Bottom Up Methods of Estimating Software SEPM and Non-DCTI Cost

2017 ICEAA Professional Development & Training Workshop

James R. Black June 2017 Bio

- Presenter: James "Jay" Black has 13 years of cost estimating experience
 - Currently works as a software project manager for the Administration for Children and Families within the U.S. Department of Health and Human Services
 - In this role, he supports the Grant Solutions software suite used to administer 1200 grant programs in eight Federal departments
 - Jay has a Masters in Systems Engineering from Johns Hopkins
 University and holds a current CCE/A certification
- Jay worked for the Navy cost community (NAVAIR 4.2, NCCA, & NAVSEA 05C) from 2003 through 2015
- For questions, comments, and/or feedback please email me at:
 - James.robert.black@gmail.com
 - James.black@acf.hhs.gov

If any material in this brief is of use to you now or later, please email me, I'd love to know

References & Abstract

- References/Acknowledgements:
 - Mike Popp's observations on IEEE Standard 11207
 - Tim Lawless observations on Systems Engineering/Program Management
 - Cost Estimating Body of Knowledge (CEBoK) Module 1 Cost Estimating Basics
- Presentation abstract:
 - Systems Engineering/Program Management (SE/PM) and additional non-Design, Code, Test, and Integration (Non-DCTI) activities performed during software development efforts are often significant and drive estimates of total project costs
 - Yet, cost estimates often omit the detailed research and analysis needed to adequately model SE/PM & Non-DCTI costs
 - This brief will present bottom up methods useful for understanding and estimating these costs and share analysis of recent SE/PM & Non-DCTI data

This presentation is the result of practicing detailed actual cost data collection for a variety of platform and system estimates/analyses

www.iceaaonline.com/portland2017

Bottom Line Up Front (BLUF)

- The WBS is the foundation and a common WBS speeds the uptake of information for the cost estimate's audience
- Be diligent in identifying how effort is allocated to DCTI, Non-DCTI and/or SEPM: take care not to double count or omit effort
- IEEE 12207 is useful when differentiating between SEPM & DCTI
- Because SEPM is a predominately fixed & recurring cost, estimating it best served by a bottom up methodology
- Factor driven estimating methodologies are useful in the absence of time/data and can be useful crosschecks

WBS = Work Breakdown Structure DCTI = Design, Code, Test, & Integration SEPM = Systems Engineering & Program Management IEEE = Institute of Electrical and Electronics Engineers

WBS is the Foundation

Per Cost Estimating Body of Knowledge (CEBoK) Module 1 Cost Est. Basics:

- A Work Breakdown Structure (WBS) establishes a common frame of reference for relating job tasks to each other and relating project costs at the summary level of detail
 - It provides a consistent and visible framework for specifying the objectives, labor, materials, and contracts of the system/program.
 - The structure is used to define the total program/system by providing detailed definitions of individual elements required (via a WBS Dictionary)
- A WBS should be tailored for each system or program for the purpose of capturing all the idiosyncrasies endemic to each system/program
- Estimate uses a WBS that is at a level of detail appropriate to ensure that cost elements are neither omitted nor double-counted
- Estimate is presented in a WBS fully traceable to the system specification
- WBS structure is aligned to organizational structure performing the work; WBS element tasks are traceable to data, which is traceable back to the respective source documents

The WBS is the foundation and a common WBS speeds the uptake of information for the cost estimate's audience

www.iceaaonline.com/portland2017

WBS Example - MIL-STD-881C

- For Department of Defense projects, WBS templates are provided in: MIL-STD-881C Work Breakdown Structures for Defense Material Items
- An example WBS from MIL-STD-881C for an Automated Information System follows:
 - 1.0 Automated Information System (AIS)

1.1 AIS Prime Mission Product (PMP) Relea 1.1.1 Custom Application Software 1 1.1.2 Enterprise Service Element 1n 1.1.3 Enterprise Information System 1 1.1.4 External System Interface Develo 1.1.5 AIS Platform Hardware 1.1.6 System Level Integration*	 ase/Increment X Design, Code, Test, & Integration (DCTI) Element-level software development Non-recurring, variable costs: driven by a software sizing measure, e.g. Source Lines of Code (SLOC)
 1.2 System Engineering 1.3 Program Management 1.4 Change Management 1.5 System Test and Evaluation 1.6 Training 1.7 Data 1.8 Peculiar Support Equipment 1.9 Common Support Equipment 	 "SE/PM" or "SEPM" System-level activities related to software, hardware, and integration Recurring, fixed costs: driven by a Level-of- Effort headcount mostly independent of software size
1.10 Operational/Site Activation 1.11 Industrial Facilities 1.12 Initial Spares and Repair Parts * Note: 1.2 & 1.3 also include system level integration efforts	So, what does it mean when estimators refer to "Non-DCTI"? ⁶

Software Cost Estimating Key Words

- Design, Code, Test, & Integration (DCTI)
- Systems Engineering & Program Management (SEPM)
- "Non-DCTI" In the presenter's experience, Non-DCTI is the SEPM related to software development
 - Exists as a recurring development activity
 - Often begins before the start of non-recurring development activities (i.e. DCTI)
 - Continues throughout the execution of DCTI activities
 - Keep in mind: since Non-DCTI is not immediately identifiable in MIL-STD-881C, it can mean different things to different people

Be diligent in identifying how effort is allocated to DCTI, Non-DCTI and/or SEPM: take care not to double count or omit effort

Presented at the 2017 ICEAA Professional Development & Theining Workshop and 1220 www.iceaaonline.com/portland2017

"Systems and Software Engineering - Software Life Cycle Processes"

SEPM Estimating

- When estimating SEPM:
 - For continued development on an existing system (e.g. future spiral or increment): collect SEPM FTE actuals from prior spirals/increments (e.g. from CCDRs 1921 & 1921-1)
 - For a new system: collect SEPM FTE actuals for analogous systems (e.g. from CCDRs 1921 & 1921-1)
 - Normalize collected data:
 - Identify how representative prior FTEs are of future effort required
 - Parse total FTEs to identify software efforts
- To estimate SEPM costs:
 - First, use a bottom up estimating methodology: FTEs/year * Years of development * Labor Rate
 - Then, use a crosscheck: DCTI cost or hours * Non-DCTI factor

Primary estimating approach: bottom up methodology Crosscheck: factor driven approach

FTE = Full-Time Equivalent CCDR = Contractor Cost Data Reportina

9

SEPM as a Fixed Cost

- Why not use a parametric technique to estimate SEPM?
 - I.e.: why not use Excel's "Analysis ToolPak" or ACEIT Costat to develop a correlation between SEPM Hours (or cost) and an objective measure (ESLOC, DSLOC, weight, volume, etc.)?
- SEPM is a predominately fixed and recurring cost:
 - SEPM does not scale directly with the project's objective measures
 - E.g.: for every additional ESLOC of a project, there is not a proportional increase in the number of SEPM FTEs
 - SEPM often varies significantly depending on the project/contractor/vendor
- However, SEPM *does scale* with the total number of concurrent baselines under development:
 - E.g.: if the system under development will be integrated onto 2 different host aircraft types; then, the total SEPM costs will be greater than if the system was integrated onto 1 host aircraft type
 - I.e.: costs for integrating a system onto 2 platforms > 1 platform

Because SEPM is a predominately fixed & recurring cost, estimating it best served by a bottom up methodology

10

Collecting SEPM Actuals by Labor Category

- When collecting SEPM FTE actuals from a contractor/vendor:
 - Separately identify FTEs by constituent labor categories
 - Parse FTEs by effort split between SEPM and DCTI
 - E.g. a small software development effort could be:

	FT	FTEs		
Labor Category	SEPM	DCTI		
Project Manager	1			
System Architect	0.5			
Business Architect	0.5			
Software Development Lead	0.25	1		
Business Specialist	1			
Security Specialist	curity Specialist 0.25			
Business Analyst	1	1		
Database Administrator		1.5		
Software Developer		8		
Quality Assurance Lead	0.5	0.5		
Test Engineer		2		
Technical Writer	1			
Total	6	14		

Presented at the Schaffet Walfree To Development Construction/portland2017 Rosetta Stone

Software Development Cost = Variable Costs + Fixed Costs

Slide POC: james.robert.black@qmail.com

Presented at the 2017 ICEAA Profession Robert Company range of the Profession Robert Company ran

When Estimating Software Costs

- Get as much *visibility* as possible when collecting SEPM FTE actuals from contractors/vendors:
 - Use IEEE 12207 to forge a common understanding of SEPM and DCTI
 - Separately identify recurring and non-recurring FTEs
 - Separately identify FTEs performing software, hardware, and integration related activities
 - Identify FTEs by constituent labor categories (i.e. how many project) managers, systems architects, business analysts, domain specialists or subject matter experts, etc.)
 - If there are multiple concurrent spirals/increments or baselines, identify how the total SEPM is split between them
- *Partition* a software cost estimate into two components:
 - Variable, non-recurring costs DCTI, i.e. costs dependent on software size
 - Fixed, recurring costs Software SEPM or Non-DCTI, i.e. costs independent of software size

Visibility & Partitioning are useful when comparing cost estimates and briefing results to senior leaders

Summary

- The WBS is the foundation and a common WBS speeds the uptake of information for the cost estimate's audience
- Be diligent in identifying how effort is allocated to DCTI, Non-DCTI and/or SEPM: take care not to double count or omit effort
- IEEE 12207 is useful when differentiating between SEPM & DCTI
- Because SEPM is a predominately fixed & recurring cost, estimating it best served by a bottom up methodology
- Factor driven estimating methodologies are useful in the absence of time/data and can be useful crosschecks

• Q&A

• Backup

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017 SEPM Scaling with # of Platforms

- SEPM *does scale* with the total number of concurrent baselines under development:
 - E.g.: if the system under development will be integrated onto *2 different* host platform types; then, the total SEPM costs will be greater than if the system was integrated onto 1 host platform type
 - I.e.: costs for integrating a system onto 2 platforms > 1 platform

Example where a second host platform is added in Year 4 of development:

SEPM is a predominately fixed cost, but does scale with the # of platform types

Presented at the 2017 ICEAA refessional Development's Tlaining Workshop and 1220 "Systems and Software Engineering - Software Life

Cycle Processes"

	CEDN		5.3 The Development Process					
	JLFIVI	1		Activity	Tasks (paraphrased)	12207.1 Inform	ation Item guidelines	
	System-lovel			5.3.1 Process	.1 Define software life cycle model			
٦.	System-level			Implementation	.2 Document and control outputs			
	activities related				4 Document development plans	 Plan Desc	 6.5 DPP 6.17 SDSD	
Т					.5 Deliver all needed products			
Т	to software,			5.3.2 System	.1 Specify system requirements	Specification	6.26 SRS	
L	hardwara and			requirements	.2 Evaluate requirements against criteria	Spec, Record	6.26 SRS, 6.6 SRER	
L	naruware, anu			5 3 3 System	1 Establish ton-level architecture	Description	6 25 SARAD	
L	integration			architectural	.2 Evaluate architecture against criteria	Desc. Record	6.25 SARAD. 6.6 SAER	
L	integration			design				
		-		5.3.4 Software	1 Document software requirements	Desc	6.22 SRD, 6.30 UDD	
				requirements	.2 Evaluate requirements against criteria	Desc, Record	6.22 SRD, 6.6 SRER	
				5 3 5 Software	1 Transform requirements into architecture	Description	 6 12 SAD	
				architectural	.2 Document top-level design for interfaces	Description	6.19 SIDD	
				design	.3 Document top-level design for database	Description	6.4 DBDD	
					.4 Document preliminary user documentation	Description	6.30 UDD	
					6 Evaluate architecture against criteria	Plan Desc Record	6.12 SAD 6.6 SAFR	
					.7 Conduct joint reviews iaw 6.6			
				5.3.6 Software	.1 Document design for each component	Description	6.16 SDD	
				detailed design	.2 Document design for interfaces	Description	6.19 SIDD	
					4 Undate user documentation	Description	6.4 DBDD 6.30 UDD	
					.5 Document unit test requirements	Plan	6.27T/VP	
	DCTI				.6 Update integration test requirements	Plan	6.27T/VP	
					.7 Evaluate detailed design against criteria	Rec, Desc	6.6 DDER, 6.16 SDD	
	Element-level			5.3.7 Software	1 Document each unit database and tests	 Desc. Rec. Proc	 6 4 DBDD 6 24 SCR 6 28 T//Pr	
				coding and	.2 Conduct and document unit testing	Report	6.29 T/VRR	
	software			testing	.3 Update user documentation	Description	6.30 UDD	
	development				.4 Update integration test requirements	Plan Rec Plan	6.27T/VP	
	development			5.3.8 Software	1 Document integration plans	Plan Proc	6.18 SIP 6.28 T/\/Pr	
		' I		integration	.2 Conduct and document integration tests	Report	6.29 T/VRR	
				-	.3 Update user documentation	Description	6.30 UDD	
					.4 Document qualification tests	Proc Doco	6.28 T/VPr	
					.6 conduct joint reviews jaw 6.6	Record, Plan	6.6 SIER. 6.18 SIP	
				5.3.9 Software	.1 Conduct and document qualification testing	Report	6.29 T/VRR	
				qualification	.2 Update user documentation	Description	6.30 UDD	
Г		n I		testing	.3 Evaluate tests against criteria	Record	6.6 SIER	
L	CEDN/				5 Prepare product for next phase	Record	 6 24 SCR	
	JEFIVI			5.3.10 System	.1 Integrate software with hardware & others	Report	6.29 T/VRR	
L	System-level			integration	.2 Document integration tests	Procedure	6.28 T/VPr	
1	System-level			5 2 11 System	.3 Evaluate integrated system against criteria	Record	6.6 SQIER 6.20 TA/PP	
	activities related			gualification	.2 Evaluate system against criteria	Record	6.6 SER	
				testing	.3 Support audits iaw 6.7			
	to software,				.4 Prepare product for installation	Record	6.24 SCR	
	hardware and			5.3.12 Software	.1 Plan installation in target environment			
1	naiuwale, aliu			5 3 13 Software	.∠ Install soltware law plan 1 Support acquirer's acceptance tests	 Report	 6 29 T//RB	
1	integration			acceptance	.2 Deliver product per contract	Record	6.24 SCR	
L				support	3 Provide training per contract			