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Introduction

• With customers now routinely desiring a range of potential costs, 
rather than a point estimate, there has been an increased focus on risk 
and uncertainty in cost estimates

• In particular, more and more customers are making budgeting 
decisions based on probabilistic cost estimates, also known as S-
Curves

• One of the hurdles in incorporating risk and uncertainty into estimates 
is that risk analysis requires a slightly different skill set than cost 
estimating
– Rather than statistics, there is a greater focus on probability

– “Risk analysis puts the prob in prob/stat”
– Exposure to modeling and simulation (M&S) – a computer science discipline –

is also desirable

• Although full-scale risk analysis may not be necessary or feasible for 
every organization, there are some relatively simple steps that can be 
used to produce the uncertainty around traditional cost estimating 
methods 
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Introduction (cont.)

• For Ordinary-Least-Squares-based CER estimates, the 
uncertainty distribution around the point estimate can be 
determined using little more than the ANOVA statistics
– These ANOVA statistics should already exist as part of the regression 

analysis performed to develop the CER

• This paper will provide an easy-to-follow guide for 
producing these uncertainty distributions for various types 
of CERs including:
– Bivariate ordinary least squares (OLS)

– Linear and Linear Transformed
– Multivariate OLS

• It will then briefly touch on the modeling techniques 
needed to implement them into a Monte Carlo simulation
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Cost Estimating Relationships (CERs)

• A mathematical relationship that defines cost as a function of one or more 
parameters such as performance, operating characteristics, physical characteristics, 
etc.1

• A CER suggests that there is one or multiple independent variables (cost drivers) that 
can be utilized to generate a best estimate for the cost of a program or system

• Types of CERs:
– Traditional 

• Costs estimated as functions of cost driver(s)
– Rates/Factors/Ratios

• When these are derived as CERs, the equation has been forced through the 
origin (zero y-intercept)

• Great care needs to be taken to:
– Verify that the data is the most recent available data
– Verify that the data is consistent and robust
– Verify that the data has been appropriately normalized

1 NASA Cost Estimating Handbook 2004
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Confidence and Prediction Intervals

• A Confidence Interval suggests that the true mean value for a parameter is contained 
within a calculated range
– It is a measure of the uncertainty in the regression line

• The confidence level is determined by choosing an alpha (α) between 0 and 1.  By 
varying the α, the user can vary the level of confidence that is required for the 
interval
– Example: An α of 0.10 ascertains a confidence level of 90%
– One is 90% certain that the true value of the mean lies within the interval

• The prediction interval differs from the confidence interval in that it is a measure of 
the uncertainty around the estimate developed using a CER rather than the mean
– The prediction interval represents the bands around the final cost a system at a 

fitted X rather than bands around the mean of the distribution of the final cost of 
a system

• Note that the width of a prediction interval will always be greater than the width of a 
confidence interval since the prediction interval includes both the error in the 
regression coefficients and the error in the prediction
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A Very-Brief Introduction to S-Curves

• S-Curves are the cumulative distribution function for the cost of a system
– Also known as probabilistic cost estimates

• S-Curves are generally driven by two main factors
– Cost Estimating Variance

– Labor estimates
– Data-Driven
– SME-Driven

– Escalation/Inflation Rates
– Material Costs
– Productivity (e.g., hrs/SLOC, hrs/ft2)

– Schedule/Technical Risks and Opportunities
– Discrete Events
– Continuous Events

• Two key measures are derived from these S-Curves
– Confidence level of the estimate

– What is the probability that the program will finish at or under budget?
– Uncertainty in the estimate

– What is the range of possibilities for the final cost of this program?
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Sample Program S-Curve

Program "X"
Cumulative Distribution

Program Budget,  $363,830 
, 80.0%

Likely Cost,  $334,656 , 
50.0%

Coefficient of Variation, 
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There is an 80% probability 
that this program will be 

executed at or under budget

NASA uses a similar methodology and 
requires all programs to be funded at 
the 70th percentile (Constellation 
programs at the 65th)
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Why S-Curves?

• Studies have shown1,2 that 75-85% of DoD programs experience cost 
overruns
– This suggests that as an industry, our estimates are not at the 50th percentile, but 

rather at about the 20th percentile

• Recognizing this, agencies are taking the initiative to budget at higher 
percentiles of cost
– This is true in particular for high-risk space and software development programs

• In order to determine the appropriate funding level for programs, it is 
imperative that the risk and uncertainty around estimates be assessed
– Thus S-Curves must be developed

1 Schaffer 2004 study, referenced from Cost Estimating Requirements to Support New Congressional Reporting Requirements. Coonce et. 
Al. NASA PM Challenge, February 2008

2 NAVAIR Cost Growth Study, R. L. Coleman, M.E. Dameron, C.L. Pullen, J.R. Summerville, D.M. Snead, 34th DoDCAS and ISPA/SCEA 
2001
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Basic Theory - OLS

• OLS methods assume that error around the (true) regression line is distributed normally 
and therefore symmetrically
– This implies that the Prediction Interval about the (fitted) line is a t (also symmetric)

• Prediction intervals give a range for the estimate for which there is a set probability of 
the final cost being outside
– Because error is symmetric, there is an equal chance of the final costs being outside/above the 

range as there is the final costs being outside/below the range 

• By finding all possible prediction interval lines generated using a confidence level 
(0<α<1), we can generate the distribution implied by the prediction intervals
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Cost vs. Missile Weight y = 0.6307x + 2.0711
R2 = 0.5595
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• The below graphs demonstrate further how prediction intervals translate into 
uncertainty distributions

• For any prediction interval defined by an α
– The upper prediction bound is at the (1-α/2)-th percentile on the cumulative distribution
– The lower prediction bound is at the (α/2)-th percentile on the cumulative distribution
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Prediction Interval Equation

*This is the data set from SCEA CostProf Module 8 - Regression Analysis.

∑ −
+

+
×± 22

2

df α/2, XnX
)X-X(

n
1nSEEtŶ
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Prediction Interval Uncertainty Distribution
Needed Statistics

• This example shows how to produce prediction interval distributions around a 
bivariate OLS CER

• Highlighted boxes will be utilized to calculate the prediction interval
– Step 1: Run an ANOVA on the data set
– Step 2: Compute average of X and well as the ΣX2

*This is the data set from SCEA CostProf Module 8 - Regression Analysis.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.7480121 Average of x 9.4                
R Square 0.559522 Sum of x^s 529.0            
Adjusted R Square 0.4126961
Standard Error 3.0171528
Observations 5

ANOVA
df SS MS F Significance F

Regression 1 34.69036697 34.69036697 3.810783573 0.145970637
Residual 3 27.30963303 9.103211009
Total 4 62

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 2.0711009 3.323394495 0.623188406 0.577325343 -8.505423614 12.64763 -8.5054236 12.6476254
X Variable 1 0.6307339 0.323101566 1.952122837 0.145970637 -0.397519438 1.658987 -0.3975194 1.65898733

Not Computed as Part of Excel ANOVA
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Bivariate Linear Regression

• It is important to note the relationship between the α and the random number in 
the prediction interval formula

• The random number generated will vary uniformly between 0 and 1
– If the random number is < 0.5 then the corresponding α is the random number * 2
– If the random number is ≥ 0.5 then the corresponding α is the (1 -random number) * 2

• Using the α value, the percentile of cost for that run of the simulation is determined
– If the random number is < 0.5 then the corresponding percentile is α/2
– If the random number is ≥ 0.5 then the corresponding percentile is 1 - α/2

• For example:
– A random number of .8 will be equivalent to the 80th percentile of cost
– This is equivalent to the upper bound of the 60% confidence interval

*This is the data set from SCEA CostProf Module 8 - Regression Analysis.

 =(1-0.8043)*2

Random Number 0.8043
Prediction Interval 61%

α 39%
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Bivariate Linear Regression

• To use the prediction interval for risk analysis, the prediction interval equation along 
with the data from the ANOVA, the manually calculated data, and a random number 
draw are used to choose a point on the CDF which is the value of the final cost for 
that run of the Monte Carlo simulation

∑ −
+

+
×± 22

2

df α/2, XnX
)X-X(

n
1nSEEtŶ

*This is the data set from SCEA CostProf Module 8 - Regression Analysis.

Random Number 0.8043
Prediction Interval 61%
alpha 39%
X 15
Value of Regression Line 11.53
Value of Final Cost for THIS Run 15.30
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Bivariate Linear Regression

*This is the data set from SCEA CostProf Module 8 - Regression Analysis.

• In the simulation, the α value is a function of the random number drawn for that run.  
Assuming the traditional Inverse CDF technique is being used to generate instances 
from a distribution given a random number, the random number generated will vary 
uniformly between 0 and 1

Cost vs. Missile Weight
(80% Prediction Interval)

y = 0.6307x + 2.0711
R2 = 0.5595
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Bivariate Non-linear Regression

• This example shows how to produce prediction interval distributions using OLS 
around a non-linear CER
– Similar to the linear CER example, we assume that missile weight is a driver of cost but 

now, the relationship is non-linear
– Exponential CER:  y = aebx

– We evaluate cost given a missile weight of 15 units (x=15)

• Non-linear CERs, first, must be converted into a linear relationship before 
performing OLS regression
– Commonly referred to as transforming to log or semi-log space

• Once the data has been transformed, the remaining steps are no different than 
producing prediction interval distributions from a bivariate linear CER
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Bivariate Non-linear Regression
Linear Transformation

• Transform the CER into log space by taking the natural log (ln) of both sides 
such that  ln y = ln a + b x
– Scatter plot reveals linear relationship in semi-log space

Weight Ln (Cost)
4 1.61$     
6 1.79$     
9 2.30$     

12 3.43$     
16 4.13$     
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Weight Cost
4 5$         
6 6$         
9 10$        

12 31$        
16 62$        
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Bivariate Non-linear Regression

• Run ANOVA on the data set in semi-log space                 
– Along with the ANOVA output, compute the average missile weight (   ) and sum the 

squared missile weights (∑X2).  
– The highlighted cells are needed to calculate the prediction intervals

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.984578517 Average of x 9.4                
R Square 0.969394856 Sum of x^s 533.0            
Adjusted R Square 0.959193141
Standard Error 0.219820479
Observations 5

ANOVA
df SS MS F Significance F

Regression 1 4.591597758 4.591597758 95.02273701 0.002293591
Residual 3 0.144963129 0.048321043
Total 4 4.736560886

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.54380709 0.237656301 2.288208174 0.106131002 -0.212521326 1.300135507 -0.212521326 1.300135507
x 0.224380183 0.023018167 9.747960659 0.002293591 0.151126104 0.297634263 0.151126104 0.297634263

Not Computed as Part of Excel ANOVA

X
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Bivariate Non-linear Regression
Prediction Interval in Semi-log Space

• Apply the same methodology and prediction interval equation to the data while 
still in semi-log space

Cost vs. Missile Weight
(80% Prediction Interval - Semi Log space)

y = 0.2244x + 0.5438
R2 = 0.9694
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Prediction intervals and 
regression in semi-log 
space resemble those in 
the bivariate linear 
example
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Bivariate Non-linear Regression

• Final step is to transform back to unit space
– Since this is an exponential CER, take the exponential of all cost (y) values in semi-log 

space to get back to unit space

Cost vs. Missile Weight
(80% Prediction Interval - Unit space)

y = 1.7226e0.2244x

R2 = 0.9694
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Bivariate Non-linear Regression

• Again, the same methodology used in the bivariate linear regression that 
produced the inverse CDF around the point estimate is applied

For a missile weighing 
15 units, the mean of 
the regression (50th 
percentile) is $49.87.  
This snapshot of the 
random number 
generated prediction 
interval estimates cost 
at $57.04 or the 67th 
percentile

Semi-log Cost Unit Cost
Random Number 0.671563599
Prediction Interval 34%
alpha 66%
X 15
Value of Regression Line 3.91$              49.87$            
Value of Final Cost for THIS Run 4.04$             57.04$            
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Multivariate Linear Regression

• Although it uses matrices, creating prediction intervals using multivariate 
linear regression is no more difficult than doing so for bivariate linear 
regressions

• The equation for the (1-α) prediction interval around any estimate is:

ZZZ 1-T

,
2

^
X)(X1 T

nm

T t +±
−
σβ α

• Where:
– Z is the matrix containing the values of the independent variable for this prediction (the 

final entry being 1, signifying the intercept)
– β is the matrix containing the best-fit coefficients (with the final entry being the 

intercept)
– It follows directly that ZT β represents the estimate

– X is the matrix containing the independent variable data points used to build the 
regression
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Simulating Prediction Distributions

• Once the prediction interval has been generated, the next step is to add it into 
a risk model

• This allows the distribution around the CER-based estimate to be simulated 
along with other risk, opportunity and uncertainty distributions

• The general method for achieving this is through the use of a Monte Carlo 
Simulation
– For situations where the entire estimate is produced using one CER, a Monte Carlo 

simulation is not needed
• The S-Curve can be generated simply by using the formula

– Situations where Monte Carlo analysis is requred are:
• When there are multiple CERs used to develop an estimate
• When uncertainty around the cost driver(s) is being used 

• The following slide will quickly outline the most common method for 
generating draws from a risk/uncertainty distribution
– This is known as the Inverse CDF Technique

• A method will then be shown for using the Inverse CDF Technique to simulate 
prediction distributions
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The Inverse CDF Technique

• The basis of most Monte Carlo simulations is the Inverse CDF Technique

• The Inverse CDF Technique is the standard method of generating results 
from any given cumulative density function
– It uses a Uniform (0,1) Random Variable

– Every simulation must contain some sort of Uniform (0,1) random number 
generator

– In Excel this function is “=RAND()”
– There is an entire area of computer science dedicated to the production of 

“pseudo random numbers” with the goal of producing “the most apparently 
random” output

• The CDF of a distribution maps a value (x) to the probability that the 
random variables takes on a value less an or equal to x
– Therefore, the inverse of the CDF maps a probability (between 0 and 1) to a value 

from the distribution
– By generating a random uniform(0,1) random number, we can produce a value 

from any distribution with an invertible CDF
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Standard Normal Example

• In Excel, random uniform(0,1) 
draws can be generated using the 
=RAND() function

• Using the inverse CDF technique, 
this random number draw can 
then be mapped to a value from 
any invertible distribution

• The example to the right uses the 
standard normal distribution
– The random number draw .932 

maps to the value 1.49 of the 
distribution
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Simulating Prediction Intervals

• Unfortunately, simulating prediction intervals is not quite as simple as 
simulating the standard normal distribution

• The steps below will allow simulation of prediction intervals
– Gather all the information needed for the prediction interval equation onto one 

worksheet
– Generate a uniform(0,1) random number draw using the RAND() function

– This random number will update each time a cell is change in the model
– Using the Lurie-Goldberg Method prediction intervals can have Pearson’s 

correlation applied between them by correlating the random number draws1
– Enter the Inverse CDF equation and link it up to the random number draw and the 

information for the prediction interval
– Write a macro that loops 5000 times and for each loop stores the prediction interval 

value
– Sort the results to generate a cumulative distribution function
– Gather the desired information from the CDF of the prediction interval

– Means, Standard Deviations, Percentiles

• The prediction interval distribution can be derived with any other 
risk/uncertainty distributions to develop a risk model
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Other Issues

• There are two main issues with this method that the user should be aware 
of before beginning implementation 
– The first is that utilizing CERs that are not statistically based is not advisable
– This method only applies for OLS regression techniques, where the residuals are 

distributed normally
– Results may yield negative costs if the prediction interval is wide

– This happens commonly when the distribution around a rate or factor is being 
used

– A solution to this is to use cost on cost (rather than a fixed percentage) CERs
– If the prediction interval of cost on cost data is wide enough that there are 

significantly common instances negative costs, the usefulness of the CER is 
questionable

– If this happens uncommonly, then it is harmless
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Conclusions

• One of the benefits of a methodology like this is that it takes into account 
two of the common issues estimators have with CERs
– The quality of the CER:

• The larger the CV of the regression, the larger the CV of the prediction interval 
cumulative distribution

– “Estimating outside the range of the data”:
• Because the prediction interval for an estimate widens as the cost driver moves 

away from the center of mass of the regression, the prediction interval 
cumulative distribution becomes wider as estimates are made outside the range 
of the data

• Generating uncertainty distributions from CERs is one simple way of 
accounting for risk in cost estimates

• The S-Curves developed using this and similar methodologies are critical for 
decision makers as they determine funding levels for programs
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Conclusions

• This is remedy for the oft-repeated injunction to “never use a CER outside 
the range of the data”
– This may be a perfectly reasonable proscription outside cost and risk 

analysis, but in cost and cost risk analysis, the analyst must routinely 
operate outside the range of the data 

– It is the nature of development that the object being developed is routinely 
bigger, faster, stealthier (or commonly, smaller) than heretofore

• To forswear CERs outside of their data range is to abandon them 
almost everywhere 

• The prediction interval, of course, affords no immunity against incorrect 
CERs or against factors that may apply in realms outside the data that is 
unknown to the analyst

• The prediction interval, however, gives the analyst the ability to use a CER 
wherever it is needed and to correctly characterize the resultant uncertainty 
so long as the analyst is aware of the other possibilities just mentioned
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