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An Application of Data Mining Algorithms
for Shipbuilding Cost Estimation

Abstract

This paper presents a novel application of known data mining algorithms to the problem
of estimating the cost of ship development and construction. The work is a product of North
Atlantic Treaty Organization Research and Technology Organization Systems Analysis and
Studies 076 Task Group "NATO Independent Cost Estimating and its Role in Capability Port-
folio Analysis". In a blind, ex post exercise, the Task Group set out to estimate the cost of
a class of Netherlands’ amphibious assault ships, and then compare the estimates to the ac-
tual costs (the Netherlands Royal Navy withheld the actual ship costs until the exercise was
completed).

Two cost estimating approaches were taken: parametric analysis and costing by analogy.
For the parametric approach, the M5 system (a combination of decision trees and linear regres-
sion models) of Quinlan (1992) for learning models that predict numeric values was employed.
Agglomerative hierarchical cluster analysis and non-linear optimization was used for a cost es-
timation by analogy approach void of subjectivity.
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INTRODUCTION

Background

A goal of the North Atlantic Treaty Organization (NATO) Research and Technology Organization
(RTO) Systems Analysis and Studies (SAS) 076 Task Group, titled “NATO Independent Cost
Estimating and its Role in Capability Portfolio Analysis”, is to demonstrate the practicality of
guidelines for cost estimation of defence systems described by the NATO RTO SAS-054 Panel
(2007), titled “Methods and Models for Life Cycle Costing”.

This paper documents the SAS-076 Task Group efforts in generating independent estimates of
the development and construction costs of the Royal Netherlands Navy Rotterdam class ships in
a blind, ex post exercise—only after the independent cost estimates were completed did the Task
Group obtain information on the actual cost of Rotterdam class ships. The differences between the
actual and estimated costs were then analyzed.

The Rotterdam class is a Landing Platform Dock (LPD) or amphibious warfare ship of the
Royal Netherlands Navy. The lead ship, Her Netherlands Majesty’s Ship (HNLMS) Rotterdam,
pennant number L800, was launched in 1997. The second ship of the class, HNLMS Johan de
Witt (L801), was launched in 2007. The ships have a large helicopter deck and a well deck for
large landing craft. The class was a joint design between the Netherlands and Spain1. HNLMS
Rotterdam is pictured in Figure 1.

Figure 1: HNLMS Rotterdam L800 Landing Platform Dock Ship

Methodology

Two independent methods were used in generating a cost estimate for HNLMS Rotterdam and
Johan de Witt. The first method, classified as a parametric approach, employs the M5 model
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tree algorithm of Quinlan (1992), a system that combines features of decision trees with linear
regression models. The second method employed is an analogy approach based on hierarchical
cluster analysis and non-linear optimization.

Parametric Cost Estimation

Parametric approaches to cost estimation use regression or other statistical methods to develop Cost
Estimating Relationships (CERs). Strengths in parametric approaches are their potential to capture
major portions of an estimate quickly and with limited information, their basis on consistent and
quantitative inputs, and standard tests of validity, including a coefficient of correlation indicating
the strength of association between the independent variables and the dependent variables in the
CER. A major disadvantage of typical parametric approaches is that they may not provide low level
visibility (cost breakdown) and changes in sub-systems are not reflected in the estimate if they are
not quantified via an independent variable.

Traditional ship building CERs are often mathematically simple (e.g., a simple ratio) or involve
linear regression analysis (of historical systems or subsystems) on a single parameter (weight,
length, density, etc.). However, Miroyannis (2006) noted that this is often insufficient and that
other cost driving factors must be incorporated to develop estimates of sufficient quality at the
preliminary design phase. Furthermore, the relationship between the parameter(s) and cost may
not be best expressed in linear form. While the field of regression analysis offers a multitude
of alternative approaches (see Ryan (1997)), linear regression is the most popular and easiest to
understand.

Using the M5 model tree algorithm, this paper describes a novel parametric approach for ship
cost estimation that incorporates a multitude of cost driving factors, while remaining a “top down”
approach applicable in early design phases of the procurement cycle. It combines features of
decision trees with linear regression models to both classify similar ships (based on attributes) and
build piece-wise multivariate linear regression models.

Costing by Analogy

Cost estimation by analogy is typically accomplished by forecasting the cost of a new system based
on the historical cost of similar or analogous systems. This requires a reasonable correlation be-
tween the new and historical system. The cost of the historical system is adjusted by undertaking a
technical evaluation of the differences between the systems, deducting the cost of components that
are not comparable to the new design and adding estimated costs of the new components. Usually
subject matter experts are required to make a subjective evaluation of the differences between the
new system of interest and the historical system, and subjectively chosen complexity factors are
often used to adjust the analogous system’s cost to produce an estimate. This subjectivity is a
disadvantage of traditional analogy methods.

This paper describes how a combination of hierarchical cluster analysis, principal component
analysis, and non-linear optimization can be used for a novel cost estimation by analogy approach
that is void of subjective adjustment factors. The approach also considers multiple analogous
systems rather than just one. Hierarchical cluster analysis identifies the historical systems that
are the “nearest neighbours” to the new system. A hierarchy of clusters grouping similar items
together is produced: from small clusters of very similar items to large clusters that include more
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dissimilar items. A matrix of distances (measure quantifying the similarity of two ships) among
systems is calculated expressing all possible pairwise distances among them. These distances are
then used to predict the cost of a new instance.

Both data mining approaches are data intensive. A database of 57 ships in 16 classes from 6 nations
was compiled. 136 descriptive, technical, and cost attributes were gathered for each of the ships.

Outline

The paper starts by detailing the multinational data that was gathered to facilitate data mining.
Subsequent sections present the parametric cost estimation method and analogy cost estimation
method, and their application to the data set. The results for the predicted cost of HNLMS Rotter-
dam and Johan de Witt LPDs are then presented and are compared to the actual costs.

DATA

The SAS-076 Task Group compiled a database of 57 ships in 16 classes from 6 nations. The
sources of data were culled from SAS-076 participants and publicly-available sources such as
Jane’s Fighting Warships2, Federation of American Scientists3, Navy Matters4, Forecast Interna-
tional5, U.S. Naval Institute sources (e.g., Friedman (2005)), and Wikipedia: The Free Encyclope-
dia6. The ships included cover a span of years (commissioned) from 1954 to 2010. Table 1 lists the
ships in the data set. The first three columns indicate the name, pennant number, and type of ship.
The subsequent three columns indicate the rank (in class), year of commission, and nationality.
The data set includes seven ship categories:

• Amphibious Assault Ship (AAS);

• Auxiliary Oiler Replenishment (AOR);

• Landing Platform Dock (LPD);

• Landing Platform Helicopter (LPH);

• Landing Ship Dock (LSD); and,

• Icebreaker.

Forty of the ships are from the U.S., seven from the United Kingdom, four from France, three from
Sweden, two from Canada, and one from Norway.

The SAS-076 ship data set contains military and civilian auxiliary (coast guard or similar)
vessels that were judged to be analogous to HNLMS Rotterdam LPD. Representatives of the SAS-
076 Task Group were solicited to provide technical and cost information for their nation’s ships
most closely resembling the role or size of a LPD. The selection of ships for inclusion was primarily
driven by the accessibility of costing information (for example, detailed technical information was
available for the Italian San Giorgio class and the Spanish Galicia class LPDs, but cost information
was unobtainable). Ships such as Sweden’s Carlskrona LPD, and Atle and Oden icebreakers were
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Table 1: Description of analogous ships

Name Number Type Rank Commissioned Country

Thomaston LSD 28 LSD 1 1954 United States
Plymouth Rock LSD 29 LSD 2 1954 United States
Fort Snelling LSD 30 LSD 3 1955 United States
Point Defiance LSD 31 LSD 4 1955 United States
Spiegel Grove LSD 32 LSD 5 1956 United States
Alamo LSD 33 LSD 6 1956 United States
Hermitage LSD 34 LSD 7 1956 United States
Monticello LSD 35 LSD 8 1957 United States
Anchorage LSD 36 LSD 1 1969 United States
Portland LSD 37 LSD 2 1970 United States
Pensacola LSD 38 LSD 3 1971 United States
Mount Vernon LSD 39 LSD 4 1972 United States
Fort Fisher LSD 40 LSD 5 1972 United States
Whidbey Island LSD 41 LSD 1 1985 United States
Germantown LSD 42 LSD 2 1986 United States
Fort McHenry LSD 43 LSD 3 1987 United States
Gunston Hall LSD 44 LSD 4 1989 United States
Comstock LSD 45 LSD 5 1990 United States
Tortuga LSD 46 LSD 6 1990 United States
Rushmore LSD 47 LSD 7 1991 United States
Ashland LSD 48 LSD 8 1992 United States
Harpers Ferry LSD 49 LSD 1 1995 United States
Carter Hall LSD 50 LSD 2 1995 United States
Oak Hill LSD 51 LSD 3 1996 United States
Pearl Harbour LSD 52 LSD 4 1998 United States
Raleigh LPD 1 LPD 1 1962 United States
Vancouver LPD 2 LPD 2 1963 United States
La Salle LPD 3 LPD 3 1964 United States
Austin LPD 4 LPD 1 1965 United States
Ogden LPD 5 LPD 2 1965 United States
Duluth LPD 6 LPD 3 1965 United States
Cleveland LPD 7 LPD 4 1967 United States
Dubuque LPD 8 LPD 5 1967 United States
Denver LPD 9 LPD 6 1968 United States
Juneau LPD 10 LPD 7 1969 United States
Coronado LPD 11 LPD 8 1970 United States
Shreveport LPD 12 LPD 9 1970 United States
Nashville LPD 13 LPD 10 1970 United States
Trenton LPD 14 LPD 11 1971 United States
Ponce LPD 15 LPD 12 1971 United States
Svalbard W303 Icebreaker 1 2001 Norway
Carlskrona M04 LPD 1 1982 Sweden
Atle — Icebreaker 1 1985 Sweden
Oden — Icebreaker 1 1989 Sweden
Protecteur AOR 509 AOR 1 1969 Canada
Preserver AOR 510 AOR 2 1970 Canada
Albion L14 LPD 1 2003 United Kingdom
Bulwark L15 LPD 2 2005 United Kingdom
Largs Bay L3006 LSD 1 2006 United Kingdom
Lyme Bay L3007 LSD 2 2007 United Kingdom
Mounts Bay L3008 LSD 3 2006 United Kingdom
Cardigan Bay L3009 LSD 4 2006 United Kingdom
Ocean L12 LPH 1 1998 United Kingdom
Siroco L9012 LSD 2 1998 France
Mistral L9013 AAS 1 2006 France
Tonnerre L9014 AAS 2 2007 France
Dixmude (BPC3) L9015 AAS 3 2010 France

included—leading to the potentially useful data combination of ships of the “right purpose, wrong
size” and “wrong purpose, right size”.

6

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



An Application of Data Mining Algorithms for Shipbuilding Cost Estimation by Kaluzny et al.

The selection of technical specifications included was also driven by the availability of public
information.

Technical Data

Descriptive, technical, and cost data was gathered for each of the ships in the SAS-076 data set.
The list of these ship attributes were broken down into the categories as per Table 2. Table 3
details the attributes as well as the input for HNLMS Rotterdam and Johan de Witt ships At-
tribute units are expressed by either nominal values (e.g., “fixed pitch” (fp), “controlled pitch” (cp),
“yes” (Y), “no” (N)), or by numerical units such as meters (m), millimeters (mm) megawatts (MW),
knots (kts), hours (hrs), nautical miles (nmi), etc. Unknown or missing data was denoted by “?”
entries.

Although considered the sister ship to HNLMS Rotterdam, HNLMS Johan de Witt has sig-
nificant technical differences including longer length, larger displacement, podded propulsion (as
oppose to shaft propulsion), increased lift capacity (e.g., fuel, vehicles, etc.), higher superstructure
(by one deck), and larger crew capacity. For this reason HNLMS Johan de Witt’s rank in class is
set to one.

Table 2: Categories of ship data

Category Number of Attributes

I DESCRIPTION 6
II CONSTRUCTION 8

III DIMENSIONS 5
IV PERFORMANCE 8
V PROPULSION 9

VI ELECTRICAL POWER GENERATION 3
VII LIFT CAPACITY 35

VIII FLIGHT DECK 19
IX ARMAMENT 13
X COUNTERMEASURES 5

XI RADARS / TACAN / IFF / SONARS 13
XII COMBAT DATA SYSTEMS 1

XIII WEAPONS CONTROL SYSTEMS 1
XIV OTHER CAPABILITIES 7
XV COST DATA 3

Total: 136
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Table 3: Complete list of ship data for the Rotterdam and Johan de Witt LPDs

Data Category & Element Rotterdam LPD Johan de Witt LPD

I. DESCRIPTION
a. Name Rotterdam Johan de Witt
b. Nation Netherlands Netherlands
c. Number L800 L801
d. Type Landing Platform Dock Landing Platform Dock
e. Rank in class 1 1
f. Vessel type (Military / Civilian) Military Military

II. CONSTRUCTION
a. Laid down 1/25/1996 6/18/2003
b. Launched 2/22/1997 5/13/2006
c. Commissioned 4/18/1998 11/30/2007
d. Shipyard Royal Schelde Royal Schelde
e. City Vlissingen Vlissingen
f. Country Netherlands Netherlands
g. Continent Europe Europe
h. Built to civilian classification society standards? Y Y

III. DIMENSIONS
a. Length (m) 162.2 176.35
b. Beam (m) 25 25
c. Draught (m) 5.9 5.9
d. Displacement (tonnes) Light load 8410 11560
e. Displacement (tonnes) Full load 12750 16680

IV. PERFORMANCE
a. Top speed (kts) 19 19

i. Range: Total distance (nmi) 6000 10000
ii. Range: Economical speed (kts) 12 12
iii. Range: Sailing time (hours) 500 833

b. Endurance (days) 42 42
c. Crew: complement 113 146

i. Officers 13 17
ii. Non-officers 100 129

V. PROPULSION
a. Propulsion technology Electric Electric
b. Propeller shafts 2 0

i. Shaft propulsion power (MW) 12 0
ii. Propeller type fixed pitch N/A

c. Propulsion pods 0 2
i. Total podded propulsion power (MW) 0 11

d. Net propulsion power (MW) 12 11
e. Bow Thrusters 1 2

i. Total thruster power (MW) 1.15 1.8
VI. ELECTRICAL POWER GENERATION

a. Generators 4 4
i. Total power generation capacity (MW) 14.6 14.4
ii. Generator technology Diesel Diesel

VII. LIFT CAPACITY
a. Vehicle fuel (litres) 9000 14500
b. Aviation fuel (litres) 284400 306600
c. Fresh water (litres) 263100 329900
d. Bulk cargo space (m3) 3680 4170
e. Vehicle space (m2) 720 1770
f. Well deck (Y/N) Y Y

i. Length (m) 50 35
ii. Width (m) 14 15
iii. Capacity (m2) 700 525
iv. LCAC 0 0
v. LCM 6 ? ?
vi. LCM 8 4 4
vii. LCU 4 4
viii. LVT ? ?
ix. LCVP 6 6
x. LCPL ? ?
xi. EFV ? ?

g. Cargo/Aircraft Elevator/Lifts 0 0
i. Capacity ≤ 5 tonnes 0 0
ii. 5 < capacity ≤ 10 tonnes 0 0
iii. 10 < capacity ≤ 15 tonnes 0 0
iv. Capacity ≥ 15 tonnes 0 0

h. Cranes 1 1
i. Capacity ≤ 5 tonnes 0 0
ii. 5 < capacity ≤ 10 tonnes 0 0
iii. 10 < capacity ≤ 15 tonnes 0 0
iv. 15 < capacity ≤ 20 tonnes 0 0
v. 20 < capacity ≤ 25 tonnes 1 1
vi. 25 < capacity ≤ 30 tonnes 0 0

continued on next page
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continued from previous page
Data Category & Element Rotterdam LPD Johan de Witt LPD

vii. 30 < capacity ≤ 40 tonnes 0 0
viii. 40 < capacity ≤ 50 tonnes 0 0
ix. 50 < capacity ≤ 60 tonnes 0 0
x. Capacity > 60 tonnes 0 0

i. Berthing (troop capacity): Baseline 611 555
j. Berthing (troop capacity): Surge 100 100

VIII. FLIGHT DECK
a. Equipped with flight deck? (Y/N) Y Y
b. Flight deck length (m) 56 58
c. Flight deck width (m) 25 25
d. Flight deck area (m2) 1400 1450
e. Helicopter landing spots (maximum number) 2 2

i. Merlin / Sea King 2 2
ii. NH 90 / Lynx / Puma / Cougar 2 2
iii. CH-46E Sea Knight ? ?
iv. CH-53 Sea Stallion ? ?
v. MV-22 Osprey ? ?

f. Chinook capable (Yes/No) N Y
g. Equipped with hangar? (Y/N) Y Y
h. Hangar size (m2) 475 560
i. Helicopters supported (largest total number) 6 6

i. Merlin / Sea King 4 4
ii. NH 90 / Lynx / Puma / Cougar 6 6
iii. CH-46E Sea Knight ? ?
iv. CH-53 Sea Stallion ? ?
v. MV-22 Osprey ? ?

IX. ARMAMENT
a. Guns (calibre ≥ 75mm) 0 0
b. Guns (50mm ≤ calibre < 75mm) 0 0
c. Guns (30mm ≤ calibre < 50mm) 0 0
d. Guns (20mm ≤ calibre < 30mm) 0 0
e. 30mm CIWS emplacements (Goalkeeper) 2 2
f. 20mm CIWS emplacements (Phalanx) 0 0
g. Machine guns (12.7mm) 8 4
h. Machine guns (7.62mm) 0 0
i. SSM launchers 0 0
j. SAM launchers 0 0
k. Number of torpedoes carried 0 0
l. Torpedo tubes 0 0
m. Torpedo launchers 0 0

X. COUNTERMEASURES
a. Chaff launchers 4 4
b. Torpedo decoys 1 1
c. Other systems 0 0
d. Number of ESM systems 1 1
e. Number of ECM systems 1 1

XI. RADARS / TACAN / IFF / SONARS
a. Total radar systems mounted 4 5

i. A-band 0 0
ii. B-band 0 0
iii. C-band 0 0
iv. D-band 0 0
v. E-band 1 2
vi. F-band 1 2
vii. G-band 0 1
viii. H-band 0 0
ix. I-band 3 3
x. J-band 0 0

b. Number of TACAN/IFF systems mounted 1 1
c. Number of distinct sonar systems mounted 0 0

XII. COMBAT DATA SYSTEMS
a. Number of distinct systems 2 2

XIII. WEAPONS CONTROL SYSTEMS
a. Number of distinct systems 1 1

XIV. OTHER CAPABILITIES
a. Equipped with hospital? (Y/N) Y Y

i. Number of beds 10 7
ii. Operating rooms 1 1
iii. X-Ray facility (Y/N) Y Y

b. Dental capability (Y/N) Y Y
c. Command/Control facility (Y/N) Y Y
d. NBCD Facilities (Y/N) Y Y

XV. COST DATA
a. Base year ? ?
b. Currency EUR EUR
c. Development and Production Cost ? ?

Cost Data

The original ship cost data gathered by the SAS-076 Task Group expressed costs in various curren-
cies: Great Britain pound sterling (GBP), U.S. dollars (USD), Canadian dollars (CAD), Norwegian
krone (NOK), Swedish kronor (SEK), and Euros (EUR). Costs were also expressed relative to var-
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ious then-years (amounts that include the effects of inflation or escalation, and/or reflect the price
levels expected to prevail during the year at issue), ranging from 1952 to 2009. Following SAS-
054 guidelines for cost normalization, the ship costs were converted to a common currency and
then-year. Respecting the anonymity request of some of the nations, the ship costs cannot be made
explicit. For the same reason, the common currency and then-year are not disclosed—all subse-
quent cost figures are presented using a fictitious notional common currency (abbreviated NCC).
Figure 2 illustrates the histogram of the SAS-076 data set costs normalized to NCC.

100 200 300 400 500 600 700

2

4

6

8

10

Figure 2: Histogram of normalized costs (millions NCC).

The cost of each ship was log-transformed so that the estimation models output a single pre-
dicted ship cost in log-space. This prediction is considered to center a normal distribution whose
standard deviation is the standard deviation of the model (also in log space) in estimating the costs
of the known ships. As a result of the initial log-transformation of the costs, the uncertainty in the
prediction of a ship’s cost is presented by a log-normal distribution.

The logarithmic transformation is commonly used for positive data; the log-normal distribution
domain of zero to infinity is more suitable for modelling ship costs than a normal distribution which
includes the negative domain. Log-transformation is also commonly applied when the data ranges
over several orders of magnitude—the SAS-076 data set cost range from 48.8 to 698.7 million
NCC. Total cost estimates for weapon-system acquisition programs are typically log-normally
distributed and often skewed right.
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DATA MINING FOR PARAMETRIC COST ESTIMATION

This section describes a novel parametric approach for ship cost estimation that incorporates a
multitude of cost driving factors, while remaining a “top down” approach applicable in early design
phases of the procurement cycle. It combines features of decision trees with linear regression
models to both classify similar ships (based on attributes) and build piece-wise multivariate linear
regression models.

The M5 Model Tree System

Quinlan (1992) pioneered the M5 system for learning models that predict numeric values. The M5
system combines features of decision trees with linear regression models. Whereas the nodes of a
regression tree each contain a constant value (prediction), each model tree node is a multivariate
linear regression model. This difference is the reason why regression trees will not predict values
lying outside the range of learned training cases, while M5 model trees can extrapolate. M5 model
trees have an advantage over regression trees with respect to compactness and prediction accuracy
due to the ability of model trees to exploit local linearity in the data. M5 model trees are also
smaller, easier-to-understand, and Wang and Witten (1997) show that their average error values on
the training data are lower.

The M5 model tree algorithm has four parts to it. In the first part, a decision tree is constructed
using the same procedure as for regression trees. The tree is constructed recursively by splitting
the training set per attribute value chosen to minimize error in estimation. In the second part,
the algorithm constructs multivariate linear models at each node of the model tree using only the
attributes that are referenced by tests somewhere in the subtree of this node. These linear models
are further simplified by eliminating parameters to minimize the estimated error (accuracy of the
model on unseen cases). Part three of the algorithm applies a tree pruning routine which eliminates
subtrees of a node if the estimation error is higher in the lower branches than the estimation error
when using the node’s internal regression model. Finally, a smoothing process, with the goal of
improving prediction accuracy, is employed to ensure that the linear regression models of adjacent
leaves are continuous and smooth. This process is particularly effective when some of the linear
regression models are constructed from few training cases.

Figure 3 depicts a simple example of a M5 model tree. The sub-figure on the left shows a
two-dimensional space of independent variables x1 and x2. The M5 model tree algorithm splits up
the space into regions corresponding to decisions in the tree shown on the right. Linear regression
models (LMs) are fitted to the data in each region.

To predict a value for a new instance, the M5 model tree is followed down to a leaf using
the instance’s attribute values to make routing decisions at each node. The leaf contains a linear
regression model based on a subset of the attributes, and this is evaluated for the new instance to
output a predicted value.

The use of M5 model trees for numeric prediction has increased since comprehensive descrip-
tions, implementations, and refinements of Quinlan’s method became available (Wang and Witten;
1997; Malerba et al.; 2004; Torgo; 2000, 2002; Dobra; 2002). Recently Chen (2006) discussed
the benefits of the system for estimating the cost of software development.

Wang and Witten have shown that M5 model trees can excel when data is limited, and can
learn efficiently (computationally) from large data sets. They can handle data sets which include
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Y (output)
x1

x2

1            2            3             4             5             6

4

3

2

1

LM1

LM2LM3

LM4

LM5

LM6

x1 > 2.5

x2 < 3.5

x2 > 2

x1 < 4

x2 < 1

LM1 LM2

LM3 LM4

LM5 LM6

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 3: Example M5 model tree.

systems with notable differences, missing data, and noise (as is the case for the SAS-076 ship data
set). The decision tree can branch on any variable type: nominal (e.g., military vs. non-military)
or numeric (e.g., tonnage less than 15000 or greater than 15000).

Application to SAS-076 Ship Data Set

An easy-to-use implementation of Quinlan’s M5 model tree is available as part of the WEKA
project7. Witten and Frank (2005) provide documentation on both the theory and implementation
(data formatting, execution, etc.) of the algorithm. The descriptive attributes (I.e), (I.f), (II.h) (as
per Table 2), the complete set of technical attributes, and a normalized cost attribute for each of the
ships in the SAS-076 data set was used as input to the M5 model tree algorithm. Using WEKA8,
the construction of the M5 model tree for the ship database of 57 ships each with 123 attributes
(7011 elements) took less than a second of computation on an Intel(R) 2.4GHz computer with 4GB
RAM.

Figure 4 shows the resulting M5 model tree. The root of the decision tree splits the ships in
two based on the number of air-cushioned landing craft (LCAC) that the ship is designed to carry
(it should be noted that this split also groups all ships void of a well deck). Internal nodes of the
tree further split the data set on attributes such as the number (#) of torpedo decoy systems on
board, the ship’s rank in class, the maximum number of helicopters supported, the ship’s length,
and the ship’s range in terms of total distance in nautical miles. The tree branches out to nine leaves
where nine corresponding linear regression models are fitted. The regression models are presented
in Table 4. In addition to the ship attributes used in the decision tree for branching, the linear
regression models use the ship’s range in terms of total sailing time in hours. The linear regression
models output the log-transformed (decadic) cost of a ship. The individual linear regression models
are mostly intuitive: the cost of a ship increases as the length or the number of LCAC supported or
number of torpedo decoy systems increase(s). The regression models also predict a shipbuilding
learning curve as the cost of constructing a ship decreases as a function of the ship’s rank in
class. The negative coefficient for a ship’s range (sailing time) in the regression models is counter-
intuitive. It seems unlikely that a ship will cost less as its range increases. The SAS-076 ship data
explains this anomaly: the median ship range (sailing time) of the ships captured in the SAS-076
ship data set is 444 hours and the mean is 616 hours. Only 6 of the 57 ships have a range greater
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than 770 hours, these are the U.S. Anchorage class LSDs and Sweden’s Oden icebreaker—their
sailing time range is between 3-5 times the median. The Anchorage class LSD costs and the Oden
icebreaker cost are relatively low (in comparison to the other SAS-076 ships). The combination of
these low costing ships and outlying sailing time ranges provides a mathematical explanation for
the negative coefficient of the sailing time range in the regression models. The M5 model can be
potentially adjusted in an attempt to remove such anomalies by disabling the particular attribute
(sailing time), however there is no guarantee that the regenerated model will not substitute this
attribute with another, also allocated a negative coefficient. Similarly, removing the instances
(e.g., Oden and Anchorage class LPDs) from the data set provides no guarantees. Rather than
subjectively diminishing the data set, anomalies are noted and discussed as part of the results.

Table 5 provides the minimum, median, mean, and maximum values found in the SAS-076 ship
data set for the attributes used by the M5 model. Table 6 shows the classification of the SAS-076
ships by the M5 model tree.

# of LCAC in Well Deck

< 2  or  ?

# of Torpedo Decoys Rank in Class

Range (total distance in nmi) Rank in Class Maximum # of Helicopters Supported

Range (total distance in nmi)Length (m)LM1 LM2 LM3

LM4 LM5

LM6

LM7 LM8

LM9

≥ 2

0 ≥ 1  or  ?

< 10002 ≥ 10002  or  ? 1st≥ 2

≤ 172.3 > 172.3

≤ 5≥ 6

≥ 2≤ 1

≤ 8800 > 8800  or  ?

Figure 4: M5 model tree applied to the NATO RTO SAS 076 ship data set.

Figure 5 plots the actual ship costs vs. the costs predicted by the M5 model tree. The worth of
a regression-based model is measured by the coefficient of correlation, R, the quantity that gives
the quality of a least squares fitting to the original data. Similarly, the value R2, known as the
coefficient of determination, is a measure of how well the regression line represents the data—it is
a measure determining how certain one can be in making predictions from the model. R2 is also the
ratio of the explained variation (by the model) to the total variation of the data set. The measures
of worth of the M5 model tree for predicting ship costs are a strong R = 0.96 and R2 = 0.92 (a
correlation greater than 0.8 is generally described as strong (Ryan; 1997)). The coefficient of
determination indicates that 92% of the total variation in the ship costs can be explained by the
linear relationships described by the M5 model tree linear regression equations. The remaining
8% of the total variation remains unexplained.

The mean absolute percent error for the M5 model tree applied to the SAS-076 ship data set
is 12%. The standard deviation is 46.4 million NCC. Mean absolute percent errors and standard
deviations specific to the individual M5 model tree linear regression models are shown in Table 7.
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Table 4: M5 model tree linear regression models

LM1 LM2
Log(Cost) = 7.4297 Log(Cost) = 7.4208

- 0.0112 × rank in class - 0.0112 × rank in class
+ 0.0045 × length (m) + 0.0045 × length (m)
- 0.0002 × range (sailing time in hrs) - 0.0002 × range (sailing time in hrs)
+ 0.0445 × # of LCAC in well deck + 0.0445 × # of LCAC in well deck
+ 0.1104 × # of torpedo decoys + 0.1104 × # of torpedo decoys

LM3 LM4
Log(Cost) = 7.6222 Log(Cost) = 7.7567

- 0.0167 × rank in class - 0.0172 × rank in class
+ 0.0041 × length (m) + 0.0032 × length (m)
- 0.0002 × range (sailing time in hrs) - 0.0002 × range (sailing time in hrs)
+ 0.0445 × # of LCAC in well deck + 0.0445 × # of LCAC in well deck
+ 0.0659 × # of torpedo decoys + 0.0659 × # of torpedo decoys

LM5 LM6
Log(Cost) = 7.7912 Log(Cost) = 7.9846

- 0.0170 × rank in class - 0.0245 × rank in class
+ 0.0030 × length (m) + 0.0038 × length (m)
- 0.0002 × range (sailing time in hrs) - 0.0003 × range (sailing time in hrs)
+ 0.0445 × # of LCAC in well deck + 0.0300 × # of LCAC in well deck
+ 0.0659 × # of torpedo decoys + 0.0343 × # of torpedo decoys

LM7 LM8
Log(Cost) = 8.1461 Log(Cost) = 8.3575

- 0.0361 × rank in class - 0.0312 × rank in class
+ 0.0035 × length (m) + 0.0024 × length (m)
- 0.0003 × range (sailing time in hrs) - 0.0003 × range (sailing time in hrs)
+ 0.0300 × # of LCAC in well deck + 0.0300 × # of LCAC in well deck
+ 0.0343 × # of torpedo decoys + 0.0343 × # of torpedo decoys

LM9
Log(Cost) = 8.3001

- 0.0221 × rank in class
+ 0.0020 × length (m)
- 0.0003 × range (sailing time in hrs)
+ 0.0300 × # of LCAC in well deck
+ 0.0343 × # of torpedo decoys

For the purpose of determining the standard deviation of a M5 model tree output prediction, the
standard deviation over all the training data is more reflective of the M5 system than just the
standard deviation of the training cases reaching the particular leaf node used for the prediction.
By M5 model tree construction, each of the training cases influence the structure of the final model
tree.

The results presented in Table 7 show that linear regression model LM7 contributes greatest
to the standard deviation. Further analysis revealed that LM7 models the nine highest costing
ships, all over 400 million NCC. In eight of these cases, LM7 underestimates the actual cost.
By the piece-wise linear M5 model tree construction, LM7 is influenced by the adjacent linear
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Table 5: Statistics of attributes used in the M5 model tree linear regression models.

Attribute Minimum Median Mean Maximum

Rank 1 3 3.68 12
Length 103.7 173.8 170.3 203.4
Range (sailing time) 385 444 616 2308
Range (total distance) 7500 10003 8000 30000
# LCAC 0 2 2 4
# torpedo decoys 0 0 2 8
# of helicopters supported 0 5 6 18

Table 6: M5 model tree classification of SAS-076 ships.

LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9

Svalbard Carlskrona Thomaston Plymouth Rock Lyme Bay Anchorage Whidbey Island Raleigh Tortuga
Protecteur Atle Largs Bay Fort Snelling Mounts Bay Portland Germantown Vancouver Rushmore
Preserver Oden Ocean Point Defiance Cardigan Bay Pensacola Fort McHenry La Salle Ashland

Spiegel Grove Mount Vernon Gunston Hall Mistral Denver
Alamo Fort Fisher Comstock Tonnerre Juneau

Hermitage Harpers Ferry Austin Dixmude (BPC3) Coronado
Monticello Carter Hall Ogden Shreveport

Siroco Oak Hill Duluth Nashville
Pearl Harbour Cleveland Trenton

Dubuque Ponce
Albion

Bulwark

Table 7: Mean absolute percent errors of known instances and standard deviations per individual
M5 model tree linear models.

LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9

Mean % error: 22% 27% 17% 3% 33% 12% 14% 8% 6%
Standard deviation 24.3M 16.9M 53.0M 6.4M 45.6M 43.4M 78.0M 39.3M 24.3M

# of instances: 3 3 3 8 3 9 12 6 10

regression models LM6 and LM8. To evaluate the degree of this influence, a separate multiple
linear regression model was fitted to the ships reaching the LM7 leaf using the same five ship
attributes as LM7. The resulting CER is as follows:

Log10(cost) = 8.6376−0.0651× rank in class (1)
+0.0637× number of LCAC.

15

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



An Application of Data Mining Algorithms for Shipbuilding Cost Estimation by Kaluzny et al.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Actual Cost millions NCC

Pr
ed

ic
te

d
Co

st

LM1
LM2
LM3
LM4

LM6
LM5

LM7

LM9
LM8

Figure 5: M5 model tree: correlation plot of actual vs. predicted ship costs (millions NCC).

with an R value of 0.95 (R2 = 0.90), mean absolute percent error of 7% and a standard deviation
of 34.8 million NCC. This result indicates that it is indeed possible to derive better models for
subsets of the data. This does not depreciate the M5 model tree algorithm whose strength is its
optimization in predicting unknown cases (rather than simply memorizing the known). Using
the linear regression model of equation (1) in place of LM7 would leave adjacent linear models
LM6 and LM8 sharply discontinuous. The M5 system applies a smoothing process to construct
piece-wise linear regression models. Experiments by Wang and Witten show that this smoothing
substantially increases the accuracy of predictions of unseen cases.

Comparison to Linear Regression Models

The best CER returned by applying simple linear regression on the SAS-076 data set (nominal
attributes and attributes for which data was missing was omitted) is

Log10(cost) = 6.95+0.01× length of ship (in meters), (2)

with an R value of 0.75 (R2 = 0.56). Applying multiple linear regression with a greedy attribute
selection method (step through the attributes removing the one with the smallest standardized
coefficient until no improvement is observed in the estimate of the error given by the Akaike
(1980) information criterion), yields the CER
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Log10(cost) = 5.7368−0.0224× rank in class (3)
+0.0121× length (in meters)
+0.0338× beam (in meters)
+0.1071× draught (in meters)
−0.0001× full load displacement (in tonnes)
+0.0012× crew size
−0.0876× number of propeller shafts
−0.0239× number of guns of calibre ≥ 75,

with an R value of 0.92 (R2 = 0.85). While the CER produced by applying simple linear
regression is straightforward to understand, the negative coefficient signs of the multiple linear
regression CER makes its interpretation non-trivial—detailed analysis of the input data is required.
For comparison to the M5 model tree, the straightforward linear regression estimates for HNLMS
Rotterdam and Johan de Witt LPDs are presented in the results section.

DATA MINING FOR COST ESTIMATION BY ANALOGY

This section describes how hierarchical cluster analysis is used for a novel cost estimation by anal-
ogy approach that is void of the subjectivity inherent (of the traditional approach) in quantifying
the cost of the technical and other differences between the historical system and the new system.
The approach also considers multiple analogous systems rather than just one.

Hierarchical cluster analysis

Hierarchical cluster analysis is a data mining approach that facilitates cost estimation by analogy
by identifying the systems that are the “nearest neighbours” to the new system. Hierarchical cluster
methods produce a hierarchy of clusters grouping similar items together: from small clusters of
very similar items to large clusters that include more dissimilar items. In particular, agglomerative
hierarchical methods work by first finding the clusters of the most similar items and progressively
adding less similar items until all items have been included into a single large cluster. Hierarchical
agglomerative cluster analysis begins by calculating a matrix of distances among systems express-
ing all possible pairwise distances among them. Initially each system is considered a group, albeit
of a single item. Clustering begins by finding the two systems that are most similar, based on the
distance matrix, and merging them into a single group. The characteristics of this new group are
based on a combination of the systems in that group. This procedure of combining two groups and
merging their characteristics is repeated until all the systems have been joined into a single large
cluster.

Hierarchical cluster analysis is a useful means of observing the structure of the data set. The
results of the cluster analysis are shown by a dendrogram (tree), which lists all of the samples and
indicates at what level of similarity any two clusters were joined. The x-axis is a measure of the
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similarity or distance at which clusters join. The resulting clustering can be used to estimate the
cost of a new system by taking a weighted average of the cost of historical systems based on the
relative distances between the new system and the historical systems.

Application to SAS-076 Ship Data Set

Using the SAS-076 ship data set, hierarchical clustering is used to define a ship distance function
which takes as input ship attributes for a pair of ships and outputs a single value indicating the
distance, or similarity, between the two ships. Formally, define

di jk = distance between ship i and j with respect to attribute k. (4)

For numeric attributes, di jk is normalized to lie in the [0,1] range with di jk = 1 indicating that ships
i and j lie at opposite ends of the observed spectrum for attribute k (e.g., shortest and longest length
ships), and di jk = 0 indicating that the ships are the same with respect to attribute k. For nominal
attributes, di jk is binary—set to 0 if ship i and j are the same with respect to attribute k, and 1 if
they are not.

A variety of distance metrics can be used to calculate similarity of two ships based on the
attribute distances di jk. Using a simple Euclidean distance metric, the aggregate distance between
two ships i and j, is expressed as

di j =
√

∑
k∈A

d2
i jk (5)

where A is the subset of attributes considered.
Computing the distances between all pairs of ships using equation (5), the cost of a ship i can

be estimated by computing the weighted-average cost of the other ships. Let C j be the known cost
of ship j, then

C̃i = ∑
j 6=i

C j

d2
i j
· 1

∑
j 6=i

1
d2

i j

(6)

is the estimated cost of ship i. Figure 6 plots the actual ship costs, Ci, vs. the costs predicted, C̃i, by
the analogy method using hierarchical clustering based on a simple distance metric. The measures
of worth of the analogy method via hierarchical clustering analysis (simple distance metric) for
predicting ship costs are R = 0.48 and R2 = 0.23. The mean absolute percent error is 49% and
the standard deviation of 112 million NCC. This approach does poorly in learning the known ship
costs.

An assumption in the above approach is that all attributes are of equal importance; the (normal-
ized) differences or similarities for each attribute contribute equally to the measure of similarity
between ships. To potentially improve the predictive capability of the method, attribute weights
are defined. Let

wk = weight of attribute k. (7)

Using a weighted Euclidean distance metric, the aggregate distance between two ships i and j, is
expressed as

d̂i j =
√

∑
k∈A

(wk ·di jk)2, (8)
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Figure 6: Hierarchical clustering with simple distance function: correlation plot of actual vs. pre-
dicted ship costs (millions NCC).

where ∑
k∈A

wk = 1 and wk ≥ 0 for all k. As before, let C j be the known cost of ship j, then

Ĉi = ∑
j 6=i

C j

d̂2
i j
· 1

∑
j 6=i

1
d̂2

i j

(9)

is the estimated cost of ship i using weighted attributes. The optimal allocation of weights is
determined by minimizing the prediction error for the known ships,

minimize
57

∑
i=1

(
Ci−Ĉi

)2
. (10)

The resulting mathematical optimization is a non-linear convex program. With the full set of
attributes used previously, |A|= 123, the mathematical program was too computationally intensive
to solve in reasonable time using Wolfram Mathematica c© on a Intel(R) 2.4GHz computer with
4GB RAM. To reduce the dimensionality of the problem, a smaller subset of attributes had to be
selected. While there are numerous attribute selection algorithms (see Witten and Frank), principal
component analysis (PCA), a tool in exploratory data analysis and for making predictive models,
was used. PCA involves a mathematical procedure that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables called principal components. The first
principal component accounts for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as possible. The reader
is referred to Jolliffe (2002) for mathematical details of PCA.
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The WEKA software tool was used to perform PCA. The ship data set consisting of 123 at-
tributes (as used with the simple distance function) was reduced to a set of 16 macro-attributes
accounting for 95% of the original set’s variability. Each macro-attribute is a linear combination
of the original attributes. For example, macro-attribute A2 is

A2 = 0.204× length (11)
+0.196×beam width
+0.183×vehicle space
+0.18×# of expeditionary fighting vehicles
+0.165×1 if has a well deck, otherwise 0
+0.165×width of the well deck
+0.164× length of the well deck
+0.159×# of large personnel landing craft
+0.156×# of Chinook helicopters supported
+0.155× full load displacement
+0.153×# of combat data systems
+0.150× light load displacement
+0.144×well deck capacity
+0.143×# of elevators
+0.142×vehicle fuel capacity
etc.

(Only the top 15 attributes—in terms of PCA coefficient size—are enumerated in equation (11).)
Table 8 lists the macro-attributes and the respective percentage of data variability (cumulative)

each accounts for.
Attempting to find solutions to the mathematical program (10) with |A| = 16 macro-attributes

still resulted in memory overflow. Using the top ten macro-attributes, accounting for 80% of the
original data set’s variance, an optimal solution for the macro-attribute weights was determined.
The weights are listed in Table 9. Only macro-attributes A1, A2, A4, and A8 have non-zero
weights. This is a typical extreme output of mathematical optimization software. There may exist
other optimal solutions with other non-zero macro-attributes weights.

The hierarchical cluster analysis using the weighted distance function on the top ten macro-
attributes determined by PCA is visualized in Figure 7. The figure illustrates the resulting den-
drogram indicating that HNLMS Rotterdam LPD is grouped with the United Kingdom’s Albion
class LPDs and Largs Bay class LSDs, followed by France’s Siroco LSD, etc. HNLMS Johan
de Witt LPD is clustered with Sweden’s Svalbard icebreaker, France’s Mistral class AAS, United
Kingdom’s Ocean LPH, and so on. As expected, ships within the same class (but different rank)
are closely grouped together.
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Table 8: Principal component analysis results

% of Data Variability Accounted for
Macro-Attribute Proportion Cumulative

A1 17% 17%
A2 12% 29%
A3 11% 41%
A4 9% 49%
A5 8% 57%
A6 7% 64%
A7 6% 69%
A8 5% 74%
A9 4% 78%

A10 3% 81%
A11 3% 85%
A12 3% 88%
A13 3% 90%
A14 2% 92%
A15 2% 94%
A16 1% 95%

Table 9: Optimal macro-attribute weights for cost estimation by hierarchical clustering

Attribute Weight

A1 0
A2 0.452
A3 0
A4 0
A5 0.334
A6 0
A7 0
A8 0
A9 0

A10 0.214
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Figure 7: Dendrogram illustrating the arrangement of the clusters produced by the hierarchical clustering of ships (weighted distance
function).
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Figure 8 plots the actual ship costs, Ci, vs. the costs predicted, Ĉi, by the analogy method using
hierarchical clustering based on a weighted distance metric. The measures of worth of the analogy
method via hierarchical clustering analysis (weighted distance matrix) for predicting ship costs are
R = 0.93 and R2 = 0.86. The latter coefficient of determination indicates that 86% of the total
variation in the ship costs can be explained by an average cost of the known ships weighted by
an optimized distance metric. The mean absolute percent error is 16% and the standard deviation
is 55.9 million NCC—improvements over the hierarchical clustering based on the simple distance
metric.
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Figure 8: Weighted hierarchical clustering: correlation plot of actual vs. predicted ship costs (mil-
lions NCC).

Discussion

Figure 8 shows that the analogy method using hierarchical clustering based on a weighted distance
metric underestimates the cost of seven of the eight most expensive ships (all over 406 million
NCC). This was also a characteristic of the parametric estimation presented in a preceding section.
In the latter it was conjectured that the underestimation was likely a result of the smoothing and
pruning functions of the M5 model tree algorithm, designed to optimize the predictive capability of
the method. However, the underestimation of expensive ships in the second, independent method,
are potentially an indication that the attributes (and their values) of the SAS-076 ship data set do
not provide enough information to help distinguish the highest costing ships from their peers.
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RESULTS

M5 Model Tree Results

The technical specifications of HNLMS Rotterdam LPD (Table 3) were used to trace down the M5
model tree depicted in Figure 4. In particular, the input data indicates that HNLMS Rotterdam
LPD does not have the capacity to carry LCAC in its well deck, carries one torpedo decoy system,
and is ranked first in class. This results in linear regression model LM3 as per Table 4. Similarly,
the attributes of HNLMS Johan de Witt LPD are used to follow the same path in the M5 model
tree to linear regression model LM3. The linear regression model LM3 has the ship’s rank in
class, length, range in terms of sailing time in hours, number of LCAC, and number of torpedo
decoy systems as independent variables. Using the LM3 model, the predicted development and
production cost of HNLMS Rotterdam LPD is 197.7 million NCC. The predicted cost of HNLMS
Johan de Witt LPD is 212.3 million NCC. The LM3 model outputs different predictions since
the HNLMS Rotterdam LPD and Johan de Witt LPD differ in range (sailing time in hours) and
length—two of the independent variables in LM3.

Figures 9 and 10 illustrate the log-normal probability density and cumulative distribution func-
tions for the M5 model tree estimates for the cost of HNLMS Rotterdam LPD and Johan de Witt
LPD. The predicted costs coincide to the 50th percentile of the respective log-normal probabil-
ity distribution functions. This effect is explained by Goldberger (1968): when a power-function
form is used for a CER, attention shifts from the mean to the median as a measure of central ten-
dency; the CER yields an estimate of the median value of Y rather than the mean. The mean of
the presented log-normal distributions are 200.2 million NCC and 215.0 million NCC for HNLMS
Rotterdam LPD and Johan de Witt LPD respectively.
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Figure 9: Probability density function (a) and cumulative distribution function (b) of the M5 model
tree estimate of HNLMS Rotterdam LPD cost.

Linear Regression Results

Using simple linear regression CER, equation (2), the estimate for HNLMS Rotterdam LPD is
219.2 million NCC. The estimate for HNLMS Johan de Witt LPD is 289.7 million NCC. Using the
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Figure 10: Probability density function (a) and cumulative distribution function (b) of the M5
model tree estimate of HNLMS Johan de Witt LPD cost.

multiple linear regression CER, equation (3), the estimate for HNLMS Rotterdam LPD is 158.9
million NCC. The estimate for HNLMS Johan de Witt LPD is 201.4 million NCC.

Hierarchical Cluster Analysis Results

The technical specifications of HNLMS Rotterdam LPD (Table 3) were mapped to the ten attributes
selected by the principal component analysis. Using the optimized macro-attribute weights, the
normalized relative distances of HNLMS Rotterdam LPD to the other ships are listed in Table 10
(the distances have been normalized so that the furthest ship has a distance of 1). The resulting
hierarchical clustering cost estimate for HNLMS Rotterdam LPD is 214.6 million NCC, and 243.9
million NCC for HNLMS Johan de Witt LPD.

Figures 11 and 12 illustrate the log-normal probability density and cumulative distribution
functions for the hierarchical cluster estimates for the cost of HNLMS Rotterdam LPD and Johan
de Witt LPD. The mean of the presented log-normal distributions are 219.8 million NCC and 249.8
million NCC for HNLMS Rotterdam LPD and Johan de Witt LPD respectively.

Discussion

The estimates generated by the M5 model tree were considered to be the primary estimates for
HNLMS Rotterdam and Johan de Witt, the hierarchical clustering estimates were considered as
secondary estimates. This decision was driven by the following:

• The M5 model tree algorithms are optimized to both learn known cases and predict unknown
cases. The attribute weights used in the hierarchical clustering method are optimized learn
the known cases.

• The hierarchical clustering approach uses principal component analysis to reduce the dimen-
sionality of the attribute space. Due to computational limitations, the weight optimization
method could only be applied on the top ten macro-attributes, accounting for 80% of the
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Table 10: Weighted distance of the Rotterdam LPD to ships in the Rotterdam data set.

Name Distance Name Distance Name Distance

Rotterdam 0.000 Vancouver 0.312 Nashville 0.639
Largs Bay 0.034 La Salle 0.316 Trenton 0.646
Lyme Bay 0.034 Harpers Ferry 0.405 Ponce 0.650
Mounts Bay 0.035 Carter Hall 0.431 Whidbey Island 0.655
Cardigan Bay 0.035 Oak Hill 0.435 Germantown 0.659
Oden 0.039 Pearl Harbour 0.439 Fort McHenry 0.664
Carlskrona 0.044 Anchorage 0.546 Gunston Hall 0.668
Johan de Witt 0.046 Portland 0.550 Comstock 0.673
Atle 0.052 Pensacola 0.553 Tortuga 0.678
Albion 0.057 Mount Vernon 0.557 Rushmore 0.682
Bulwark 0.058 Fort Fisher 0.561 Ashland 0.687
Siroco 0.067 Austin 0.601 Thomaston 0.971
Svalbard 0.068 Ogden 0.606 Plymouth Rock 0.975
Protecteur 0.128 Duluth 0.610 Fort Snelling 0.979
Preserver 0.129 Cleveland 0.612 Point Defiance 0.983
Ocean 0.227 Dubuque 0.617 Spiegel Grove 0.987
Tonnerre 0.244 Denver 0.621 Alamo 0.992
Mistral 0.246 Juneau 0.626 Hermitage 0.996
BPC3 0.266 Coronado 0.630 Monticello 1.000
Raleigh 0.309 Shreveport 0.634
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Figure 11: Probability density function (a) and cumulative distribution function (b) of the hierar-
chical clustering estimate of HNLMS Rotterdam LPD cost.

original data set’s variability. In comparison, the M5 model tree algorithm is computation-
ally superior as it efficiently learns from large data sets.
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Figure 12: Probability density function (a) and cumulative distribution function (b) of the hierar-
chical clustering estimate of HNLMS Johan de Witt LPD cost.

• The M5 model tree results in a better correlation measure, lower mean absolute percent error,
and smaller standard deviation in estimating the known cases.

Table 11 synthesizes the predictions and compares properties of the M5 model tree and hierar-
chical clustering methods.

Table 11: Comparison of the M5 model tree and hierarchical clustering methods and their esti-
mates.

M5 model tree Hierarchical clustering

HNLMS Rotterdam estimate 197.7M NCC 214.6M NCC
HNLMS Johan de Witt estimate 221.3M NCC 243.9M NCC
Coefficient of correlation 0.96 0.93
Coefficient of determination 0.92 0.86
Standard deviation 46.4M NCC 55.9M NCC
Mean absolute % error 11% 16%
Ability to learn known cases X X
Optimized to predict unknown cases X ×
Uses entire data set X ×

Ex Post Revelation

The Royal Netherlands Navy revealed the actual development and production costs of HNLMS
Rotterdam and Johan de Witt LPDs to the NATO RTO SAS 076 Task Group once the cost estimates
were established. After normalization to the fictitious notional common currency, the HNLMS
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Rotterdam LPD development and production costs totaled 202.2 million NCC. HNLMS Johan de
Witt LPD development and production costs totaled 253.7 million NCC.

Figures 13 and 14 illustrate where the actual costs (thick vertical lines) fall with respect to the
log-normal probability density and cumulative distribution functions for the M5 model tree and
hierarchical cluster cost estimates for HNLMS Rotterdam LPD and Johan de Witt LPD.
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Figure 13: Probability density function (a) and cumulative distribution function (b) of the M5
model tree (blue) and hierarchical clustering (red) estimates of HNLMS Rotterdam LPD cost.
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Figure 14: Probability density function (a) and cumulative distribution function (b) of the M5
model tree (blue) and hierarchical clustering (red) estimates of HNLMS Johan de Witt LPD cost.

Table 12 compares the actual development and production costs of HNLMS Rotterdam and
Johan de Witt to the estimates generated by the M5 model tree and hierarchical clustering methods.

The percent error of the M5 model tree estimates (50th percentile) relative to the actual costs
are -2% (under estimated) for HNLMS Rotterdam LPD and -16% (under estimated) for HNLMS
Johan de Witt LPD. The percent error of the hierarchical clustering estimates (50th percentile)
relative to the actual costs are 6% (over estimated) for HNLMS Rotterdam LPD and -4% (under

28

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



An Application of Data Mining Algorithms for Shipbuilding Cost Estimation by Kaluzny et al.

Table 12: Comparison of actual to estimated costs (millions NCC).

M5 model tree estimate Hierarchical clustering estimate Actual

HNLMS Rotterdam 197.7 214.6 202.2
HNLMS Johan de Witt 212.3 243.9 253.7

estimated) for HNLMS Johan de Witt LPD. With respect to the fitted log-normal distributions,
the actual costs lie at the 55th (HNLMS Rotterdam LPD) and 80th (HNLMS Johan de Witt LPD)
percentiles for the M5 model tree results, and at the 39th (HNLMS Rotterdam LPD) and 57th
(HNLMS Johan de Witt LPD) percentiles for the hierarchical clustering results. Table 13 lists the
predicted costs for incremental percentiles of all the fitted log-normal probability density functions.

Table 13: Percentiles of the fitted log-normal density functions for the M5 model tree and hi-
erarchical clustering estimated HNLMS Rotterdam LPD and Johan de Witt LPD costs (millions
NCC).

M5 Model Tree Distribution Hierarchical Clustering Distribution
Percentile Rotterdam Johan de Witt Rotterdam Johan de Witt

0.05 152.2 163.5 143.1 170.4
0.1 161.3 173.2 153.7 184.5
0.15 167.7 180.1 161.3 194.6
0.2 173.0 185.7 167.6 203.0
0.25 177.6 190.7 173.2 210.6
0.3 181.9 195.3 178.4 217.6
0.35 186.0 199.7 183.3 224.3
0.4 189.9 203.9 188.1 230.8
0.45 193.8 208.1 192.9 237.3
0.5 197.7 212.3 197.7 243.9
0.55 201.7 216.6 202.6 250.7
0.6 205.8 221 207.8 257.7
0.65 210.2 225.7 213.2 265.3
0.7 214.9 230.7 219.1 273.4
0.75 220.1 236.3 225.7 282.5
0.8 226.0 242.7 233.2 293.0
0.85 233.1 250.3 242.3 305.7
0.9 242.3 260.2 254.3 322.5
0.95 256.7 275.7 273.1 349.1

In retrospect, it is interesting to recall the earlier discussion on the negative coefficient of a
ship’s sailing range in the M5 model tree’s linear regression models. It was noted that the majority
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of the ships had a range under 770 hours, the impact on the estimated cost of these ships would be
minimal while lowering estimates of ships with outlying sailing ranges (over 1200 hours). HNLMS
Johan de Witt LPD’s sailing range is listed as 833 hours. Substituting the median sailing range
(444 hours) of the SAS-076 data set, effectively neutralizing the attribute, would result in a revised
estimate of 253.9 million NCC, virtually matching the actual figure of 253.7 million. The M5
model tree estimate of HNLMS Rotterdam LPD less sensitive to this factor as its sailing range is
500 hours, already quite close to the median of 444 hours, neutralizing the attribute by substituting
the median sailing range results in a revised estimate of 202.8 million.

CONCLUSION

This paper describes two novel approaches to cost estimation using known data mining algorithms.
As a proof of concept, the approaches were applied in a blind ex post cost estimation exercise of
the Netherlands’ landing platform dock ships.

Both methods incorporate a multitude of cost driving factors that required the compilation of a
multinational data set of dozens of somewhat similar ships. The data mining approaches allow for a
greater variability in the input data set—variability that could be questioned when using traditional
approaches. As with other parametric and analogy approaches, the fidelity of the estimation models
are very dependent the data set, especially if the size of the data set is small. Both are “top down”
approaches applicable in early design phases of the procurement cycle.

The parametric approach combined features of decision trees with linear regression models to
both classify similar ships (based on attributes) and build piece-wise multivariate linear regression
models. The attributes of HNLMS Rotterdam class ships were use to trace down the tree and as
input to the resulting regression models which outputted a prediction.

As an analogy costing approach, hierarchical agglomerative cluster analysis, principal com-
ponent analysis, and non-linear optimization was used to calculate a matrix of distances among
the data set ships. These distances were then used to predict the cost of HNLMS Rotterdam class
ships.

Despite a limited data set, the proof of concept results provide evidence that the methods can
provide accurate estimates. The methods should be considered by the United States Office of
the Assistant Secretary of the Navy (Research, Development and Acquisition) for generating cost
estimates for the new America class large-deck amphibious assault (LHA) ships.

Notes

1The two ships of the Spanish belonging to the Galicia class are the Galicia (commissioned in 1998) and the
Castilla (2001).

2Jane’s Fighting Warships: http://jfs.janes.com
3Federation of American Scientists: http://www.fas.org/
4Navy Matters: http://www.navy-matters.beedall.com
5Forecast International: http://www.forecastinternational.com
6Wikipedia: The Free Encyclopedia: http://www.wikipedia.com
7WEKA project: http://www.cs.waikato.ac.nz/ml/weka/
8The program’s default parameters for the M5 model tree algorithm were used.
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