedo decoys $+0.1104 \times #$ of torpedo decoys LM3 LM4 Log(Cost) =7.6222 Log(Cost) = 7.7567- $0.0167 \times \text{rank}$ in class - $0.0172 \times \text{rank}$ in class $+0.0041 \times \text{length}(\text{m})$ $+0.0032 \times \text{length} (\text{m})$ - $0.0002 \times \text{range}$ (sailing time in hrs) $-0.0002 \times \text{range}$ (sailing time in hrs) + 0.0445 \times # of LCAC in well deck $+0.0445 \times \#$ of LCAC in well deck + $0.0659 \times \#$ of torpedo decoys $+0.0659 \times #$ of torpedo decoys • Only attributes referenced in tree decisions appear in LMs • Intuitive, except for negative coefficient of sailing time range: Data explains anomaly: Median sailing range is 444hrs. Only 6 of 57 ships have range > 770hrs. The cost of these 6 ships are relatively low. E.g., Sweden's Oden costs 53M NCC and has a range of >2200hrs

- Median is 444hrs.
- Rotterdam's range is 500 hrs (very close)
- Johan de Witt: 833 (outlier!) → neutralizing this attribute and reapplying M5 model tree yields revised estimate of 253.9M

DEFENCE

II. Hierarchical Clustering Approach (cont.)

- Principal Component Analysis of ship data base
 - Reduce dimensionality of data set
 - Solve optimization problem

	% of Data Vari	ability Accounted for	
Macro-Attribute	Proportion	Cumulative	
A1	17%	17%	
A2	12%	29%	
A3	11%	41%	$A2 = 0.204 \times \text{length}$
A4	9%	49%	$+0.196 \times beam width$
A5	8%	57%	$+0.183 \times$ vehicle space
A6	7%	64%	$+0.18 \times \#$ of expeditionary fighting vehicles
A7	6%	69%	$+0.165 \times 1$ if has a well deck, otherwise 0 +0.165 × width of the well deck
A8	5%	74%	$+0.163 \times$ which of the well deck
A9	4%	78%	$+0.159 \times \#$ of large personnel landing craft
A10	3%	81%	$+0.156 \times \text{# of Chinook helicopters supported}$
A11	3%	85%	$+0.155 \times $ full load displacement
A12	3%	88%	$+0.153 \times \#$ of combat data systems
A13	3%	90%	$+0.130 \times$ nght load displacement +0.144 × well deck capacity
A14	2%	92%	$+0.143 \times \#$ of elevators
A15	2%	94%	$+0.142 \times$ vehicle fuel capacity
A16	1%	95%	etc.

Government of Canada Copyright

DEFENCE DÉFENSE

II. Hierarchical Clustering Approach (cont.)

- Principal Component Analysis of ship data base
 - Reduce dimensionality of data set
 - Solve optimization problem

	% of Data Vari	ability Accounted for		
Macro-Attribute	Proportion	Cumulative		
A1	17%	17%		
A2	12%	29%	Attribute	Weigh
A3	11%	41%	A1	0
A4	9%	49%		0.453
A5	8%	57%	A2 A3	0.45
A6	7%	64%	A4	Ő
A7	6%	69%	A5	0.334
A8	5%	74%	A6	0.00
A9	4%	78%	A7	ŏ
A10	3%	81%	A8	ŏ
A11	3%	85%	A9	0
A12	3%	88%	A10	0.214
A13	3%	90%	a	
A14	2%	92%		
A15	2%	94%		
A16	1%	95%		