1

The Journey from Bottoms-Up to Predictive Modeling, The Promise of a Positive ROI

Presented by: Lori Saleski Contributions: Olly Horton BAE Systems For ICEAA 2017

© 2016 BAE Systems ES-NHQ-031717-0174

The Start of the Journey

- Estimating population employs a variety of methodologies
 - Bottoms Up
 - Analogy or "Similar To"
 - Parametric
- Looking for efficiencies in applying Bid & Proposal funding
- Parametric modeling promises positive ROI
- Estimating experts advocated trying new approaches
- Management concurs
- Decided to pilot a COTS Parametric Tool suite

Start Here

I-2

Team demographic

- Core team of engineering estimating & proposal expertise
 - In place for 7 Years
 - 12-18 months rotations
 - Leadership evolution
- Supports multiple products across the business
- Limited experience with parametric estimating

Prep the Team & Get Buy-In

First Steps:

- 1. Identify and document roadmap items what milestones do we hope to achieve in 2017 and beyond?
- 2. Plan activities for each milestone what do we need to do to pilot this tool?
- 3. Review schedule commitments what time frame can this be performed in, given current proposal tasks?
- 4. Review resources will everyone on the team participate at the same level? Will there be one primary user?
- 5. Schedule training we don't know what we don't know
- 6. Review training goals and user demographics with training instructors

Training Sessions

- Training is a 2-Way Communication
 - Communicating training needs during training
 - Course adjustments can be made
- Multiple Sessions were necessary
- Feedback to Training Instructor is key
 - What worked well for this team
 - What could be improved
- Hands On experience is necessary
- Needed to simplify the approach/declutter
- Developing mentoring relationship is key
- Need to get to the "aha" moments
- All intended users need to engage

I-5

Trial Runs – exploring the tool

- Promising Results it looks like this may work for us!
- Capture estimate result data for analysis
- Trends of results for ROI
- Misses in results important to identify
 - Set expectations early
 - Document internal guidelines for users
 - Model may not work for everything
- Mis-Starts and ReDos
 - Mis-understandings or assumptions, need to reconcile
 - Possible loss of data
- More feedback to vendor

Piloting

- Use real programs with known data
- Multiple parametric model runs & results
- Continue to refine approach and user guidelines
- Compile a set of results data
- Perform analysis on variances
- Perform analysis on "misses"
- Document model use cases what it does/doesn't support
- Communicate and set expectations

- Initial Savings prediction of 25-30%, however...
- Analysis of 9 bids in 2016 showed a 40% 55% Spend Saving, if Parametric Estimating used rather than traditional estimating. This translates to...
- Across the 21 ROMs in 2016, saving 40% would have freed up 15 full-time equivalents!

Deployment (near term)

- Steps for deployment
 - Identify budget commitment
 - Determine who the in house experts will be
 - Not all who were trained have the same expertise
 - Need data oriented skillset for best accuracy
- Stakeholder review of internal guidelines
- Dry Run using internal guidelines
- Analyze results for accuracy
- Deploy to in house experts
 - Continue to document results and analyze
 - Continue to update internal guidelines and communicate

Calibration with internal program data, as needed (future)

- Assess data requirements for calibration
 - Ask questions, define terms
 - Setup infrastructure
 - Establish goals and expectations
 - Identify stakeholders
 - Train the participants
 - Consistency is key!
 - This is important before starting!
- Collect/aggregate data needed for calibration
 - Best case, just need to aggregate
 - Worst case, need to collect all data required
 - Likely case, somewhere in the middle

Calibration with internal program data (continued)

- Perform the calibration with vendor support
- Review & analyze calibration
 - Establish benchmarks for testing
 - Use representative programs
 - Pay attention to variances in results
 - Iterate & Document

In Conclusion...

- 1. Predictive Modeling shows strong potential for lowering the cost/proposal.
- 2. It is a journey, not a straight path to success (see cover slide).
- 3. Confidence in the tool takes time, and training/mentoring is key.

Questions?

Contact info: lori.a.saleski@baesystems.com

© 2016 BAE Systems ES-NHQ-031717-0174

I–14

Backup Slides

After Calibration are we done? (future)

- Not yet!!
- Run limited pilots with new calibration
 - Limited and controlled deployment
 - Review and analyze pilot results
 - Pay attention to issues and inconsistencies (they can have serious impact)
 - Note observations/assumptions
 - Update internal instructions as needed
 - Iterate Calibration activity as needed
 - This is an ongoing process (whew!)

