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Introduction:  

When considering learning curve in a production cost estimate, several factors influence the projected 
impact of learning. The learning curve slope, theoretical first unit cost, and position on the learning curve are 
typically discussed and researched; the choice of learning curve theory, however, tends to be studied less 
closely. To determine the theory to use, practitioners look to the statistics of regression to judge significance and 
“best fit”; problematically, these statistics are inherently biased towards Cumulative Average, as the Cumulative 
Average metric is smoothed by the very fact that it is cumulative.  This paper will use generated data with and 
without error terms in an attempt to show the degree of this bias.  

In addition, it is generally true that most practitioners in some commodities lean more toward one 
theory than the other. This is a puzzling phenomenon; industry preferences seem to indicate that smaller objects 
(like electronics) follow a cumulative average curve while larger objects (like ships) follow a unit curve.  To 
decide whether one model or the other is best, either globally or locally, is beyond the scope of this paper; in 
lieu of that project, the authors hope that by shedding light on this problem they can enable all practitioners to 
decide whether their preference is rational and, in doing so, perhaps bring some rigor to this problem.  
 
Background:  

Two learning curve theories exist: Cumulative Average (CUMAV) and Unit Theory. Cumulative 
Average Theory states that the cumulative average cost of production decreases at a constant rate when 
production volume doubles. CUMAV curves are often called Wright Curves, after T. P. Wright, who first 
published this theory in 1936 as part of the article “Factors Affecting the Cost of Airplanes” (Journal of 
Aeronautical Sciences).1 On the other hand, Unit Theory states that the unit cost of production decreases at a 
constant rate when production volume doubles. Unit theory was developed as part of a Government study 
performed by the Stanford Research Institute; the purpose of the study was to assess the validity of the 
improvement curve concept. Unit curves are also referred to as Crawford Curves.2 Because the two theories 
have the same functional form but a different dependent variable, the actual cost improvement represented by a 
nominal learning curve slope (e.g., “90%”) is different between the two; specifically, CUMAV represents 
steeper learning that Unit for the same nominal LCS. 

In the investigation that follows, the two theories will be compared. This comparison will be executed 
using perfect data and injected error terms. In practice, perfect data does not exist. Before determining a learning 
curve theory, it is imperative that considerable care is exercised in the treatment of data. As demonstrated in an 
earlier paper3, large errors result when data is not normalized and effects other than learning are not removed. 
These other effects can easily overwhelm learning effects and, as demonstrated in the aforementioned paper, can 
create learning curves with slopes as much as 6%-18% off. Such effects as change orders (COs) or engineering 
change proposals (ECPs), labor force composition, and percent overlap between successive units exert 
considerable influence on data. A learning curve derived from data that contains other effects beyond simply 
learning will herein be referred to as a “pseudo learning curve”.  If other (non-learning) effects are present, but 
not in sufficient force to overwhelm learning, pseudo learning curves often demonstrate statistical significance; 
statistical significance does not make this pseudo learning curve a valid curve from which to estimate. 

Pseudo learning curves are most easily discovered graphically. Other effects may be present when:  
1. The data demonstrate patterns of rising or falling above and below the regressed curve, in which 

case other long-term effects are present and must be considered.  This consideration is easily tested 
using conventional tests such as non-parametric tests of “runs” and the like. 

2. The learning curve substantially shifts or changes slope.  This can occur for a number of reasons: 
i.e., a shift in percent overlap of consecutive units, shifts in labor force composition, or shifts in 
manufacturing location or process.  

3. The curve fails to pass through or “near” more than a small fraction of the data points.   “Sufficient 
nearness” is difficult to determine, though the sheer size of the object, in manhours, is a reliable 
indicator.  Very large objects, such as ships, or objects requiring many hours to complete, which 
may be smaller but more complex, are likely to exhibit “law of large numbers” effects (perhaps 
more correctly, Chebyshev's inequality comes into play) and the expectation of nearness is greater.  
This consideration is not easily quantifiable, but as a single sense of the scale, large ships have been 
shown4 to exhibit error terms as low as 2% after normalization.  
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Further, statistical significance must, of course, be tested in any determination of learning curve. An 
analyst should have no difficulty rejecting a regression of either form when it is not statistically significant.  The 
focus here will be on the goodness of fit of the model; this is the issue that presents difficulty to the practitioner.  
As will be shown, goodness of fit metrics implicitly favor the CUMAV theory; the degree of the distortion is 
surprising. 

 
 
Investigation:  

The study for this paper was done using generated data; this allows the advantage of knowing the 
underlying theory before examining the statistics. CUMAV and Unit data were created; the data were then 
regressed twice. First, the data were regressed assuming the known underlying theory (i.e., CUMAV-as-
CUMAV and Unit-as-Unit), then assuming the other theory (i.e., CUMAV-as-Unit and Unit-as-CUMAV). The 
statistics of the regression (standard error) were compared, as they would be in practice, to determine which 
theory best fits the data set. The perfect data were examined first, followed by data with injected error. 

The generation of the data was problematic, specifically the error term. In particular, if there is an 
incorrect formulation in our analysis, it would most likely be in the CUMAV error term. The form of the error 
term was carefully determined; a simple normal error term was selected for both models, and this error term was 
imposed upon the individual units of data in each case. For the CUMAV model, an imposition of error on each 
subsequent unit may seem at odds with the formation of the model; to impose a cumulative average error, 
however, seemed to suggest that the history had changed. For this reason, the error was imposed on each 
subsequent unit, and the unit error was allowed to perturb the Cumulative Average.  Though more 
straightforward, the Unit model also presents a difficulty.  The same absolute error was imposed on each unit in 
turn; it may also be reasonable to assume that error terms diminish with each unit. This case could be modeled 
as a specific percentage. Bearing in mind these concerns, no claim is made as to correctness of the precise form 
of the error term. The form selected was reasonable for the purposes of the exploration of this issue. 

The regression fits were determined using the traditional approach of log-log transformation and 
applying ordinary least squares (OLS) regression to the transformed data, which is also inherent in the Excel 
power-curve “Trend Lines” on the graphs below.  As a topic for further research, another regression technique 
such as minimum unbiased percent error (MUPE) could be used in conjunction with an injected multiplicative 
error term, though such an excursion would not be expected to alter the fundamental findings of this paper. 

 
 
Perfect Data:  

Perfect data was generated with the following parameters:  
1. The Theoretical First Unit: 100 (for both CUMAV and Unit) 
2. The Learning Curve Slope: 80% (for both CUMAV and Unit) 
 

As expected, when regressing with the known theories, the r2 is 1 and the standard error is 0. When regressing 
assuming the other theory, CUMAV-as-Unit results in a markedly higher standard error (0.06243) than does 
Unit-as-CUMAV (0.015174). See Figure 1 and Figure 2 below, respectively. 
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Figure 1. 

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com



ISPA / SCEA 2008 Joint International Conference 
Huis ter Duin, Noordwijk, The Netherlands, 12 – 14 May 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  
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Figure 2. 
 
Imperfect Data:  

With perfect data, statistics reliably direct an analyst to the correct model. In practice, however, data is 
never perfect. To generate imperfect data that has the characteristics of real data, random error was injected into 
each model; the size of the random error was based on observed error. In a learning study4 produced previously, 
the authors observed a coefficient of variation (CV) at the 8th Unit (of a 17 Unit series) of 0.0187.  Using this 
information, the curves with error were generated as follows:  
 

Unit  
1. A perfect curve was generated using the same parameters as before: 

a. T1 = 100 
b. LC = 80% 

2. 17 units of data were projected.  
3.  A random normal error term was generated for each unit with a  

a. Mean of 0 
b. Standard deviation computed using the CV of 0.0187 multiplied by the cost of the eighth 

“perfect” unit 
4. The error term was added to each “perfect” unit cost 
5. 500 imperfect data sets were found (with a new random-error-term set for each run) 
 

CUMAV 
1. A perfect curve was generated using the same parameters as before: 

a. T1 = 100 
b. LC = 80% 

2. 17 cumulative average data points were projected.  
3. The unit metric for each point was found; for example:  

a. If X=1, Y=100 (cumulative average cost) 
b. If X=2, Y=80 (cumulative average cost) 
c. (100 + 80)/2 = 60 (unit metric of unit 2)  

4. The error term was generated as described above.  
5. The error term was added to each unit metric derived from the “perfect” CUMAV data 
6. 500 imperfect data sets were found (with a new random-error-term set for each run) 

 
As before, the data was regressed using the known theory and compared to a regression using the other theory. 
A sample output (one of the 500 runs) is graphed below (Figures 4 and 5). This output demonstrates how little 
variation was added to perfect data; if confronted with data resembling the below in “real life”, an analyst would 
not hesitate to derive a learning curve slope. A simulation of 500 trials shows that, with this error term, an 
analyst should never mistake CUMAV data for Unit data; on the other hand, 59% of the time the standard error 
indicates that CUMAV is a better fit for Unit data than Unit Theory is. On average, the standard error for 
CUMAV Theory as applied to Unit data is lower than the standard error of Unit Theory applied to the same 
data. 500 runs of each trial yields the following:  
 

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com



ISPA / SCEA 2008 Joint International Conference 
Huis ter Duin, Noordwijk, The Netherlands, 12 – 14 May 2008 
 
 
 
 
 
 
 
 
Figure 3. 
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Figure 4. 
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Figure 5. 
 

The error term injected to generate imperfect data was relatively low compared to residual error in 
“real” data; in order to determine how low the CV would have to be in Unit data in order to test as Unit data 
(and not CUMAV), the above process was repeated with an error term ranging from a standard deviation of 
0.005 times the 8th unit of cost up to a standard deviation of 0.04 times the 8th unit of cost. The average standard 
errors from each set of trials are plotted below. Figure 6 shows the average standard error for CUMAV data 
when tested for CUMAV Theory vs. Unit Theory; as expected, CUMAV data never tests as though it followed 
Unit theory.    
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Comparing Statistics-CUMAV Data

y = 0.1608x1.002

R2 = 0.9998

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
CV

SE

CUMAV-as-Unit CUMAV-as-CUMAV Pow er (CUMAV-as-CUMAV)

y = 14.262x1.9539 + 0.056
R2 = 0.9994

 
Figure 6. 
 
On the other hand, Figure 6 shows the average standard error for Unit data when tested for Unit Theory vs. 
CUMAV Theory; here, when the CV in the underlying data is greater than 1.7858% on the eighth of seventeen 
units, Unit data begins to test on average as though it were CUMAV. It is hypothesized that the precise value of 
this “cross-over point” is linked to the underlying LCS (in this case, 80%). 
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Figure 7. 
 
The above graphs were generated using the average of the Standard Error from each set of data; this smoothes 
the results. The trend, however, is clear; while the Standard Error for Unit increases one-for-one as CV 
increases, the increase in Standard Error for CUMAV on the same data is smaller by a factor of about one 
hundred.   
 
 Finally, the percent of “false positives” when fitting CUMAV to Unit data for each set of trials graphed 
against the CV clearly shows the probability that an analyst will be mislead by statistics as the CV increases. 
Some additional data points were generated in order to flesh out the curve in Figure 8. From the below, when 
the CV of the underlying data is ~0.018, the probability that an analyst will be mislead by the statistics is 50%; 
if the CV is ~0.03, that probability increases to 98%.  
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Figure 8. 

 
 

 
Conclusions 

The analysis in this paper is clearly summarized in Figures 6, 7 and 8. These graphs demonstrate that, using 
statistics, an analyst should never accidentally select Unit Theory when the underlying data follow a Cumulative 
Average curve; on the other hand, when the underlying data have a CV of 1.786% or greater, applying CUMAV 
Theory to Unit data returns, on average, a lower standard error than does Unit Theory. This is problematic, 
particularly since there is no better way to determine which theory the data truly follow. 

Recognizing that the form of the error term used affected the specifics of this conclusion, no claim is made 
that this answer is precise. Nevertheless, the general finding is irrefutable: the form of the CUMAV model 
implicitly favors the selection of this model and it does so for data of remarkably little error.  The rhetorical 
question put forward in the title of this paper is thus answered: the fight between the two models is decidedly 
not fair.  The following are conclusions based upon the results of this analysis: 

1. If indeed both models are valid, there must exist many cases of mistaken identity where the CUMAV 
model appeared to be superior on the basis of goodness of fit where the Unit model was in fact the 
underlying mechanism. Accordingly, in any learning curve analysis, this subject must be given careful 
consideration. 

2. There exists a possibility that the CUMAV model may be wholly invalid. Metrics favor the CUMAV 
model so strongly; the model could easily appear to exist when the data follows a completely different 
trend. The authors were biased with this opinion at the outset of this investigation. The reason for this 
initial feeling was purely aesthetic: it was based on the notion that the model, purporting that each 
subsequent production unit exerts some effect only through the cumulative average, seems to defy 
logic.  One would expect, in other words, that learning would be asymptotic, as both models are, and 
that learning would follow from the number of units produced by a constant work force. The difficulty 
of this paradigm affected the ability to conceptualize the base model as well the ability to conceptualize 
the error term for the CUMAV model. It may also be that the CUMAV model has been chosen in the 
past because it is much easier and more convenient to use with lot data; now that sophisticated lot 
midpoint (LMP) techniques and high-powered computing are readily available, choice of model should 
be based on merit, not convenience. Finally, the CUMAV model runs afoul of the tests proposed by 
both Occam and Dirac, who can be paraphrased as saying that the simpler model is preferable and that 
the most beautiful model is more likely to be true, respectively. 

As is always true when assessing learning curves, an analyst must be sure to normalize data before arriving 
at any conclusions regarding learning curve (theory or slope). Failure to normalize will leave an analyst with a 
pseudo learning curve. It should be clear by this point that the errors introduced by failure to normalize will 
favor the CUMAV theory: assuming CUMAV will, almost invariably, increase the coefficient of variation; in 
turn, the goodness of fit metric will favor CUMAV, regardless of the true underlying model.  

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com



ISPA / SCEA 2008 Joint International Conference 
Huis ter Duin, Noordwijk, The Netherlands, 12 – 14 May 2008 
 

In summary, analysts should entertain significantly more skepticism about the CUMAV Theory as a 
learning curve model than they have heretofore. The results of this analysis should be carefully considered in 
the selection of a model form for both backward-looking analyses of actuals and forward-looking projections. 
Further, the estimating community would benefit from more penetrating investigations into the two models; 
specifically studies focused on ascertaining whether both models exist in practice.  
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