
 1

ABSTRACT
Context: An effort estimation model at early phase is not very useful
if you don’t have a logical approach for specifying the size measure
and other input variables.

Goal: This study provides a set of practical effort estimation models
for software development projects during the contract bidding phase.
The first set predicts effort using the entire dataset. The second set
predicts effort for agile software development based on data from 20
completed projects using agile methods.

Method: The analysis explores the combined effect of product size,
peak staff, and super domain. Product size is measured using the initial
software requirements at contract start, and not the actual software
requirements reported at contract end. The analysis is based on data
from 196 completed projects from the United States Department of
Defense delivered from 2005 to 2016.

Result: Statistical results showed that initial software requirements is
a valid size metric for estimating both, traditional and agile software
development effort. Model’s accuracy improves when peak staff and
super domain are added as inputs to the equation.

Conclusion: Models may be used for validating contract cost
proposals for traditional or agile projects, as the input variables used
in the study are often available during the bidding phase or earlier.

Index Terms—— cost, effort, estimation, peak staff,
requirements volatility, software requirements, domain, early
phase, agile, productivity, interfaces

I. INTRODUCTION
A. Problem Statement
 Selecting the appropriate size metric is instrumental in
improving the accuracy and credibility of a software cost
estimate at an early lifecycle phase [22]. During early inception
or elaboration, however, popular size metrics ([8], [13], [35])
can be approximated but not accurately measured [16] as these
require additional constructs which are available in
considerably late software development phase ([3], [17], [21],
[22]). In the United States Department of Defense (DoD), these
constructs (e.g. UML diagrams) are captured in source
documents provided by software developers after contract
award [17]. For this reason, there is a need to find an alternate
size measure to estimate effort during the contract bidding
phase or earlier ([15], [22], [28], [29]).

B. Purpose Statement
 The purpose of this study is to provide open source effort
estimation models for traditional and agile software
development projects at contract bidding phase. The decision to

use software requirements as size measure was based on the
following reasons:
1) Initial software requirements can be obtained at early phase

from software documents in the DoD [12]. Examples of
these include Software Requirements Specification,
Requirements Traceability Matrix and System and
Software Requirements Document [12].

2) Requirements-based effort estimation models and
productivity benchmarks can be derived using historical
project data from the Cost Assessment Data Enterprise
repository (http://cade.osd.mil) owned by the Office of the
Secretary of Defense.

C. Deficiencies in Past Studies
 Most recent studies on early phase effort estimation have
used either Function Point Analysis ([2], [10], [13], [31]),
COSMIC [17], Use Case Points ([6], [19], [23], [24]), or UML
artifacts ([1], [14]) as the primary size measure. Although these
are widely accepted, deriving them at early phases is
challenging as these rely on constructs typically available later
in the life cycle ([16[, [22], [23]).

 A recent survey study [33] on agile software effort estimation
found that the most frequently used size measures by
practitioners in descending order are Story Points, Function
Points Analysis and Use Case Points. The same respondents
said they use these metrics at the sprint or release planning
phase of the project. The survey, however, indicated story
points, Function Points Analysis, and Use Case Points, are often
not used at contract bidding or earlier phase.

 A handful of studies ([1], [22], [23], [28], [29]) hypothesized
that software requirements may be used to predict software
development effort at early phase. However, none of these
provided empirical evidence to support it. Whether estimated
software requirement is a valid predictor for traditional or agile
software effort estimation at early phase remains an open
question.

D. Significance of Proposed Study
This study will remedy the prior limitations in several ways:
• Determine whether the sizing approach is valid for

predicting development effort:
o Software requirements was derived by counting

the number of “shall” statements contained in the
baseline Software Requirements Specification
plus number of “shall” statements contained in the
baseline Interface Requirements Specifications.

Software Effort Estimation Models for
Contract Cost Proposal Evaluation

Wilson Rosa and Corinne Wallshein
Naval Center for Cost Analysis

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://cade.osd.mil/

 2

• Use the initial software requirements (submitted at project
initiation) as size measure instead of actual (final) software
requirements (achieved at project completion). This
approach eliminates the need of adjusting the estimated
size to account for effort growth.

• Provide a practical framework for decision makers to
evaluate contract cost proposals as the model’s input
variables are often available during the contract bidding
phase.

E. Paper Organization
This research paper is organized into eight sections:
• Section I introduces the problem, deficiencies in past

studies, and explains the study’s proposed solution.
• Section II summarizes the scholarly literature of the

variables used in this study for predicting software
development effort. It highlights key similarities and
differences to this study.

• Section III goes over the research method step by step. It
briefly explains the sampling procedure, instrumentation,
variables used in the study and the experimental design.

• Section IV describes the data demographics, including
operating environment, super domain, and development
process.

• Section V discusses the data analysis and descriptive
statistics.

• Section VI presents effort estimation models using the
entire dataset along with their accuracy and validity tests.

• Section VII presents agile software effort estimation
models along with their accuracy and validity tests.

• Section VIII presents the research conclusion on the basis
of the hypotheses. It also highlights the contribution and
limitations, and outlines areas for future research.

• Section IX cites the sources used in the paper.

II. RELATED WORK
A. Studies relating Requirements to Development Effort
 Malik and Boehm [21] introduced a technique for
quantifying requirements elaboration for early phase software
cost estimation. Their work focused on studying the first stage
of requirements elaboration by deriving factors for converting
high-level capability goals into low-level capability
(functional) requirements using data from 20 real-client
graduate-level team projects done at the University of Southern
California. The work done by Malik and Boehm is similar to
this study in two ways. First, it uses the number of requirements
as the primary software size measure at early elaboration phase.
Second, it derives software requirements [capability
requirements] by counting the number of “shall” statements.
Although the authors discussed that prior knowledge of the
magnitude of the requirements elaboration is critical for
developing early phase software cost estimates, their work did
not provide statistical evidence relating software requirements
to software development effort.

 Malik [22] extended his previous work by examining the
entire process of requirements elaboration for early phase
software size estimation. The approach involved counting the

number of capability goals (CG), capability requirements (CR),
use cases (UC), use case steps (UCS), and source lines of code
(SLOC) and, thereafter, calculating the elaboration factor for
each pair of consecutive requirements levels. The sample was
based on multi-level requirements data from 25 small real client
e-services projects completed in the past few years by graduate
students studying software engineering at University of
Southern California.

The author also mapped the Cockburn metaphor to requirement
elaboration levels along with source documents that can
provide information for each level.

Cockburn
metaphor

Requirement
elaboration level

Source Document

Cloud Capability goals Operational Concept
Description

Kite Capability
requirements

System and Software
Requirements Document

Sea Level Use cases Software Architecture
Description

Fish Use case steps Software Architecture
Description

Clam SLOC Source Code
SLOC = source lines of code

According to this mapping, capability requirements are
available earlier than use cases, and documented in the system
and software requirements document (SSRD). The authors also
provided a software process chart showing that initial SSRD
may be delivered any time between late project inception and
early elaboration phase. Malik’s work validates the use of
functional requirements for early phase software effort
estimation as these are documented earlier than use cases and
SLOC. However, his dissertation work did not provide
statistical evidence relating number of capability requirements
to software development effort.

 Sharma and Kushwahab [29] proposed an approach for
estimating software development effort using a size measure
called requirements based complexity (RBC). RBC is derived
using artifacts from the software requirements specification.
According to the authors, complexity of the software has a
direct bearing on the required amount of effort. The
computation of RBC requires 12 input variables:

1) Input Complexity
2) Output Complexity
3) Storage Complexity
4) Functional Requirements
5) Non-Functional Requirements
6) Personal Complexity Attributes
7) Design Constraints Imposed
8) Software deployment location
9) External interfaces
10) Technical Complexity Factors
11) Size of Language
12) Environmental Complexity

The work by Sharma and Kushwahab is similar to this study in
two ways. First, it uses number of functional requirements and
external interfaces as size inputs. Second, it considers Software

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 3

Requirements Specification as the primary source for size
estimation at early phase. Their work, however, has two
shortcomings. The experimental design pose a threat to validity
as the equation and individual input parameters were not tested
for statistical significance. In addition, four out of 12 input
parameters are qualitative and not available at early phase --
personal complexity, design constraint, technical complexity,
and environmental complexity.

 Abrahão and Insfran [1] introduced a measurement
procedure (ReqPoints) to estimate the size of object-oriented
software projects from requirements specification. The
approach consists of extracting artifacts from Use Case Models
(classes) and Sequence Diagrams (messages) and thereafter,
converting these into unadjusted Function Points using 16 rules.
Their approach, however, had three limitations. First,
ReqPoints was not validated with actual software development
projects. Second, Use Case Models and Sequence Diagrams are
included in the system and software architecture document,
which typically becomes available during the construction
phase. Third, ReqPoint may not be applicable to non-object
oriented software projects.

 Ochodek, Nawrocki, and Kwarciak [19] investigated the use
case point (UCP) measurement in order to find possible ways
of simplifying it. The goal was to determine whether the UCP
method could be simplified by rejecting the adjustments factors
for effort estimation. The analysis was based on 14 projects for
which effort ranged from 277 to 3593 man-hours. The authors
concluded that using number of use case steps instead of UCP
could simplify the effort estimation procedure as the MMRE
value for both was virtually the same, and use case steps
performed slightly higher for homogenous subsets or when
multiple regression was used. The analysis approach by
Ochodek and colleagues is similar to this study in one way. The
size metric is based on the total sum of a specific requirements
elaboration type (use case steps) without applying a complexity
weight factor to account for the fact that some requirements can
be more complex than others.

 Valerdi [35] introduced the “Constructive Systems
Engineering Cost Model (COSYSMO)” for estimating systems
engineering effort. The analysis was based on data collected
from six aerospace companies in the form of expert opinion and
historical project data. The effort estimation equation requires
four system-level size inputs including number of system
requirements, interfaces, algorithms, and operational scenarios.
The author added a complexity weight factor to the equation as
the simple sum of requirements is not a reliable indicator of
functional size. The author concluded that the four size inputs
when combined, contributes significantly to the accurate
estimation of systems engineering effort.

 The work by Valerdi is similar to this study in two ways.
First, it uses the total sum of requirements and total sum of
interfaces for predicting effort. Second, it uses a similar non-
linear effort equation form (without the effort multipliers).
Although his work validates the use of number of requirements
for predicting effort, it differs from this study in four ways:

• The study did not examine the direct effect of number of
requirements on effort.

• In COSYSMO, the number of requirements is further
adjusted using a qualitative complexity weight factor.

• In COSYSMO, the number of requirements include
different types (i.e., functional, operational,
environmental) whereas this study only accounts for
functional requirements.

• COSYSMO estimates systems engineering effort whereas
this study estimates software development.

 Robiolo and Orosco [24] introduced an alternative method
for early effort estimation based on Use Case Transactions
(UCT) and Entity Objects obtained from four projects
developed at the System and Technology Department of
Austral University. The result shows that using number of UCT
as a notion of size is valid for predicting software development
effort. The analytical approach by Robiolo and Orosco is
similar to this study in that the size input is based on the total
sum of a specific requirements elaboration type without
applying a complexity weight factor to account for the fact that
some requirements are more complex than others. Their
approach, however, had two limitations. The analysis is based
on only four projects from a single entity. The size input rely on
UML artifacts and diagrams that may not available until after
elaboration phase.

B. Studies on Agile Software Effort Estimation
 Usman, Mendes, Weidt, and Britto [34] conducted a
systematic literature review to provide an overview of the state
of the art in the area of effort estimation in agile software
development. A total of 20 peer-reviewed papers were
examined. The analysis revealed whenever software
requirements are given in the form of stories or use case
scenarios, Use Case Points and Story Points were the most
frequently used size metrics respectively. Very few of those
studies used traditional size metrics such as Function Points
Analysis and source lines of code. The authors, however, did
not address whether Use Case Points and Story Points were
measured during or after the contract bidding phase. The work
by Usman and colleague differs from this study in two ways. It
uses software requirements in the form of stories or use cases
as oppose to functional requirements. Second, it converts
software requirements into Story Points or Use Case Points
instead of directly using requirements as primary size metric.

 Usman, Mendes, and Börstler [33] conducted a survey study
to report on the state of the practice on effort estimation in agile
software development, focusing on a wide range of aspects
including estimation techniques and effort predictors used. The
study was based on surveys collected from 60 agile
practitioners from 16 different countries. The results revealed
that 61% of the respondents selected story points as the
preferred size metric, 17% selected Function Points Analysis
(FPA), and 10% Use Case Points. Only few respondents said
they’re able to develop an estimate at the bidding or earlier
phase. In those cases (7 out of 8), the respondents said they have
used expert judgment instead of story points (or other) because
of the lack of information. The results of this survey suggest

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 4

story points, Function Points Analysis, and Use Case Points, are
often not available at contract bidding or earlier life cycle phase.

C. Studies relating Application Domain to Development
Effort
 Rosa, Madachy, Boehm and Clark [26] developed an
empirical software effort estimation model for early phase
using source lines of code (SLOC) and application domain as
predictors. The analysis was based on data from 317 projects
implemented within the United States Department of Defense.
The dataset was normalized by grouping datset into 12 general
complexity zones called application domain. Dummy variables
were added to account for the impact of those 12 application
domains. The result shows that the effect of SLOC on effort is
“highly” significant, when treated along with application
domain. The work by the authors is similar to this study in that
it uses the same instrumentation, data repository, and examines
the effect of size and application domain on effort. However,
their work differs from this study in four ways:
• Product size measured in terms of source lines of code.
• It uses the final size (reported at project completion) rather

than estimates size (reported at project initiation).
• Did not account for the effect of peak staff and

requirements volatility.
• The dataset was only grouped across 12 application

domains but did not regroup these into four super domains.

 Rosa and colleagues [27] extended their previous work by
introducing a simpler domain-driven effort estimation model.
As shown in table below, their analysis framework consisted of
mapping the dataset (initially reported across different
application domains) into four general complexity zones called
super domain. Three dummy variables were also added to
account for the impact of four super domains.

Super Domain Application Domain
Support Software Tools

Training

Automated Information
Systems

Enterprise Information System
Enterprise Services
Custom AIS Software
Mission Planning

Engineering Test, Measurement, and Diagnostic
Equipment
Scientific & Simulation,
Process Control,
System Software

Real-Time Communications
Real Time Embedded
Command & Control
Vehicle Control
Vehicle Payload
Signal Processing
Microcode & Firmware

The result shows that the effect of super domains on effort is
“highly” significant, when treated along with SLOC. The work
by the authors is similar to this study in two ways. First, it uses
the same taxonomy for grouping the dataset into four super
domains. Second, dummy variables were added to account for
the impact of these four super domains. Their work, however,
differs from this study in that it uses actual SLOC (reported at
project completion) and did not account for the effect of other
cost drivers.

D. Studies relating Peak Staff to Development Effort
 Rodríguez, Sicilia, García, and Harrisonb [32] analyzed the
relationship between peak staff and software productivity,
along with other project variables. The analysis is based on 199
projects from the International Software Benchmarking
Standards Group repository (ISBSG). The authors stated that
peak staff is one the most influential factors in software
productivity according to the ISBSG organization. The results
showed that there is a statistical correlation between peak staff
and effort and productivity. The analysis also revealed that
enhancement projects show better productivity than new
projects. The work by Rodriguez and colleagues is similar to
this study in two ways. First, it uses peak staff as a predictor of
productivity and effort. Second, it uses a large dataset (199) and
considers the impact of platform type which is associated to
application domain. Their work differs from this study in that it
uses function points as oppose to software requirements.

III. RESEARCH METHOD
A. Population and Sample
 The sample was identified as 196 projects from across 74
different companies implemented for the United States
Department of Defense. This study focused on projects
reported at the computer software configuration items (CSCIs).

B. Questionnaire and Instrumentation
 The primary data collection questionnaire used in the study
was from the existing Software Resource Data Report (SRDR)
([7, [11], [18], [20], [25]). In our earlier work, this same form
was key to deriving DoD cost estimating relationships based on
reported lines of code [7].

 Each project used in the study contained both, initial and final
SRDR forms. The SRDR Initial Developer Report was used to
collect the initial functional requirements, estimated external
interface requirements, and estimated peak staff reported at
project start. The SRDR Final Developer Report was used to
collect the actual effort, and requirements volatility reported at
project completion. The SRDR questionnaires and forms are
available publicly [11], and can be accessed via the links below:
http://cade.osd.mil/Files/Policy/2011-SRDRInitial.pdf
http://cade.osd.mil/Files/Policy/Initial_Developer_Report.xlsx

http://cade.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://cade.osd.mil/Files/Policy/Final_Developer_Report.xlsx

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://cade.osd.mil/Files/Policy/2011-SRDRInitial.pdf
http://cade.osd.mil/Files/Policy/Initial_Developer_Report.xlsx
http://cade.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://cade.osd.mil/Files/Policy/Final_Developer_Report.xlsx

 5

C. Data Normalization
 The objective of data normalization is to improve data
consistency, so that comparisons and projections are more
valid. The dataset in this study was normalized using two steps:
1) Counting Software Requirements
 The raw dataset reported total initial functional requirements
and total initial external interface requirements in separate
fields; extracted from the SRDR Initial Developer Report [11]:

According to SRDR questionnaire respondents (software
developers), initial functional requirements were determined
by counting the total number of “shall” statements contained
in the baseline Software Requirements Specification.
Similarly, initial external interface requirements were
determined by counting the total “shall” statements
contained in the baseline Interface Requirements
Specifications.
The “initial Software requirements” was then calculated by

summing the total initial functional requirements and the total
initial external interface requirements.

2) Data Grouping
 The raw dataset was initially reported across different
application domains ([7], [11]). The dataset was then stratified
into four general complexity zones called super domains [27].
This stratification was adopted from our previous work [27].
The application domains to super domain mapping are shown
in Table 1 below.

Table 1
Super Domain Taxonomy

Super
Domain Symbol Application Domain

Support SUPP Software Tools

Training

Automated
Information
Systems

AIS Enterprise Information System

Enterprise Services

Custom AIS Software

Mission Planning

Engineering ENG Test, Measurement, and
Diagnostic Equipment

Scientific & Simulation

Process Control

System Software

Real-Time RT Communications

Real Time Embedded

Command & Control

Vehicle Control

Vehicle Payload

Signal Processing

Microcode & Firmware

D. Research Questions
This study will address the following research questions:

Q1: Do initial software requirements relate to final effort?
Q2: Do initial software requirements along with initial peak
staff relate to actual development effort?
Q3: Do initial software requirements along with initial peak
staff and super domain relate to final effort?

E. Variables
The variables examined in the study are identified in Table 2.

Table 2
Variable Names and Definitions

Variable
Name

Type Definition

Final Effort
(EFFORT)

Dependent Actual labor hours as
reported in the SRDR Final
Developer Report. Captures
all the associated engineering
effort, by the developer for
analyzing, designing, coding,
testing, integrating, and
managing the software
development project.

Initial
Software
Requirements
(REQ)

Independent The sum of initial functional
requirements and initial
external interface
requirements

Peak Staff
(STAFF)

Independent The initial peak staff
measured in terms of full-
time equivalents reported in
the Initial SRDR Developer
Report.

Super
Domain (SD)

Categorical Super domain grouping is
denoted below:
Support = 1, AIS = 2
Engineering= 3, Real-Time =
4

F. Model Validity Measures
 The model validation measures are described in Table 3.

Table 3
Model Validity Measures

Measure Symbol Description
Coefficient of
Determination

R2 The Coefficient of Determination
shows how much variation in
dependent variable is explained by
the regression equation.

Coefficient of
Variation

CV Percentage expression of the
standard error compared to the
mean of dependent variable. A
relative measure allowing direct
comparison among models.

Standard
Error

SEE Standard Error of the Estimate is a
measure of the difference between
the observed and CER estimated
effort. The SEE is to linear models
as the standard deviation is to a
sample mean

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 6

Variance
Inflation
Factor

VIF Method used to indicate whether
multicollinearity is present in a
multi-regression analysis. A VIF
lower than 10, indicates no
multicollinearity.

Mean
Magnitude of
Relative Error

MMRE This study uses MMRE as the
indicator of model’s accuracy. Low
MMRE is an indication of high
accuracy. MMRE is defined as the
sample mean (M) of the magnitude
relative error (MME). MME is the
absolute value of the difference
between actual and estimated effort
divided by the actual effort.

IV. DATASET DEMOGRAPHICS
 The sample was identified as 196 software projects involving
seven operating environments, four super domains, eight
different development processes, and 74 different software
developers. These projects were completed during the time
period from 2005 to 2016. The breakout according to super
domain (horizontal axis) and operating environment (vertical
axis) are shown in Table 4.

Table 4
Project Characteristics (Entire Dataset)

 Operating Environment Su
pp

or
t

A
ut

om
at

ed
 In

fo
rm

at
io

n
Sy

st
em

s

En
gi

ne
er

in
g

R
ea

l T
im

e

Aircraft 10 2 9 14
C4I 5 9 32 35
Business 1 18 0 0
Ordinance 0 0 0 1
Ship 1 0 0 10
Unmanned Aerial
Vehicle

5 1 2 5

Satellite 1 0 6 4
Missile 4 0 3 18
TOTAL 27 30 52 87

C4I = command, control, communication, computer, intelligence

 Figure 1 below shows the software development processes
captured in the dataset. The chart indicates the two most popular
software processes are Spiral and Incremental. The dataset also
includes 20 agile software development projects.

Figure 1: Projects by Software Development Process

V. DESCRIPTIVE STATISTICS
 Figure 2 displays the average productivity (actual hours per
initial software requirement) by super domain using the entire
dataset (n=196). Higher values indicate more effort to complete
a software requirement. The results indicate that real-time and
engineering projects take more effort to complete than support
and automated information systems (AIS). This finding is
consistent with previous work ([7], [25], [26], [27]) asserting
that software domain is a major productivity driver. This
information is useful for crosschecking productivity claims
from developers during the contract bidding phase.

Figure 2 Software Productivity by Super Domain

 Figure 3 displays the average productivity (actual hours per
initial software requirement) for agile software development
projects by super domain. The boxplot shows that agile
software development productivity is also influenced by the
application domain.

4 5

20 24
35

54 54

0

10

20

30

40

50

60

N
um

be
r o

f P
ro

je
ct

s

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 7

Figure 3 Agile Software Productivity by Super Domain

 Table 5 below compares the average productivity (actual
hours per initial software requirement) between agile and non-
agile software development. The dataset was grouped by size
range to control for the effect of fixed effort on smaller projects.
Based on this comparison, agile software projects appear to be
more productive than non-agile projects.

Table 5

Software Productivity Comparison

Size Range (Requirements)
Hours per Requirement
Agile Non-Agile

1-100 415 466
101-500 159 189
501-5000 77 131
Composite 190 229

VI. EFFORT MODELS (ENTIRE DATASET)
 This section displays three effort models based on the entire
dataset (n=196). Also identifies the best-fitting regression
model.

A. Model Equations
 The resulting models are shown below. These effort models
may be used for predicting software development effort for
either agile or non-agile, defense or business systems, and
projects ranging between 8 and 5254 initial software
requirements.

Equation Form Model

EFFORT = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏×REQ𝟎𝟎.𝟓𝟓𝟏𝟏 (1)

EFFORT = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏×REQ𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟑𝟑×STAFF𝟎𝟎.𝟓𝟓𝟑𝟑𝟑𝟑𝟓𝟓 (2)

EFORT = 𝟑𝟑𝟐𝟐𝟐𝟐×REQ𝟎𝟎.𝟐𝟐𝟒𝟒𝟏𝟏×STAFF𝟎𝟎.𝟐𝟐𝟒𝟒𝟒𝟒×SD𝟏𝟏.𝟏𝟏𝟓𝟓 (3)

Where:

EFFORT = Final engineering Labor in hours

REQ = Initial software requirements

STAFF = Estimated peak staff in full-time
equivalent

SD = Super Domain (1 if mission support, 2 if
AIS, 3 if engineering, 4 if real-time)

B. Model Validity
 Table 6 below shows the model validity results. All three
variables examined showed a significant effect on software
development effort as their t-statistics exceed the two-tailed
critical values, given the coefficient alpha (0.05). In addition,
all equation forms are appropriate as the VIF values indicate no
multicollinearity present in the analysis.

Table 6

Model Validity (Entire Dataset)

Model
t-statistics VIF

Inter REQ Staff SD REQ Staff SD
(1) 27.2 12.8 *** *** *** *** ***

(2) 33.2 8.3 9.8 *** 1.36 1.36 ***

(3) 29.3 15.6 13.5 15.0 1.45 1.37 1.07
Inter = intercept

C. Model Accuracy
 Table 7 below compares the accuracy of the models. The
accuracy dramatically improved when peak staff and super
domain were added to the initial model. Model (3) is the best
fitting model as it has the lowest MMRE and highest R2.

Table 7

Model Accuracy (Entire Dataset)
Model Variables

R2
(%)

MMRE
(%)

CV
(%) SEE Mean

(1) 1 45 101 55 87958 74425

(2) 2 63 71 48 64799 74425
(3) 3 83 41 32 41099 74425

VII. AGILE SOFTWARE EFFORT MODELS
This section displays three effort models derived using the

agile software project subset (n=20). It also identifies the best-
fitting regression model that can be constructed.

A. Agile Model Equations
 The resulting models are shown below. These effort models
are useful for predicting agile software development effort.
Also appropriate for defense or business systems, and projects
ranging between 10 and 4867 initial software requirements.

Equation Form Model

EFFORT = 𝟑𝟑𝟑𝟑𝟎𝟎𝟑𝟑×REQ𝟎𝟎.𝟓𝟓𝟎𝟎𝟎𝟎𝟏𝟏 (4)

EFFORT = 𝟏𝟏𝟎𝟎𝟐𝟐𝟓𝟓×REQ𝟎𝟎.𝟐𝟐𝟎𝟎𝟏𝟏𝟏𝟏×STAFF𝟎𝟎.𝟐𝟐𝟐𝟐𝟎𝟎𝟐𝟐 (5)

EFFORT = 𝟑𝟑𝟎𝟎𝟎𝟎×REQ𝟎𝟎.𝟓𝟓𝟏𝟏𝟑𝟑×STAFF𝟎𝟎.𝟐𝟐𝟏𝟏𝟒𝟒×SD𝟏𝟏.𝟎𝟎𝟎𝟎𝟏𝟏 (6)

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 8

Where:

EFFORT = Engineering Labor in hours

REQ = Initial software requirements

STAFF = Estimated peak staff in full-time
equivalent

SD = Super Domain (1 if mission support, 2 if
AIS, 3 if engineering, 4 if real-time)

B. Agile Model Validity
 Table 8 below shows the model validity results. All three
variables examined have a significant effect on software
development effort as their t-statistics exceed the two-tailed
critical values, given the coefficient alpha (0.05). All three
models are appropriate as their VIF indicate no
multicollinearity present in the analysis.

Table 8

Model Validity (Agile Software Subset)

Model
t-statistics VIF

Inter. REQ Staff SD REQ Staff SD
(4) 12.3 4.7 *** *** *** *** ***

(5) 10.2 3.7 2.0 *** 1.2 1.2 ***

(6) 9.1 6.7 3.2 4.6 1.4 1.3 1.0

C. Agile Model Accuracy
 Table 9 below compares the accuracy of the agile effort
models. The accuracy dramatically improved when peak staff
and super domain were added to the initial model. Model (6)
is the best fitting model as it displays the lowest MMRE and
highest R2 compared to the other two.

Table 9

Model Accuracy Results

Model Variables
R2
(%)

MMRE
(%)

CV
(%) SEE Mean

(4) 1 53 64 48 51892 62140

(5) 2 63 71 47 40328 62140
(6) 3 81 32 22 19295 62140

VIII. CONCLUSION
A. Primary Findings
 This study introduced effort estimation models for defense
software development projects at the early elaboration phase
using data from 196 completed projects reported at the CSCI
level.

 The regression analysis indicates “initial software
requirements” is a valid size measure for predicting both, agile
and non-agile software development effort at early phase.

 An effort estimating model only based on software
requirements is statistically significant but not very accurate.
The model accuracy improves after peak staff and super
domain, are gradually added to the initial model.

 This study also revealed that meaningful productivity
comparisons (hours per software requirements) can be made
when projects are grouped by super domain. This finding is
consistent with the perception that support and automated
information system applications requires less effort to
implement than real-time applications.

B. Threats to Validity
 Although this study mitigated sampling bias, it still has five
limitations:
1) This study only examined the impact of software

requirements and peak staff, domain on development
effort. A future investigation should analyze the impact of
other cost drivers such as percent requirements reuse,
process maturity, and personnel experience.

2) The study did not apply a size complexity weight factor to
the initial software requirements to account for the fact that
some requirements can be more complex than others. This
can be achieved by asking each organization to apply
discrete weights (easy, nominal, and difficult) to the
estimated requirements similar to the one used in
COSYSMO.

3) A non-random sample was preferred as the researcher had
access to names in the population and the selection process
for participants was based on their convenience and
availability. However, this process limits the ability to
generalize to a population.

4) Data was only collected from software projects within the
United States Department of Defense. In principle, the
analysis framework may apply to commercial sector
systems, but this study did not have the data to test this
hypothesis.

5) Although the models in this study are not highly precise,
they have the advantage of providing information on its
relative accuracy.

C. Model Usefulness
 These models are collectively useful in different scenarios:

• Models (1) through (3) useful for predicting traditional
or agile software development effort during the
bidding phase.

• Models (4) through (6) useful for predicting agile
software development effort during the bidding phase.

D. Model Limitations
 Since the data was collected at the CSCI level, the resulting
models are not appropriate for projects reported at the aggregate
level. They should not be used if estimated size inputs are
outside of the regression models’ dataset range.

E. Future Work
 There are important areas of future work to improve the
usefulness of these model types for practitioners. The software
granularity of modeling can be finer. We intend to develop

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 9

similar regression models for agile projects using a dataset
greater than 20. We will also examine the impact of software
requirements on software development effort while controlling
for the effects of development process, process maturity, and
percent reuse.

IX. REFERENCES
[1] S. Abrahao and E. Insfran, "A Metamodeling Approach to Estimate

Software Size from Requirements Specifications,” Software Engineering
and Advanced Applications, 2008. SEAA '08. 34th Euromicro
Conference, vol., no., pp.465-475, 3-5 Sept. 2008.

[2] N. Adem and M. Kasirun, "Automating Function Points analysis based on
functional and non functional requirements text," in Computer and
Automation Engineering (ICCAE), 2010 The 2nd International
Conference on, vol.5, no., pp. 664-669, 26-28 Feb. 2010.

[3] A. Anton, "Goal-based requirements analysis,” in Requirements
Engineering, 1996., Proceedings of the Second International Conference
on , vol., no., pp.136-144, 15-18 Apr 1996.

[4] B. Boehm, “Software Engineering Economics,” Englewood Cliffs, NJ,
Prentice‐Hall, 1981.

[5] B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece, “Software Cost Estimation with
COCOMO II,” Prentice‐Hall, 2000.

[6] M. Braz and S. Vergilio, “Software Effort Estimation Based on Use
Cases,” Computer Software and Applications Conference, COMPSAC
'06. 30th Annual International, Dept. of Comput. Sci., Fed. Univ. of
Parana, Curitiba, 2006, pp. 221-228.

[7] B. Clark and R. Madachy (Eds.). (2015, Apr.). Software Cost Estimation
Metrics Manual for Defense Systems. Software Metrics Inc.,
Haymarket, VA. [Online]. Available: http://www.sercuarc.org/wp-
content/uploads/2014/05/Software-Cost-Estimation-Metrics-Manual-for-
Defense-Systems.pdf

[8] Common Software Measurement International Consortium. (2009,
May). The COSMIC Functional Size Measurement Method, Version
3.0.1., Measurement Manual. [Online]. Available:
http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0.
1%20Measurement%20Manual.pdf

[9] S. Ferreira, J. Collofello, D. Shunk, G. Mackulak. (2009, Oct.).
Understanding the effects of requirements volatility in software
engineering by using analytical modeling and software process
simulation. Journal of Systems and Software, Volume 82, Issue 10, pp.
1568-1577, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121209000557

[10] J. Cuadrado-Gallego, P. Rodriguez-Soria, A. Gonzalez, D. Castelo, and
S. Hakimuddin, “Early Functional Size Estimation with IFPUG Unit
Modified,” Computer and Information Science (ICIS), 2010 IEEE/ACIS
9th International Conference on, Comput. Sci. Dept., Univ. of Alcala,
Alcala de Henares, Spain, 2010, pp. 729-733.

[11] Department of Defense (2011, Nov.). Software Resource Data Report.
[Online]. Available: http://dcarc.cape.osd.mil/Files/Policy/2011-
SRDRFinal.pdf

[12] Department of Navy. (2010, Sep.). Software Criteria and Guidance for
Systems Engineering Technical Reviews (SETR) Supplement to
Guidebook for Acquisition of Naval Software Intensive Systems.
[Online]. Available:
http://www.secnav.navy.mil/rda/OneSource/Documents/Program%20As
sistance%20and%20Tools/Handbooks,%20Guides%20and%20Reports/
Page%205/supplementtoguidebook.pdf

[13] S. Furey. (1997, Apr.). Why We Should Use Function Points [software
metrics]. Software, IEEE, 14(2), pp. 28–30. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=582971&isnu
mber=12658

[14] M. Heričko, and A. Živkovič. (2008, Jun.). The size and effort estimates
in iterative development, Information and Software Technology.

Volume 50, Issues 7–8, pp. 772-781, ISSN 0950-5849. Available:
http://www.sciencedirect.com/science/article/pii/S0950584907000870

[15] International Function Point Users Group. (2000, Apr.). Function Point
Counting Practices Manual, Release 4.1.1. [Online]. Available:
http://perun.pmf.uns.ac.rs/old/repository/research/se/functionpoints.pdf

[16] C. Jones, “Function points as a universal software metric,” SIGSOFT
Softw. Eng. Notes38, 4 (July 2013), 2013, pp. 1-27.

[17] M, Kaya, and O. Demirors, “E-Cosmic: A Business Process Model Based
Functional Size Estimation Approach,” Software Engineering and
Advanced Applications (SEAA), 2011 37th EUROMICRO Conference
on, Inf. Inst., Middle East Tech. Univ., Ankara, Turkey, 2011, pp. 404-
410.

[18] I. Lipkin, “Test Software Development Project Productivity Model”,
Ph.D. dissertation, Univ. of Toledo, Toledo, OH, 2011.

[19] M. Ochodek, J. Nawrocki, and K. Kwarciak. (2011, Mar.). Simplifying
effort estimation based on Use Case Points. Information and Software
Technology, Volume 53, Issue 3, pp. 200-213, ISSN 0950-5849.
Available:
http://www.sciencedirect.com/science/article/pii/S095058491000176X

[20] R. Madachy, B. Boehm, B. Clark, T. Tan, and W. Rosa, “US DoD
Application Domain Empirical Software Cost Analysis,” 2011
International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 392 – 395.

[21] A. Malik, and B. Boehm. (2011, Jul.). Quantifying requirements
elaboration to improve early software cost estimation. Information
Sciences, Volume 181, Issue 13, 1 July 2011, pp. 2747-2760, ISSN
0020-0255. Available:
http://www.sciencedirect.com/science/article/pii/S002002550900526X

[22] A. Malik, “Quantitative and Qualitative Analyses of Requirements
Elaboration for Early Software Size Estimation”, PhD Dissertation,
Computer Science Department, University of Southern California, 2011.

[23] A. Nassif, D. Ho, and L. Capretz. (2013, Jan.). Towards an early
software estimation using log-linear regression and a multilayer
perceptron model. Journal of Systems and Software, Volume 86, Issue 1,
pp. 144-160, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002221

[24] G. Robiolo, R. and R. Orosco, "An Alternative Method Employing Uses
Cases for Early Effort Estimation," Software Engineering Workshop,
2007. SEW 2007. 31st IEEE , vol., no., pp.89-98, March 2007-Feb. 8 2007

[25] W. Rosa, T. Packard, A. Krupanand, J. Bilbro, and M. Hodal. (2013,
Feb.). COTS integration and estimation for ERP. Journal of Systems and
Software, Volume 86, Issue 2, February 2013, pp. 538-550, ISSN 0164-
1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002713

[26] W. Rosa, R. Madachy, B. Boehm, B. Clark, "Simple Empirical Software
Effort Estimation Model,” ESEM '14 Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, Article No. 43.

[27] W. Rosa, B. Clark, B. Boehm, and R. Madachy. (2014, Oct.) Simple-
Empirical Software Cost Estimation. 29th International Forum on
COCOMO and Systems/Software Cost Modeling. [Online]. Available:
http://csse.usc.edu/new/wp-content/uploads/2014/10/Simple-Empirical-
Software-Cost-Estimation_v2.pdf

[28] A. Sharma, and D. Kushwaha, “Early estimation of software complexity
using requirement engineering document,” SIGSOFT Softw. Eng. Notes
35, 5 October 2010.

[29] A. Sharma, and D. Kushwaha, “Estimation of Software Development
Effort from Requirements Based Complexity,” Procedia Technology,
Volume 4, 2012, pp. 716-722, ISSN 2212-0173.

[30] TECOLOTE Inc. (2014, Jul.). Automated Cost Estimating Integrated
Tools: CO$TAT. [Online]. Available:
http://ww.aceit.com/Pages/Products/ProductPage.aspx?id=f638a6d8-
60e9-414a-9970-7fed249b9d25

[31] M. Tsunoda, Y. Kamei, K. Toda, M. Nagappan, K. Fushida, and N.
Ubayashi, “Revisiting software development effort estimation based on
early phase development activities,” Mining Software Repositories

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://www.secnav.navy.mil/rda/OneSource/Documents/Program%20Assistance%20and%20Tools/Handbooks,%20Guides%20and%20Reports/Page%205/supplementtoguidebook.pdf
http://www.secnav.navy.mil/rda/OneSource/Documents/Program%20Assistance%20and%20Tools/Handbooks,%20Guides%20and%20Reports/Page%205/supplementtoguidebook.pdf
http://www.secnav.navy.mil/rda/OneSource/Documents/Program%20Assistance%20and%20Tools/Handbooks,%20Guides%20and%20Reports/Page%205/supplementtoguidebook.pdf
http://perun.pmf.uns.ac.rs/old/repository/research/se/functionpoints.pdf
http://softeng.polito.it/ESEIW2014/ESEM/
http://ww.aceit.com/Pages/Products/ProductPage.aspx?id=f638a6d8-60e9-414a-9970-7fed249b9d25
http://ww.aceit.com/Pages/Products/ProductPage.aspx?id=f638a6d8-60e9-414a-9970-7fed249b9d25

 10

(MSR), 2013 10th IEEE Working Conference on, Toyo Univ., Saitama,
Japan, 2013, pp. 429-438.

[32] D. Rodríguez, M.A. Sicilia, E. García, R. Harrison. (2012, Mar.).
Empirical findings on team size and productivity in software
development. Journal of Systems and Software,” Volume 85, Issue 3,
March 2012, pp. 562-570, ISSN 0164-1212. Available:
http://www.sciencedirect.com/science/article/pii/S0164121211002366

[33] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in
agile software development: a systematic literature review,”
In Proceedings of the 10th International Conference on Predictive
Models in Software Engineering (PROMISE '14). ACM, New York,
NY, USA, 2014, pp. 82-91.

[34] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile
software development: a survey on the state of the practice,”
In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering (EASE '15). ACM, New York, NY,
USA, 2015, Article 12, 10 pages.

[35] R. Valerdi, “The constructive systems engineering cost model
(COSYSMO)”, Ph.D. dissertation, Dept. Industrial and System Eng.,
Univ. of Southern California, Los Angeles, CA, 2005.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

	I. INTRODUCTION
	A. Problem Statement
	B. Purpose Statement
	C. Deficiencies in Past Studies
	D. Significance of Proposed Study
	E. Paper Organization

	II. RELATED WORK
	A. Studies relating Requirements to Development Effort
	Malik and Boehm [21] introduced a technique for quantifying requirements elaboration for early phase software cost estimation. Their work focused on studying the first stage of requirements elaboration by deriving factors for converting high-level ca...
	Malik [22] extended his previous work by examining the entire process of requirements elaboration for early phase software size estimation. The approach involved counting the number of capability goals (CG), capability requirements (CR), use cases (U...
	B. Studies on Agile Software Effort Estimation
	C. Studies relating Application Domain to Development Effort
	D. Studies relating Peak Staff to Development Effort

	III. RESEARCH METHOD
	A. Population and Sample
	B. Questionnaire and Instrumentation
	C. Data Normalization
	1) Counting Software Requirements
	2) Data Grouping

	D. Research Questions
	Q1: Do initial software requirements relate to final effort?
	Q2: Do initial software requirements along with initial peak staff relate to actual development effort?
	Q3: Do initial software requirements along with initial peak staff and super domain relate to final effort?

	E. Variables
	F. Model Validity Measures

	IV. DATASET DEMOGRAPHICS
	V. DESCRIPTIVE STATISTICS
	VI. EFFORT MODELS (ENTIRE DATASET)
	A. Model Equations
	B. Model Validity
	C. Model Accuracy

	VII. AGILE SOFTWARE EFFORT MODELS
	A. Agile Model Equations
	B. Agile Model Validity
	C. Agile Model Accuracy

	VIII. CONCLUSION
	A. Primary Findings
	B. Threats to Validity
	C. Model Usefulness
	D. Model Limitations
	E. Future Work

	IX. REFERENCES

