

Systems Engineering Affordability Tracking (SEAT) System

June 2008

Karen Mourikas AMSE Experimentation - Integrated Defense Systems Denise Nelson SP&A Affordability – Phantom Works

Overview

- Systems Engineering Affordability Tracking (SEAT) System
- Affordability Overview
- Implementation
- The Model
- Reports and Analyses
- Next Steps
- Summary

Systems Engineering Affordability Tracking (SEAT) System

SEAT SCEA .ppt 3 5/12/2008

Systems Engineering Affordability Tracking

- Is a Process & Tool to Help Produce a More Affordable System
- Helps Identify Affordability Goals
- Defines and Measures Progress
 - Identifies "Problem" Areas
- Covers All Phases of a Program
- Tracks Variety of Targets
 - Cost, Schedule, Performance, Risks, Issues and Opportunities
- Provides information for Cost Effectiveness Trades
 - to identify Best-Value Solutions

Objective: To provide Management and Engineers with program status & decision-making capabilities via target tracking & trade results

Benefits of SEAT

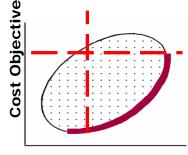
Differs from Cost Tracking & Earned Value Management

- Expanded Duration
 - Can cover entire program from early conception through operations and disposal
 - Has the ability to highlight ripple effects of current situation to future phases of program
- Broad Target Set
 - Cost, Schedule, Performance, Risks, Issues and Opportunities
- Is Easily Integrated with Trade Studies and Risk Management Processes
 - Performance/Design Targets
 - Such as via Cost Effectiveness Modeling Tools
 - Risk, Issue, Opportunity
- Affordability Focus
 - Considers "best value" instead of lowest cost

Affordability Overview

Copyright © 2007 Boeing. All rights reserved.

SEAT SCEA .ppt | 6 5/12/2008

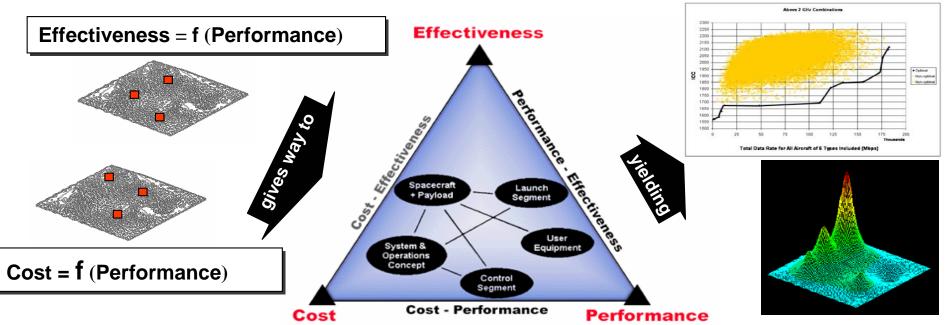

What is Affordability?

- Ongoing assessment of a program to ensure it is "in consonance with the long-range investment ... plans"*
 - Meets funding guidelines
 - Satisfies requirements
 - Sufficient resources exist

A process that helps

- Arrive at cost objectives
- Set performance objectives with the requirements community
- Define and integrate a balanced set of requirements
 - Cost, schedule, performance, and risk

Includes CAIV (Cost as an Independent Variable)

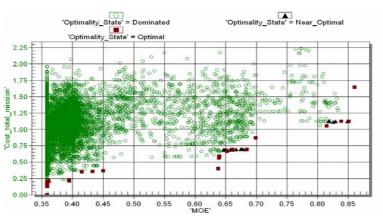


Effectiveness Objective

Affordability Helps Manage your Program

Assists with trade studies

- Thoroughly surveys and assesses trade space
 - Not point designs


- Identifies "best-value" candidates or "Biggest Bang for the Buck"

Quantitative assessment of optimal solutions of effectiveness and cost

100,000 Random Cases

Examples of Affordability Tasks

- Integrate Customer Requirements & Expectations
- Develop Affordability Initiatives and Program Goals
- Generate, allocate and track Life Cycle Cost (LCC) Estimates
- Perform Cost Driver Analysis
- Implement Cost Risk Analysis (Cost, Schedule, Technical)
- Integrate with Program Risk Management
- Conduct Integrated (Cost-Performance) Trades

Affordability Targets

Cost Targets \$\$\$

- Are Derived from Estimates
 - Estimates provide the starting point

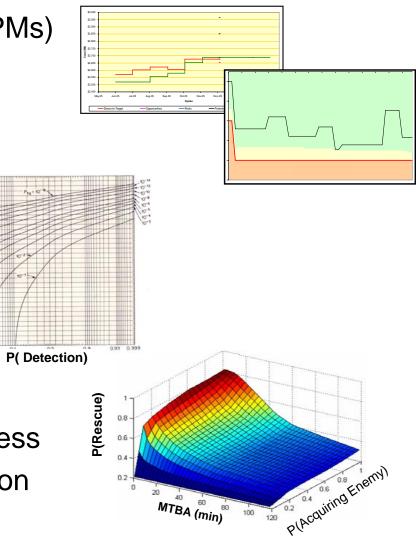
Schedule Targets (Deadlines)

- Percent Ahead/Behind
- Milestones, IOC, FOC, First Launch
- Schedule Variance (SV, SPI)

Risks, Issues, and Opportunities (RIOs) Impacts

- Increased Costs / Savings
- Schedule Delays / Acceleration
- Technical/Design Modifications & Maturity Levels
- Risk Reduction Efforts
- Demonstrations

Signal to Noise Ratio


Performance Targets

Performance/Design Targets

- Technical Performance Measures (TPMs)
 - Weight Allotments
 - KSLOC / Growth
 - Design Life / Mean Mission Duration
 - Power, BOL, EOL
 - Signal Availability
 - Constellation Coverage
- Threshold/Objective

Measures of Effectiveness


- Failure Rate, Reliability
- Revisit Rate, Mean time between access
- Probability of Survival, Rescue, Evasion

SEAT Implementation

SEAT SCEA .ppt | 12 5/12/2008

Steps to Implement SEAT

SEAT – Determine Requirements

What are the goals?

- Define Goals & Set Targets
 - Program Cost of \$100K
 - Schedule acceleration of 6 months
 - Increase "Y" MOE by 5%
 - Implement 2 Risk Reduction Demos

Are goals feasible?

- Format of Data
 - May need to modify goals

• How to measure progress against goals?

- Reports: type, data, frequency

SEAT – Develop Model

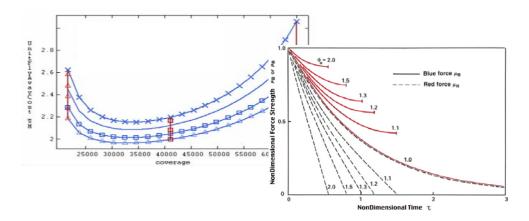
Create Model

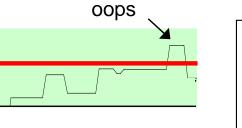
- Toolset
 - Excel, ACEIT, Design Sheet, Homegrown, etc.
- Reports
 - Canned, Customizable, Templates
- Training / documentation
 - Pre-existing, Experts, Learning Curve

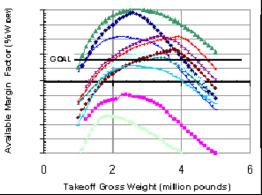
Data Collection

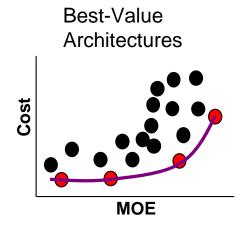
- Data handling & storage
 - Import, key in, cut & paste, automated
 - Excel columns, Data Bases, GUIs
- Updates
 - Override existing data
 - Keep historical trends

Create reports


SEAT – Perform Analysis


Show trends


- Over/under runs
- Comparison to targets
- Identify Problem Areas


Propose Affordability Measures

- Design & Cost-effectiveness trades
- Risk Reduction Demos
- Opportunity Investments

The Model

Copyright © 2007 Boeing. All rights reserved.

SEAT SCEA .ppt | 17 5/12/2008

SEAT Model Structure

Three Main Sections

- Targets Section
 - Costs, Performance, Schedule
- CERs Section
 - Cost Estimating Relationships
- Risk/Opportunity Section
 - Impacts of
 - -Additional Costs / Schedule Slips (R)
 - -Cost/Schedule Savings (O)
 - Currently not implemented

Targets Section

Targets Section contains targets and updated projections of

- Costs (EACs) organized by WBS at Subsystem level
 - Phased and Total
- Design & Performance Parameters by applicable WBS
- Schedule Data

Targets / Projections Assumptions

- Targets Fixed
 - Not expected to change, but may be re-baselined
 - Targets saved as baseline case and act as Point of Departure
- Projections Updated Periodically
 - Throughout life cycle
 - Projections Configuration Controlled by Review Boards
 - Each update stored separately to allow for case by case analysis

Targets Section: Targets

WBS/CES Description	Units Comment	Equation / Throughput		ie	Unique ID	Ap		Phasing Method	Start Date	Finish Date		
* Total Cost TARGETS					*Targ	et2						
Target D VBS/CES Description		Units Comme		tion / ghput	Basel	ine		Com	ments	Uni	que ID	
* WEIGHT TARGETS	WEIGHT TARGETS										*Wts	
Spa S WBS/CES Descri	iption		Units Comment		tion / ghput	Bas	selin	e	Comm	ents	Unique	e ID
*Dates Targets											*	DATES22
Dev Start Date		[01M	AY2007	01MA	Y200)7 *				ST_DT_D
Dev End Date				30S	EP2010	30SE	P201	D*			E	ND_DT_D
Prod Start Date				01C	CT2008	0107		S	ched	مارر		ST_DT_P
Prod End Date				30S	EP2012	30SÞ			CIICU	uic	E	ND_DT_P
O&S Start Date				01C	CT2009	0100	T200)9				ST_DT_O
O&S End Date				30S	EP2017	30SE	P201	7 *			E	ND_DT_O
L Band Suite			lb	100	11	0.0 *					LBAND_WT	
Atomic Frequency Standard (A	FS)	1	lb	15		15.0 *					AFS_WT	
Xlink Communication Suite			lb	100	11	0.00*					XLINK_WT	
PL Antenna System			lb	100	1	0.0 *					ANT_WT	
* Performance TARGETS											*Perf	
Spacevehicle Performance						90.8 *						
Data Processor		r	ns	200		0.0 *			Greater than			
	Transmitter		W	50		50.0 *		greater than				
Receiver			W	200		0.0 *						
SV Reliability			%	.80		0.8 *		Greater than				
MMD)	rs	40		40.0 *			Greater tha	n		

Targets Section: Projections (Total)

	WBS/CES Description	Baseline	Jan2007	Feb2007	Mar2007	Apr2007	Oct2009	Jan2010
17	* Total Cost TARGETS							
18	Targets - Program Level Costs	2741.68 ×	2745.13 ×	2747.33 ×	2750.39 ×	2750.79 ×	2907.11 ×	2867.64 ×
19								
20	Development Target	99.90 ×	103.31 ×	105.55 ×	108.61 ×	109.01 ×	115.54 ×	116.52 ×
21	Space Vehicle	99.90 ×	103.31 ×	105.55 ×	108.61 ×	109.01 ×	115.54 ×	116.52 ×
22	Space Vehicle PMSE	13.98 *	14.60 ×	14.88 ×	15.29 ×	15.42 ×	18.42 ×	18.56 ×
23	Space Vehicle Program Management	6.60 ×	6.93 ×	7.06 ×	7.26 ×	7.39 ×	8.85 ×	8.92 ×
24	Space Vehicle System Engineering	7.38 ×	7.67 ×	7.82 ×	8.03 ×	8.03 ×	9.57 ×	9.64 ×
25	Space Vehicle AIT	5.10 ×	5.36 ×	5.46 ×	5.56 ×	5 56 ×	6.08 ×	6.13 ×
26	Spacecraft Bus	38.00 ×	39.17 ×	40.44	<u> </u>		- 1	43.26 ×
27	Spacecraft Bus SEPM, I&T	3.10 ×	3.20 ×	<u> </u>	eriodi		dates	3.63 ×
28	Structures and Mechanisms	6.40 ×	6.59 ×	-				7.23 *
29	Thermal Control	2.70 ×	2.78 ×			olumi	ns	3.00 ×
30	Electric Power System (EPS)	5.70 ×	5.87 ×	6.16		orann	6.33 ×	6.38 ×
31	Attitude Determination & Control (ADC)	2.30 ×	2.38 ×	2.40 ×	2.46 ×	2.46 ×	2.54 ×	2.56 ×
32	Propulsion Sub System	1.30 ×	1.35 ×	1.36 ×	1.39 ×	1.39 ×	1.46 ×	1.47 ×
33	Tracking, Telemetry & Command (TT&C)	6.50 ×	6.70 ×	6.84 ×	7.10 ×	7.10 ×	7.23 ×	7.29 ×
34	Bus SW	10.00 ×	10.30 ×	10.50 ×	10.90 ×	10.90 ×	11.60 ×	11.70 ×
35	Payloads	26.10 ×	26.88 ×	27.51 ×	28.18 ×	28.34 ×	29.50 ×	29.75 ×
36	PL SEPM, I&T	4.20 ×	4.32 ×	4.41 ×	4.62 ×	4.62 ×	4.91 ×	4.95 ×
37	Data Processor	12.40 ×	12.77 ×	13.02 ×	13.27 ×	13.27 ×	13.64 ×	13.76 ×
38	L Band Suite	5.40 ×	5.56 ×	5.78 ×	5.89 ×	6.05 ×	6.32 ×	6.37 ×
39	Atomic Frequency Standard (AFS)	0.60 ×	0.62 ×	0.63 ×	0.64 ×	0.64 ×	0.66 ×	0.67 ×
40	Xlink Communication Suite	1.50 ×	1.55 ×	1.59 ×	1.62 ×	1.62 ×	1.75 ×	1.76 ×
41	PL Antenna System	2.00 ×	2.06 ×	2.08 ×	2.14 ×	2.14 ×	2.22 ×	2.24 ×
42	ILS	11.30 ×	11.63 ×	11.87 ×	12.22 ×	12.22 ×	12.55 ×	12.65 ×
43	Space Vehicle Storage	1.20 ×	1.23 ×	1.26 ×	1.30 ×	1.30 ×	1.33 ×	1.34 ×
44	Training	6.20 ×	6.38 ×	6.51 ×	6.70 ×	6.70 ×	6.88 ×	6.94 ×
45	Support Equipment	3.90 ×	4.02 ×	4.10 ×	4.22 ×	4.22 ×	4.34 ×	4.37 ×
46	LV Integration	2.10 ×	2.17 ×	2.19 ×	2.25 ×	2.25 ×	2.34 ×	2.36 ×
47	Launch Ops	3.40 ×	3.50 ×	3.53 ×	3.64 ×	3.64 ×	3.74 ×	3.81 ×

CERs Section

CERs Section contains

- Performance (weight/power) based CERs
- Cost on cost equations
- To show relative impacts of design changes on cost
 - Expected cost delta with weight increase on Weight-based CERs
 - Expected cost of refresh decrease with life expectancy increase
- To promote analytical thinking and CER development
 - Do the above impacts reflect the updated projections?

CERs Assumptions

- CERs in model accurately estimate the targets

CERs Section

				Targets	
WBS/CES Description	Units Comment	Equation / Throughput	Baseline P	Bacolino	e Finish Da
CERs					
ERs			2741.61 *	2741.68 *	
Development Target			99.83 *	99.90 *	
Space Vehicle			99.83 *	99.90 *	
Space Vehicle PMSE			13.90 *	13.90 *	
Space Vehicle Program Management	\$K	0.174*SV_BUS_D_CER	6.59 *	6.60 *	D END_D
Space Vehicle System Engineering	\$K	0.193*SV_BUS_D_CER	7.31 *	7.30 *	D END_D
Space Vehicle AIT	\$K	0.135*SV_BUS_D_CER	5.11 *	5.10 *	D END_D
Spacecraft Bus			37.88 *	38.00 *	
Spacecraft Bus SEPM, I&T	\$K	0.125*(STR_D_CER + THRM_D_CER + EPS_D_CER + ADC_D_CER + PROP_D_CER + TTC_D_CER)	3.10 *	3.10 *	D END_D
Structures and Mechanisp		2.5 * STR_WT ^ 0.15	6.35 *	6.40 *	D END_D
Thermal Control	CERS	1.6 * THRM_WT ^ 0.1	2.72 *	2.70 *	D END_D
Electric Power System		0.042 * EPS_WT ^ 0.71	5.67 *	5.70 *	D END_D
Attitude Determination & Control		0.85 * ADC_WT ^ 0.2	2.32 *	2.30 *	D END_D
Propulsion Sub System	\$K	0.048 * PROP_WT ^ 0.6	1.32 *	1.30 *	D END_D
Tracking, Telemetry & Command (TT&	\$K	0.00054 * TTC_VVT ^ 2.4	6.46 *	6.50 *	D END_D
Bus SW	\$K	0.401*(STR_D_CER + THRM_D_CER + EPS_D_CER + ADC_D_CER + PROP_D_CER + TTC_D_CER)	9.95 *	10.00 *	D END_D
Payloads			26.11 *	26.10 *	
PL SEPM, I&T	\$K	0.19*(DP_D_CER + LBAND_D_CER +	4.17 *	4.20 *	D END_D
Data Processor	\$K	2.13 * DP_WT ^ 0.45	12.39 *	12.40 *	D END_D
L Band Suite	\$K	1.88 * LBAND_WT ^ 0.23	5.42 *	5.40 *	D END_D
Atomic Frequency Standard (AFS)	\$K	.28 * AFS_WT ^ 0.296	0.62 *	0.60 *	D END_D
Xlink Communication Suite	\$K	.73 * XLINK_WT ^ 0.157	1.50 *	1.50 *	D END_D
PL Antenna System		0.022 * ANT_WT ^ 0.98	2.01 *	2.00 *	D END_D
ILS		_	11.32 *	11.30 *	
Space Vehicle Storage	\$K	0.0033*PL WT	1.20 *	1.20 *	D END_D
Training	\$K	0.017*PL WT	6.21 *		D END_D
Support Equipment	\$K	0.0107*PL V/T	3.91 *		D END D
LV Integration	\$K	0.0058*PL V/T	2.12 *	_	D END D
Launch Ops	\$K	0.0093*PL V/T	3.39 *	-	D END D

Copyright © 2007 Boeing. All rights reserved.

Data Analysis

Periodic Updates Stored as Sensitivity Cases

Sensitivity Cases Can Be Compared to Baseline Targets

- EACs Compared to Cost Targets
- Weights/Power Updates Compared to Baseline Parameters
- Schedule Changes Compared to Baseline Schedule

Sensitivity Cases Compared to Parametric Costs (CERs)

- EACs Compared to Updated CER Costs based on Updated Parameters

Risk/Opportunity Impacts Compared to Baseline/EACs

- Acts as a Check-and-Balance
 - Risk Impacts / Cost Savings Reflected in EACs?

SEAT Reports and Analyses

SEAT SCEA .ppt | 25 5/12/2008

Sample Cost Targets – Phased

- Development Phase Shown
- By WBS At Subsystem Level
- Phased over 4 years
 - According to program schedule
- Then Year \$
- Color Coding:
 - Yellow child
 - White parent

ost Element	Total	FY2007	FY2008	FY2009	FY2010
Development Target	99.9	6.2	40.9	38.5	14.3
Space Vehicle	99.9	6.2	40.9	38.5	14.:
Space Vehicle PMSE	13.9	0.9	5.7	5.4	2.0
Space Vehicle Program Management	6.6	0.4	2.7	2.5	0.
Space Vehicle System Engineering	7.3	0.5	3.0	2.8	
Space Vehicle AIT	5.1	0.3	2.1	2.0	
Spacecraft Bus	38	2.4	15.6	14.6	5.
Spacecraft Bus SEPM, I&T	3.1	0.2	1.3	1.2	0.
Structures and Mechanisms	6.4	0.4	2.6	2.5	0.
Thermal Control	2.7	0.2	1.1	1.0	0.
Electric Power System (EPS)	5.7	0.4	2.3	2.2	0.
Attitude Determination & Control (ADC)	2.3	0.1	0.9	0.9	
Propulsion Sub System	1.3	0.1	0.5	0.5	0.
Tracking, Telemetry & Command (TT&C)	6.5	0.4	2.7	2.5	
Bus SW	10	0.6		3.9	
Payloads	26.1	1.6	10.7	10.0	3.
PL SEPM, I&T	4.2	0.3	1.7	1.6	
Data Processor	12.4	0.8	5.1	4.8	
L Band Suite	5.4	0.3	2.2	2.1	0.
Atomic Frequency Standard (AFS)	0.6	0.0	0.2	0.2	0.
Xlink Communication Suite	1.5	0.1	0.6	0.6	
PL Antenna System	2	0.1	0.8	0.8	
ILS	11.3	0.7	4.6	4.4	1.
Space Vehicle Storage	1.2	0.1	0.5	0.5	0.
Training	6.2	0.4	2.5	2.4	0.
Support Equipment	3.9	0.2	1.6	1.5	
LV Integration	2.1	0.1	0.9	0.8	
Launch Ops	3.4	0.2	1.4	1.3	0.

Sample Development Cost Projection

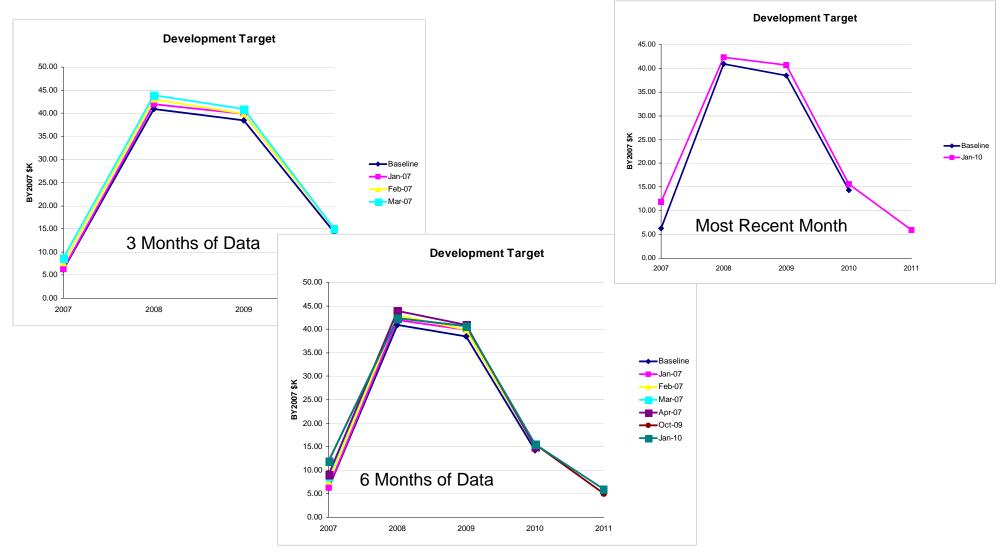
Dated March 2007

- Month End Data
- 3 months after ATP

EAC Data

- Then Yr \$
- Can be compared to
 - Phased Cost Targets
 - Unphased Totals

\$K BY 2007	Mar 2007 Projection							
Cost Element	FY 2007	FY 2008	FY 2009	FY 2010	Total			
Program Level Projection								
Development Projection	8.64	43.96	40.96	14.99	108.54			
Space Vehicle								
Space Vehicle PMSE								
Space Vehicle Program Management	0.66		2.71	0.99				
Space Vehicle System Engineering	0.73	-	2.99					
Space Vehicle AIT	0.46	2.24	2.09	0.77	5.56			
Spacecraft Bus								
Spacecraft Bus SEPM, I&T	0.31	1.36						
Structures and Mechanisms	0.58		-					
Thermal Control	0.24							
Electric Power System (EPS)	0.57		2.34					
Attitude Determination & Control (ADC)	0.16		0.94					
Propulsion Sub System	0.09							
Tracking, Telemetry & Command (TT&C								
Bus SW	0.90	4.40	4.10	1.50	10.90			
Payloads								
PL SEPM, I&T	0.42		1.72					
Data Processor	0.87							
L Band Suite	0.49			0.81	5.89			
Atomic Frequency Standard (AFS)	0.04							
Xlink Communication Suite	0.11	0.66	0.62		-			
PL Antenna System	0.14	0.88	0.82	0.30	2.14			
ILS								
Space Vehicle Storage	0.10							
Training	0.50							
Support Equipment	0.31	1.72						
LV Integration	0.15							
Launch Ops	0.24	1.50	1.39	0.51	3.64			

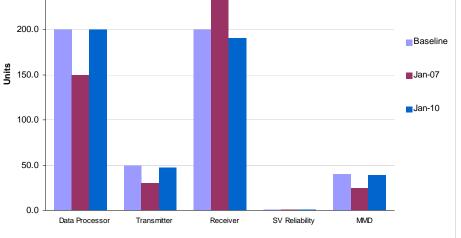

Sample Delta Report Over Time

- Difference between Unphased Targets and Updated Monthly Projections
- Shows Progression of Delta Costs
 - From Jan 2007 through Oct 2009
- Color Coding Highlights Problem Areas

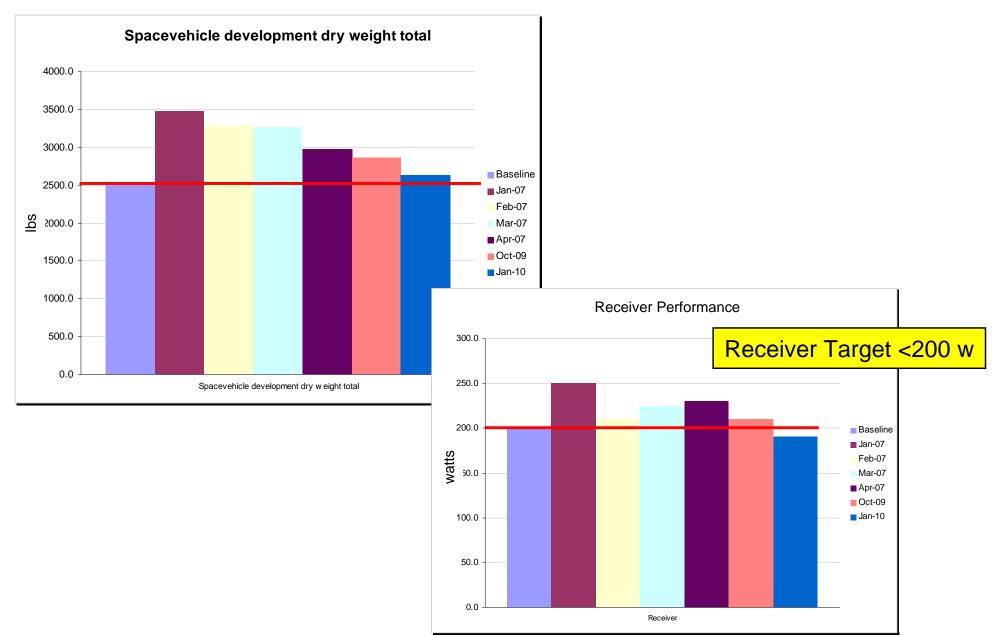
Costs in BY2007 \$K							
WBS	Target	Jan-2007	Feb-2007	Mar-2007	Apr-2007		Oct-2009
Program Level	2741.68	2745.13	2747.33	2750.39	2750.79		2907.11
Development	99.90	103.31	105.55	108.61	109.01		115.54
Space Vehicle	99.90	103.31	105.55	108.61	109.01		115.54
Space Vehicle PMSE	13.90	14.60	14.88	15.29	15.42		18.42
Space Vehicle Program Management	6.60	6.93	7.06	7.26	7.39		8.85
Space Vehicle System Engineering	7.30	7.67	7.82	8.03	8.03		9.57
Space Vehicle AIT	5.10	5.36	5.46	5.56	5.56		6.08
Spacecraft Bus	38.00	39.17	40.11	41.47	41.58		42.91
Spacecraft Bus SEPM, I&T	3.10	3.20	3.29	3.41	3.41		3.60
Structures and Mechanisms	6.40	6.59	6.72	6.98	6.98		7.17
Thermal Control	2.70	2.78	2.84	2.95	2.95		2.98
Electric Power System (EPS)	5.70	5.87	6.16	6.28	6.39		6.33
Attitude Determination & Control (ADC)	2.30	2.38	2.40	2.46	2.46	<u> </u>	2.54
Propulsion Sub System	1.30	1.35	1.36	1.39	1.39		1.46
Tracking, Telemetry & Command (TT&C)	6.50	6.70	6.84	7.10	7.10		7.23
Bus SW	10.00	10.30	10.50	10.90	10.90		11.60
Payloads	26.10	26.88	27.51	28.18	28.34		29.50
PL SEPM, I&T	4.20	4.32	4.41	4.62	4.62		4.91
Data Processor	12.40	12.77	13.02	13.27	13.27		13.64
L Band Suite	5.40	5.56	5.78	5.89	6.05		6.32
Atomic Frequency Standard (AFS)	0.60	0.62	0.63	0.64	0.64		0.66
Xlink Communication Suite	1.50	1.55	1.59	1.62	1.62		1.75
PL Antenna System	2.00	2.06	2.08	2.14	2.14		2.22

Sample Phased Development Cost Reports

Shows Annual Projections Comparing Target to Monthly Updates


All data is notional and intended for explanation purposes only

Sample Performance Comparisons

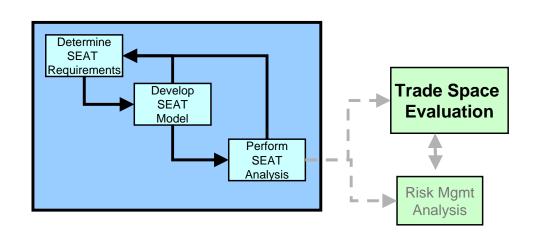

WBS	Baseline	Jan-07	Feb-07	Mar-07	Apr-07	Oct-09	Jan-10
*WEIGHT TARGETS							
Spacevehicle development dry weight total	2515.0	3479.0	3279.0	3263.0	2981.0	2869.0	2628.0
Spacecraft Bus	2150.0	2975.0	2790.0	2765.0	2499.0	2425.0	2212.0
Structures and Mechanisms	500.0	600.0	585.0	580.0	540.0	530.0	515.0
Thermal Control	200.0	300.0	330.0	320.0	299.0	290.0	250.0
Electric Power System (EPS)	1000.0	1600.0	1400.0	1400.0	1200.0	1150.0	1000.0
Attitude Determination & Control (ADC)	150.0	150.0	150.0	150.0	150.0	150.0	150.0
Propulsion Sub System	250.0	245.0	245.0	240.0	240.0	240.0	242.0
Tracking, Telemetry & Command (TT&C)	50.0	80.0	80.0	75.0	70.0	65.0	55.0
Payloads	365.0	504.0	489.0	498.0	482.0	444.0	416.0
Data Processor	50.0			i			
L Band Suite	100.0				Spaceveh	icle Performa	nce
Atomic Frequency Standard (AFS)	15.0				-		
Xlink Communication Suite	100.0	300.0	1				
PL Antenna System	100.0						
*Performance TARGETS							
Spacevehicle Performance	490.8	250.0	-				
Data Processor	200.0						
Transmitter	50.0	200.0					
Receiver	200.0						Baselin
SV Reliability	0.8						
MMD	40.0	1 50.0	+				Jan-07

	Interpretatio	on of Ta	rgets		
WBS/	ES Description Units		Comments		Value
* Perfo	ormance TARGETS				
Space	Spacevehicle Performance				
Dat	a Processor	ms	Greater than		200
Tra	nsmitter	W	greater than		50
Rec	eiver	w	Less than		200
SV	Reliability	%	Greater than		0.8
MM	D	yrs	Greater	40	

Interventation of Terreta

Sample Performance/Design Targets

All data is notional and intended for explanation purposes only


Cost Effectiveness Trade Studies

Identify best-value solutions

- Trade Studies currently separate process performed with trades tools
 - Data from SEAT manually input into trades tools

Plans to automate input from SEAT to Trades tools

- Create Interface between SEAT Model and Trade Study Tools (i.e. Design Sheet)
 - Detailed Exploration of Trade Space
 - Rapid Analysis
 - Best-Value Solutions

Next Steps

• Automate linkage between SEAT and Trade Study Tools

- For further analytical studies

Implement Risk/Opportunities in SEAT

- Update Model
- Perform RIO (Risks, Issues, Opportunities) Analysis
- Evaluate Risk Reduction Candidates
- Integrate Cost Risk Analysis with Risk Management

Summary

Copyright © 2007 Boeing. All rights reserved.

SEAT SCEA .ppt | 34 5/12/2008

Summary

Systems Engineering Affordability Tracking (SEAT)

- Is a Process/Tool to Help Produce a More Affordable System

Affordability is an on-going process which helps

- determine cost and performance requirements
- thoroughly explore the Trade Space
- identify "best-value" solutions
- play an integral role in SEAT

Implementation and Analysis

- Steps to implement the SEAT system
- Types of analyses and reports

Future Plans

- Link SEAT to Trade Study Tools
- Implement RIOs in SEAT model

