Software Effort Estimation Models for Contract Proposal Evaluation

Authors: Wilson Rosa Corinne Wallshein

June 6, 2017 2017 ICEAA Professional Development & Training Workshop

- Present a set of effort estimating relationships and benchmarks for predicting both, traditional and agile software development projects using empirical data from 196 very recent US DoD programs.
 - Appropriate for crosschecking contract cost proposals as input parameters used in the analysis are typically available at bidding phase or earlier
 - Examines the validity of using of *Initial Software Requirements* as a proxy size measure

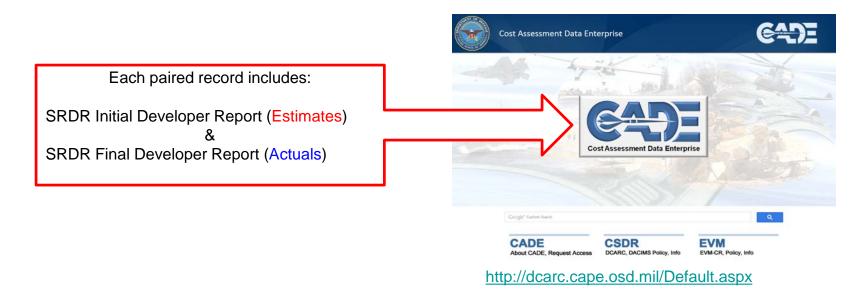
- Experimental Design
- Dataset Demographics
- Productivity Benchmarks
- Effort Estimation Models
 - Entire Dataset
 - Agile Software Subset
- Conclusion

Experimental Design

Instrumentation

- Questionnaire:
 - Software Resource Data Report" (SRDR) (DD Form 2630)
- Source:
 - Cost Assessment Data Enterprise (CADE) website:
 http://cade.osd.mil/Files/Policy/Initial_Developer_Report.xlsx

http://cade.osd.mil/Files/Policy/Final_Developer_Report.xlsx


- Content:
 - Allows for the collection of project context, company information, requirements, product size, effort, schedule, and quality

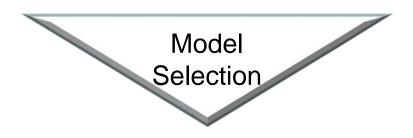
Dataset used in Study

Empirical data from recent US DoD programs:

176 Paired SRDR Records from the Cost Assessment Data Enterprise (CADE)

- 16 Agile SRDR Records from CADE
 - 4 additional Agile Records from Proprietary Source
- **196** Records analyzed in this study

Data Normalization and Analysis Workflow


• Dataset normalized to "account for sizing units, application complexity, and content so they are consistent for comparisons" (source: GAO)

Counting Software Requirements

Grouping Dataset by Super Domain


Variable Selection

Regression Analysis

Counting Software Requirements

Initial External Interfaces

Initial Software Requirements

F O R

Μ

U

"shall" statements contained in the baseline Software Requirements Specification (SRS)

" shall" statements contained in the baseline Interface Requirements Specifications (IRS)

Initial SRDR Report

Initial SRDR Report

Initial Software Requirements typically available before contract award

Presented at the CTICEAA Professional Development & Training Workship by Super Domain Com/portland2017 Grouping Dataset by Super Domain Approach

- 1) Dataset initially mapped into 17 Application Domains*
- 2) Then into 4 complexity groups called Super Domains

Application Domain		Super Domain
Software Tools		Mission Support (SUPP)
Training		
Enterprise Information System		Automated Information System (AIS)
Enterprise Services		
Custom AIS Software	N	
Mission Planning		
Test, Measurement, and Diagnostic Equipment		Engineering (ENG)
Scientific & Simulation		
Process Control		
System Software		
Command & Control, Communications	,	Real Time (RTE)
Real Time Embedded		
Vehicle Control/Payload		
Signal Processing, Microcode & Firmware		

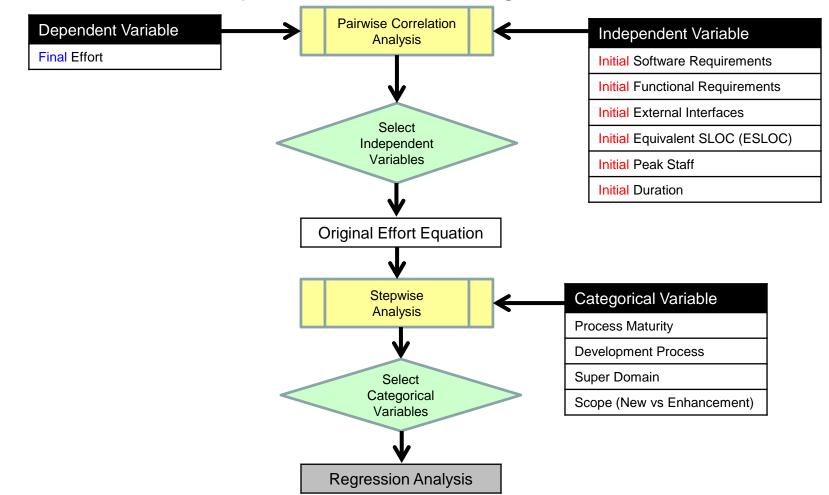
Presented at the 20 GCEAA Professional Development Training Workshop to Super Domain Comportand2017 Result

• Entire Dataset (196)

	Support	AIS	Engineering	Real Time	TOTAL
Aircraft	10	2	9	14	35
C4I	5	9	32	35	81
Business	1	18	0	0] 19
Ordinance	0	0	0	1] 1
Ship	1	0	0	10	11
UAV	5	1	2	5] 13
Satellite	1	0	6	4] 11
Missile	4	0	3	18	25
	27	30	52	87	196

• Agile Subset (20 out of 196)

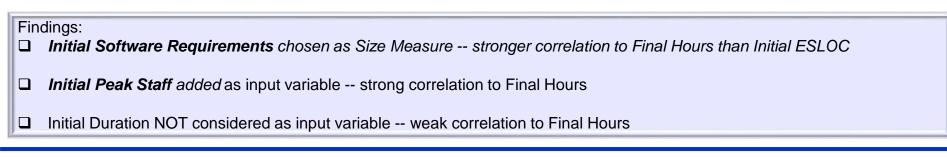
	Support	AIS	Engineering	Real Time	TOTAL
Aircraft	2	0	4	0	6
Business	1	3	0	0	4
C4I	0	1	3	5	9
Missile	0	0	0	1	1
	3	4	7	6	20


Dataset includes 20 Agile Software Development Projects

11

Variable Selection

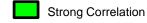
- 1) Pairwise Correlation to select Independent Variables
- 2) Stepwise Analysis to select Categorical Variables



Pairwise Correlation Analysis

	Final Hours	Initial Functional Requirements	Initial External Interfaces	Initial Software Requirements	Initial ESLOC	Initial SLOC	Initial Duration
Final Hours	1.00	0.62	0.52	0.68	0.46	0.18	0.11
Initial Functional Requirements (IFQ)	0.62	1.00	0.19		0.16	0.23	0.07
Initial External Interfaces (IEI)	0.52	0.19	1.00	0.39	0.21	0.13	0.61
Initial Software Requirements (IFQ + IEI)*	0.68	0.98	0.39	1.00	0.44	0.24	
Initial ESLOC	0.46	0.16	0.21	0.44	1.00	0.64	0.10
Initial Total SLOC	0.18	0.23	0.13	0.24	0.64	1.00	-0.13
Initial Duration	0.11	0.07	0.61	-0.05	0.10	-0.13	1.00
Initial Peak Staff	0.72	0.38	0.49	0.45	0.38	0.15	-0.16
	Strong	Correlation	📃 Pa	rtial Correlatio	on 🗧	Weak C	orrelation

**Initial Software Requirements = Initial Functional Requirements + Initial External Interfaces


Stepwise Analysis

Step 1: Initial Model

Initial Variable	Partial Correlations	T-Stat	P-Value	Effort Estimation Equation	R ²	MMRE (% Error)
REQ		12.9		$Effort = f \; (REQ)$	45%	101%

Step 2: Add Stepwise Variable

Stepwise Variables Added to Initial Model	Partial Correlations	T-Stat	P-Value	Effort Estimation Equation	R ²	MMRE (% Error)
SD	0.63	11.4	0.0000	Effort = f (REQ, SD)	67%	63%
STAFF	0.57	9.9	0.0000	Effort = f (REQ, STAFF)	63%	67%
SCOPE	0.10	1.4	0.1508	Effort = f (REQ, SCOPE)	63%	70%
Process Maturity	.021	0.2	0.7854	Effort = f (REQ, PMAT)	61%	76%

Moderate Correlation

Weak Correlation

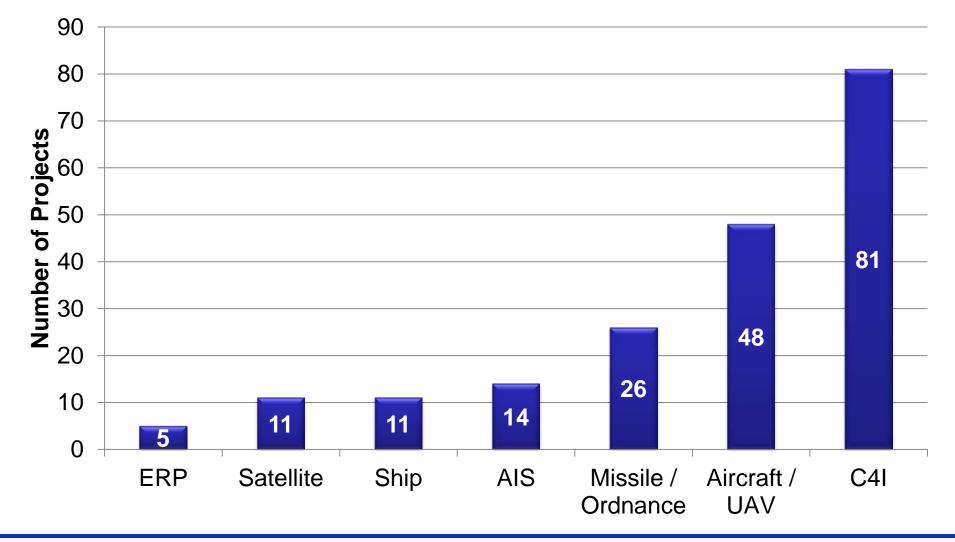
Findings:

Super Domain and Peak Staff may be added to Initial Equation as these appear to improve model's accuracy

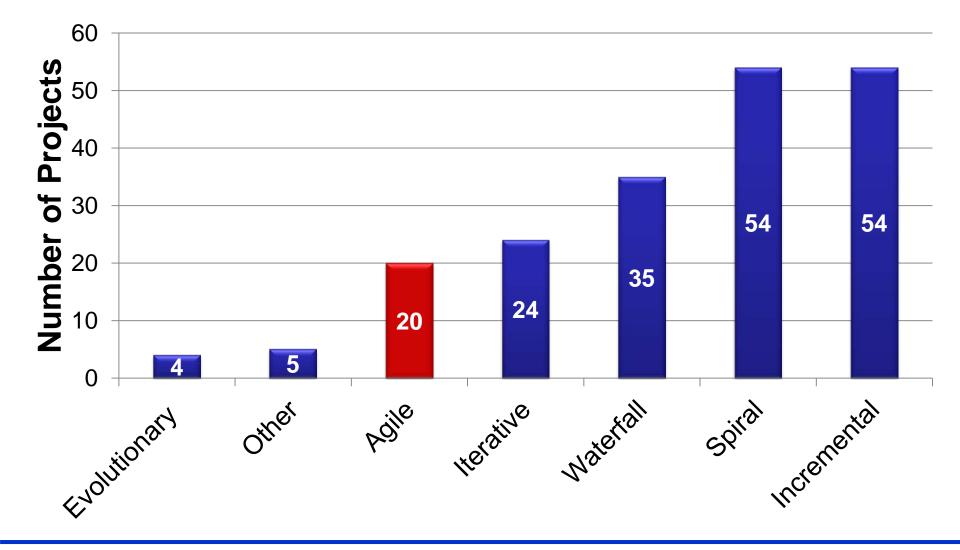
Model Selection

Model Selection Based on T-Stat, lowest MMRE and CV

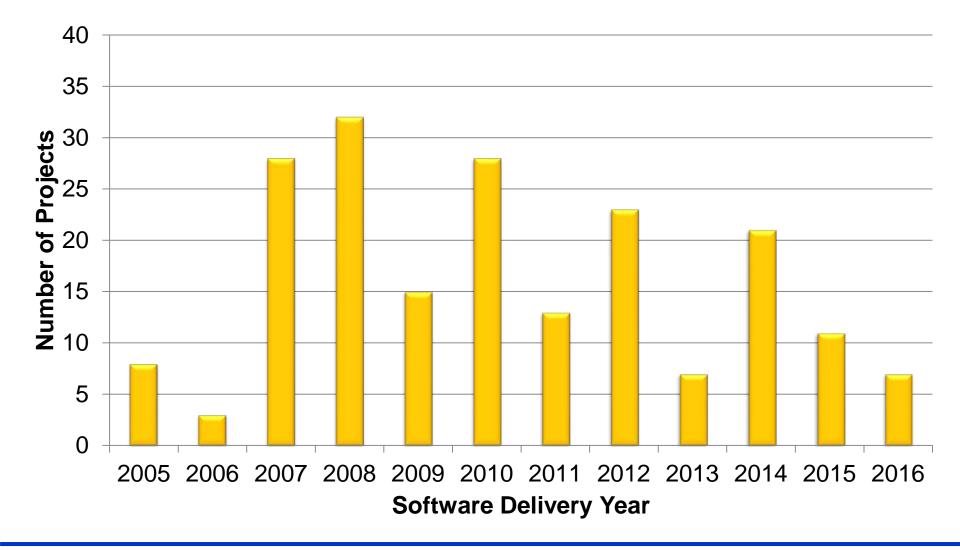
Measure	Symbol	Description
Coefficient of	CV	Percentage expression of the standard error compared to the
Variation		mean of dependent variable. A relative measure allowing
		direct comparison among models.
P-value	α	Level of statistical significance established through the coefficient alpha ($p \le \alpha$).
Variance	VIF	Indicates whether multi-collinearity (correlation among
Inflation Factor		predictors) is present in a multi-regression analysis.
Coefficient of	R ²	The Coefficient of Determination shows how much variation in
Determination		dependent variable is explained by the regression equation.
Mean	MMRE	Low MMRE is an indication of high accuracy. MMRE is defined
Magnitude of		as the sample mean (M) of the magnitude relative error
Relative Error		(MME). MME is the absolute value of the difference between
		actual and estimated effort divided by the actual effort.


Dataset Demographics

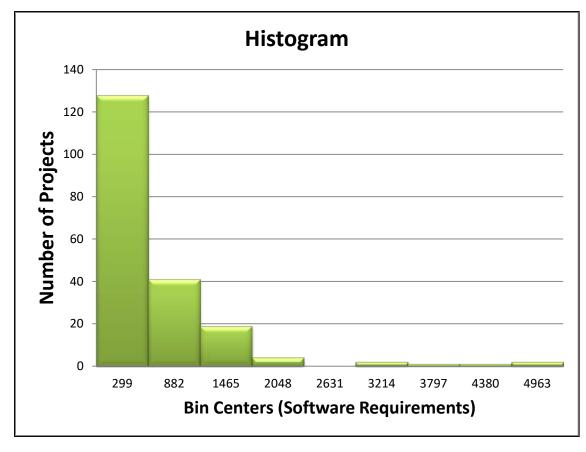
Presented at the 2017 ICEAA Professional Development & Training Workshop


www.iceaaonline.com/portland2017

Dataset by Operating Environment

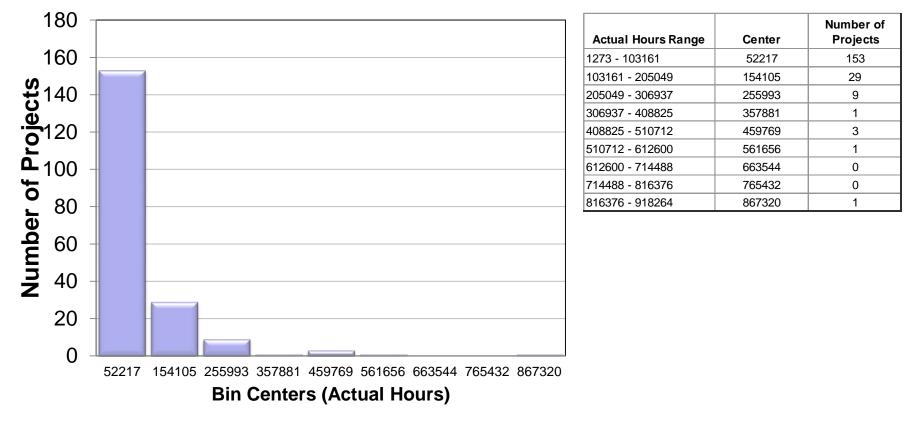


Dataset by Development Process



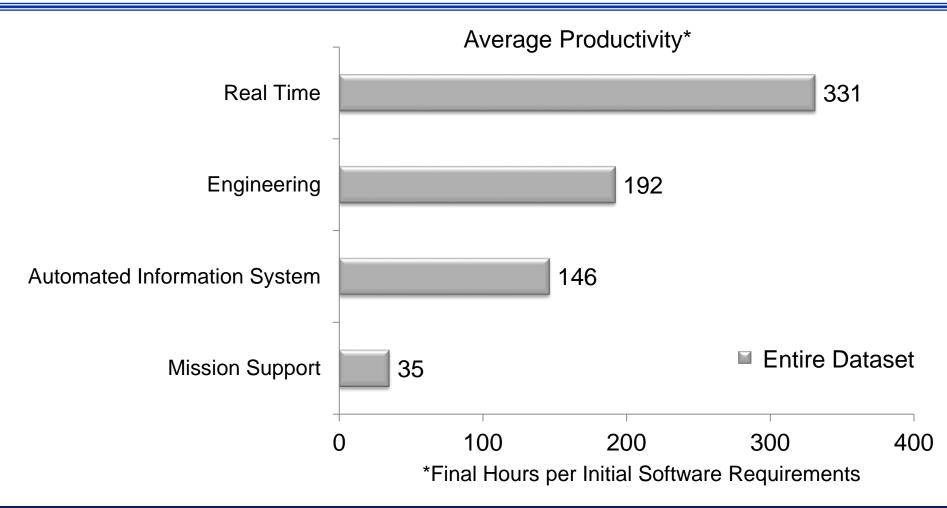
Dataset by Delivery Year

Dataset by Software Size Range


Software Requirements Range	Bin Center	Number of Projects
8.000 - 590.9	299	128
590.9 - 1174	882	41
1174 - 1757	1465	19
1757 - 2340	2048	4
2340 - 2922	2631	0
2922 - 3505	3214	2
3505 - 4088	3797	1
4088 - 4671	4380	1
4671 - 5254	4963	2

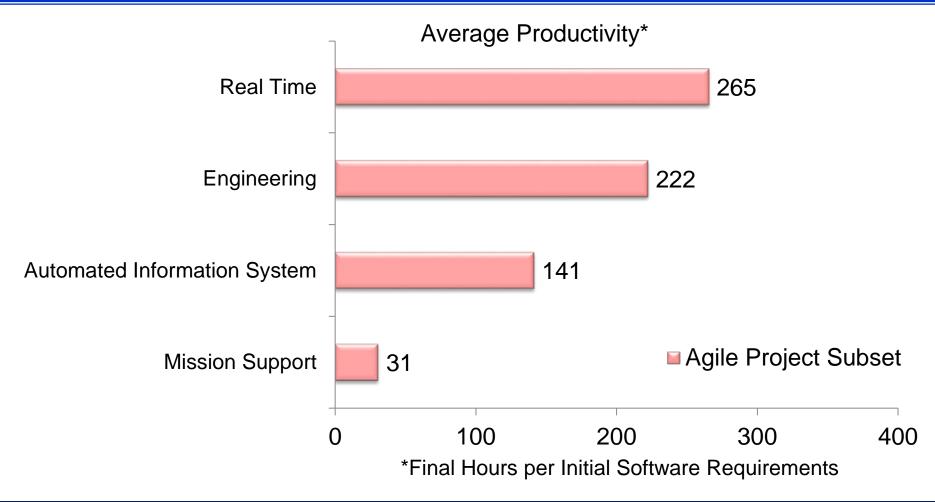
Most Projects in the study reported less than 600 Initial Software Requirements

Dataset by Expended Effort (Actual Hours)


Histogram

Most Projects in the study expended between 1,200-100,000 Hours

Productivity Benchmarks



Super Domain has a significant effect on Software Productivity

Presented at the 2017 Professional Development & Training Worksh Super Domain Agile Project Subset (n=20)

Super Domain also shows significant effect on Agile Project Software Productivity

Presented at the 2017 ICEAA Personal Detelopment & Training Works Comparison www.iceaaonline.com/portland2017 Agile vs Non-Agile

Average Productivity*

Size Range	Agile	Non-Agile
1-100	415	466
101-500	159	189
501-5000	77	131
Composite Average	190	229

*Final Hours per Initial Software Requirements

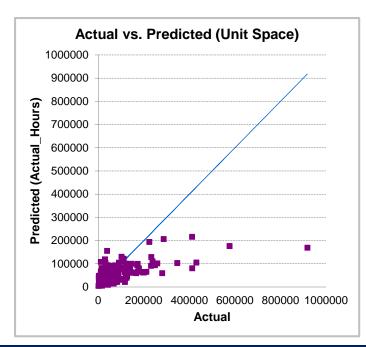
When grouped by Size, Agile Software Projects appear to be more productive

Effort Estimation Models

Entire Dataset

Effort Model Variables

Name	Acronym	Туре	Definition
Final Hours	EFFORT	Dependent	Actual software engineering effort (in Hours) at contract completion
Initial Software Requirements	REQ	Independent	Sum of Initial Functional Requirements and Initial External Interface Requirements estimated at contract award. Counting convention based on "shall statements"
Initial Peak Staff	STAFF	Independent	Estimated peak team size at contract award, measured in full-time equivalent staff
Super Domain	SD	Categorical	Software primary application. Four Types: Mission Support, Automated Information System (AIS), Engineering, or Real Time

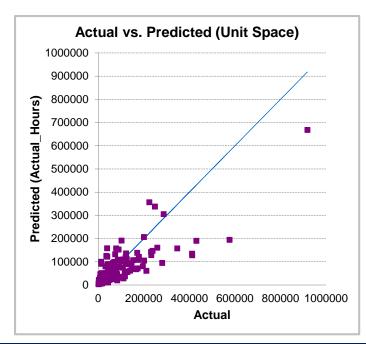

Presented at the 2017 ICEAA Profession Effort * Estimation Model Single Variable, Entire Dataset

Model	Equation Form	N	R² %	CV %	Mean	MMRE %	REQ Min	REQ Max
1a	Effort = 1379 x REQ ^{0.59}	196	45	58	74425	101	8	5254

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start

Coefficient Statistics:

Ma dal la	T . (.)	L III
Variable	T-stat	VIF
Intercept	27.2	
REQ	12.8	
STAFF		
SD		


Presented at the 2017 ICEAA Professional Effelopment & Eming Wirkshop ation Model Two Variable, Entire Dataset

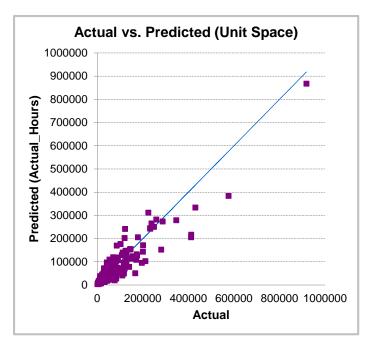
Model	Equation Form	N	R² %	CV %	Mean	MMRE %	REQ Min	REQ Max
1b	Effort = 1376 x REQ ^{0.3662} x STAFF ^{0.5225}	196	63	47	74425	71	8	5254

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start
- STAFF = Initial (or Estimated) Peak Staff at contract start

Coefficient Statistics:

Variable	T-stat	VIF
Intercept	33.3	
REQ	8.3	1.36
STAFF	9.8	1.36
SD		

Model's accuracy dramatically improves when Peak Staff is incrementally added


Presented at the 2017 ICEAA Profession Efformet & Engling Witkshop ation Model Three Variable, Entire Dataset

Model	Equation Form	N	R ² %	CV %	Mean	MMRE %	REQ Min	REQ Max
1c	Effort = 244.3 x REQ ^{0.4803} x STAFF ^{0.4889} x SD ^{1.152}	196	83	32	74425	41	8	5254

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start
- SD = Super Domain (1 if Mission Support, 2 if AIS, 3 if Engineering, 4 if Real Time)
- STAFF = Initial (or Estimated) Peak Staff at contract start

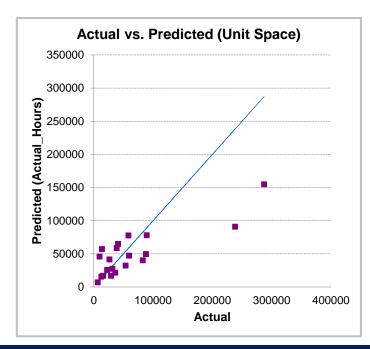
Coefficient Statistics:

Variable	T-stat	VIF
Intercept	29.3	
REQ	15.6	1.45
STAFF	13.5	1.37
SD	15.0	1.07

Model's accuracy far better when Super Domain is treated along with REQ and STAFF

Effort Estimation Models

Agile Software Subset



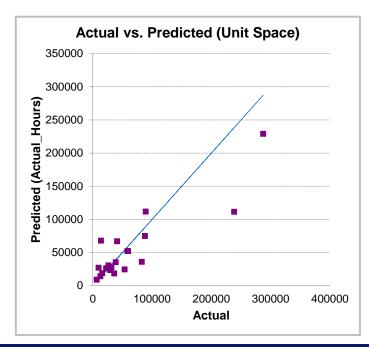
Model	Equation Form	N	R² %	CV %	Mean	MMRE %	REQ Min	REQ Max
2a	Effort = 2202 x REQ ^{0.5009}	20	53	48	62140	64	10	4867

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start

Coefficient Statistics:

Variable	T-stat	VIF
Intercept	12.3	
REQ	4.7	
STAFF		
SD		

Agile Estimation Model not accurate when simply using REQ as input


Presented at the 2017 ICEAA Profession Effort Estimation Model Two Variable, Agile Software Subset

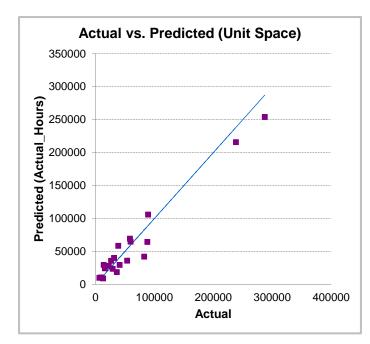
Model	Equation Form	N	R² %	CV %	Mean	MMRE %	REQ Min	REQ Max
2b	Effort = 1045 x REQ ^{0.4071} x STAFF ^{0.4404}	20	60	36	62140	52	10	4867

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start
- STAFF = Initial (or Estimated) Peak Staff at contract start

Coefficient Statistics:

Variable	T-stat	VIF
Intercept	10.2	
REQ	3.7	1.22
STAFF	2.0	1.22
SD		

Agile Estimation Model dramatically improves when Peak Staff is treated with REQ


Presented at the 2017 ICEAA Profession Efflorment & English Matter Model Www.iceaaonline.com/portland2017 Three Variable, Agile Software Subset

Model	Equation Form	N	R ² %	CV %	Mean	MMRE %	REQ Min	REQ Max
2c	Effort = 200.1 x REQ ^{0.5126} x STAFF ^{0.4782} x SD ^{1.001}	20	81	22	62140	32	10	4867

- Effort = Final Hours (or Actual Hours) at contract completion
- REQ = Initial Software Requirements at contract start
- SD = Super Domain (1 if Mission Support, 2 if AIS, 3 if Engineering, 4 if Real Time)
- STAFF = Initial (or Estimated) Peak Staff at contract start

Coefficient Statistics:

) (a si a la la	T . 4 . 4	VIII
Variable	T-stat	VIF
Intercept	9.1	
REQ	6.7	1.45
STAFF	3.2	1.37
SD	4.6	1.07

Agile Estimation Model is far more accurate when all 3 variables are added

Conclusion

Primary Findings

- Initial Software Requirements* is a valid size proxy for Agile and non-Agile Software Effort Estimation Models
- Estimation Models' accuracy improves when Peak Staff and Super Domain, are treated along with Initial Software Requirements*

Model	Equation Form	Ν	R ² %	CV%	MMRE%
1a	Effort = 1378 x REQ ^{0.59}	196	45	58	101
1b	Effort = 1372 x REQ ^{0.3667} x STAFF ^{0.5218}	196	63	47	71
1c	Effort = 243.7 x REQ ^{0.4809} x STAFF ^{0.488} x SD ^{1.151}	196	83	32	41

 Agile Estimation Model's accuracy also improves when Peak Staff and Super Domain are gradually added

Model	Equation Form	Ν	R ² %	CV%	MMRE%
2a	Effort = 2202 x REQ ^{0.5009}	20	53	48	64
2b	Effort = 1045 x REQ ^{0.4071} x STAFF ^{0.4404}	20	60	36	52
2c	Effort = 200.1 x REQ ^{0.5126} x STAFF ^{0.4782} x SD ^{1.001}	20	81	22	32

Model Limitations and Usefulness

- Since data was analyzed at the CSCI level, effort models may not be appropriate for projects reported at the Roll-Up Level.
- Do not use Effort Estimation Models if your input parameters are outside of the model's dataset range.
- Proposed Effort Models may be used to either crosscheck or validate contract proposals as input parameters used in the study are typically available during proposal evaluation phase
- Applicable for both, Defense and Business Systems
- Applicable for Agile and non-Agile Software Projects