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Abstract – This talk presents an outline of the design 
of the ‘2nd generation’ COSMIC Function Point 
method and industry evidence of its versatility and 
value in software project estimation and control, via 
both traditional and agile methods. COSMIC 
Function Points can also be used for early and rapid 
sizing at estimation time and can be automated with 
very high accuracy. 
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I INTRODUCTION 

This talk has four aims:  
1. To outline the design of the COSMIC method for 

measuring a functional size of software. This 
includes a discussion of the weaknesses and 
limitations of the 1st generation of functional size 
measurement (FSM) methods as well as the 
advances made by the Common Software 
Measurement International Consortium 
(COSMIC) to address them.  

2. To present evidence that COSMIC Function 
Points are of practical value in software project 
performance measurement and estimating.  

3. To present rapid COSMIC sizing techniques at 
estimation time. 

4. To present industry evidence of its automation in 
a variety of contexts, including with very high 
accuracy for real-time embedded software. 

The paper is structured as follows. Section II 
describes the background to software measurement 
and to the first generation of Function Points 
measurement methods. Section III presents an 
overview of the principles of the COSMIC Function 
Points, the second generation of Function Points. 
Section IV gives several examples of how COSMIC 
Function Points have been used in various 
organizations and in different domains that 
demonstrate how it delivers value in practice, 
including in Agile contexts. Section V presents 
COSMIC Guidelines for early or rapid sizing at 
estimation time. Section VI presents the work done for 
the automation of COSMIC size measurement, 

including the work at Renault from software 
specifications documented in Matlab-Simulink. 
Section VII presents a summary. 

II BACKGROUND TO SOFTWARE SIZE AND 
FUNCTION POINTS MEASUREMENT 

A Measurement Objectives 
There are two principal objectives that motivate an 

interest in software size measurement: 
1. Enable managers to estimate and control software 

projects (for both new software and enhancements 
to existing software.  

2. Compare performance across these projects and 
activities.  

Broadly speaking there are four main categories of 
performance indicators that should be measured for 
development projects: 

• project delivery to time and budget 
• project productivity (product size/project 

effort) 
• project speed (product size/project duration) 
• product size (to control ‘scope creep’) and 

product quality, both from a functional and a 
technical point of view 

All these indicators are of interest, since they are 
tradeable. For example: it is generally accepted that, 
within limits, a project may be speeded up by adding 
resource at the expense of lower productivity, though 
views vary on the degree of the trade-off of effort and 
duration [1]. Similarly, a project that was under-
estimated may meet its budget but deliver less product 
functionality or lower quality than was expected. 

In order to compare performance across software 
projects, the product size (taken as a measure of ‘work-
output’) must be measured in a standard way that is 
independent of the development methods and 
technologies used to implement the software product. 

Past measurements of productivity and speed can 
be used to establish performance benchmarks and to 
develop estimation models for projects sharing 
common characteristics. To be able to use past 
performance data to estimate the effort and duration 
for future projects, it is important to be able to estimate 
first the size of the software to be developed from an 
early statement of requirements, as size is usually the 
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largest driver of software-related project effort. 
Combining the estimate of the size of the product to be 
developed by a new project with benchmark 
performance data from similar past projects enables 
estimation of the effort and duration for a new project. 

The ability to estimate and/or measure the size of 
an item of software at various stages in its life-cycle is 
therefore critical to managing most software 
development activities. 

B. FUNCTION POINTS Background 
Allan Albrecht of IBM had the original idea of 

measuring a size of software from its Functional User 
Requirements - FUR [2]. His proposal evolved in the 
1980’s into the IFPUG [3] and NESMA [4] Function 
Points. Methods of measuring a size of the FUR of 
software have the advantage that the resulting size 
should be totally independent of the technology used 
for the software and any other aspects of the 
implementation.  

Even from the early days, however, this initial 
Function Points model of software was criticised in 
various ways. Hence within a few years of Albrecht’s 
proposal, a variety of variants of Function Points 
methods had been proposed. Of the numerous variants, 
only four of the 1st generation methods have been 
recognized by ISO. 

This ‘1st generation’ of FSM methods (e.g., 
methods defined before 2000) share a number of 
weaknesses. 

• Most were designed to measure software only 
from the domain of business applications. 
Nowadays even much business software is 
built from components, and exploits 
infrastructure software and real-time 
functions. 

• Most are step-functions, with very limited 
ranges (various min, max), and without a well-
defined measurement unit of 1 Function Point 
- see Figure 1. 
 

 
Figure 1. Step function in the 1st generation of 

Function Points 
 
Concurrently over the years, in response to the 

weaknesses of 1st generation FSM methods, several 
                                                           
1 The four 1st generation FSM methods were approved through the 
ISO fast-track process without a detailed review to address their 
weaknesses. 

other types of sizing variants have been introduced. 
These are usually associated with a specific method for 
modelling requirements or a specific software 
development process, such as: Use Case Points [5], 
Object Points [6], and Story Points [7]. Most of these 
variants share a number of common weaknesses, 
including improper mathematical operations on 
distinct scale types and the lack of a well-defined 
measurement unit [8]. Furthermore, they lack both 
detailed rules to eliminate subjectivity in 
measurement, and to ensure general applicability.  

The Story Points method in particular is, by design, 
interpreted differently across project teams, so no 
benchmarking is feasible. Story Points therefore does 
not support accountability in project management and 
does not provide a sound foundation for estimation 
purposes [9].  

III. OVERVIEW OF THE COSMIC FUNCTION 
POINTS 

A. Background 
During the late 1990’s, an ISO Working Group 

established some principles for functional size 
measurement [10]. Subsequently, a sub-set of the WG 
members from around the world decided that the 
market needed a new Function Points method based on 
these principles and designed to overcome the 
weaknesses of the 1st generation methods. The 
COSMIC organization was formed in 1998.  
The COSMIC group took as its initial input the designs 
of the Full-Function Points extension for real-time and 
embedded software published [11] and of the MkII 
FPA method [12]. The first official version of the 
COSMIC FSM method was made publicly available in 
2001, after extensive field trials. This 2nd generation 
COSMIC method was approved by ISO following its 
full ISO development and review process1 [13]. 

B. COSMIC Method Design Goals 
The COSMIC FSM method was designed with the 

following goals.  
• To be based on fundamental software 

engineering principles.  
• To be applicable for sizing the software 

functional requirements of business 
application, real-time and infrastructure 
software and hybrids of these, in any layer of 
a software architecture. Sizes should be 
independent of technical requirements, and of 
project methods and effort used. 

• To measure on a ratio scale so that all 
operations on measured sizes are 
mathematically valid. (Sizes measured by 

 

Function Points (FP)

3 
FP

4 FP

6 FP

3-step size range for IFPUG 
External Input Transactions

Key limitations:
- Only 3 values
- Limited ranges (min, max)
- No single measurement

unit of 1 FP!
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most 1st generation FSM and by other sizing 
methods do not meet this criterion [8].) 

• Measurement should be possible at any time 
in the software life-cycle, and at any level of 
decomposition of the software. 

• To be usable for performance measurement 
and for estimating software activities. 

• To be an ‘open’ method, available for free 
usage. 
 

C. Overview of the COSMIC Method 

ISO 14143-1 [37] specifies that a functional size 
measurement (FSM) method must measure software 
functional user requirements. The COSMIC Function 
Points [36] standard proposes a generic model of 
software that can capture the functionality of any type 
of software in a measurable way. Figure 2 illustrates 
the generic flow of data that can be observed in 
software from a functional perspective. From this 
generic model of software depicted in Figure 2 it can 
be observed that: 
• Software is bounded by hardware. In the left-hand 

side of Figure 2, software used by a human is 
bounded by I/O hardware (e.g., a mouse, a 
keyboard, a printer, or a display), or by engineered 
devices (e.g., sensors or relays. In the right-hand 
side of Figure 2, software is bounded by persistent 
storage hardware (like a hard disk, or RAM or 
ROM memory). 

• Software functionality is embedded within the 
functional flows of data groups. These data flows 
can be characterized by four distinct types of data 
movements:  
o two types of movements (ENTRIES and 

EXITS) allow the exchange of data with users 
across a boundary.  

o two types of movements (READS and 
WRITES) allow the exchange of data with the 
persistent storage hardware. 

• Different abstractions are typically used for 
different measurement purposes.  
o In real-time software, the users are typically 

the engineered devices that interact directly 
with the software, that is, the users are 
considered the I/O hardware.  

o In business application software, the 
abstraction commonly assumes that the user 
is one or more humans who interact directly 
with the business application software across 
the boundary; the I/O hardware is ignored.   

COSMIC Function Points measure the size of 
software based on identifiable functional user 
requirements. Once identified, those requirements are 
                                                           
2 A simplified description. 

allocated to hardware and software from the unifying 
perspective of a system integrating these two 
“components”. Since COSMIC is aimed at sizing 
software, only those requirements allocated to the 
software are currently considered in its measurement 
procedure.   

 
 

Figure 1. Generic flow of data groups through 
software in COSMIC Function Points 

 
Figure 3 presents next a model of the functional 

user requirements in terms of functional processes. 
 

 
Figure 3. Functional User Requirements and 

Functional Processes [15] 

The COSMIC model for software size 
measurement rests on the following principles2: 

• The functional user requirements of any 
software can be decomposed into separate 
functional processes. 

• When a functional user detects or causes an 
event (‘something that happens in the real 
world’) the user sends a data group to the 
software, triggering a functional process. 

• A functional process is complete when it has 
executed all that must be done according to the 
functional user requirements in response to the 
triggering data group it receives. 

• Functional processes comprise sub-processes 
that move data and that manipulate data. As 

Functional 
User 

Requirements

Data 
Movements

Functional
Processes

Functional 
UserEvent
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there is no agreement on how to measure data 
manipulation, the method assumes that each 
data movement sub-process accounts for any 
associated data manipulation 

• There are four types of data movements: 
- Entries and Exits each move a data group 

in and out of the software, from/to 
functional users.  

- Reads and Writes each move a data group 
from/to persistent storage. 

• A data group is a set of attributes that describes 
a single ‘object of interest’, i.e. a ‘thing’ in the 
real world of the functional users about which 
the software must enter, store, or output data. 

• The unit of measurement of the COSMIC 
FSM method is one (1) data movement of one 
(1) data group, referred to as one (1) 
‘COSMIC Function Point’ (CFP) – see fig. 4. 

• The size of a functional process is the addition 
of its data movements. The size of an item of 
software is the sum of the sizes of its 
functional processes. 

• There is no upper limit to the size of a 
functional process. (In practice, single 
processes of size over 100 CFP have been 
measured.) – see Figure 4, which should be 
contrasted with Fig. 1. 

• The size of a change to a functional process is 
the sum of its data movements that have been 
added, changed and deleted. ‘Changed’ can 
mean either the data group moved has changed 
in some way, or the associated data 
manipulation has changed. A change may vary 
in size from 1 CFP, with no upper limit – see 
Fig. 4. 

 

 
Figure 4. COSMIC – 2nd generation of Function 

Points 
 
 
For a more comprehensive overview of the 

method, see [14] and for the full details of the method, 
including its principles, rules and definitions, see [15]. 
To be noted that all of the COSMIC documents, 
including the case studies, are available free on the 
web. 

The current 2017 method is version 4.0.1. 
Another COSMIC Guideline [21] describes 

approaches to assuring the accuracy of functional size 

measurements, dependent on the available detail of the 
functional user requirements. 

D. Versatility of COSMIC in Various Software 
Domains 

While the COSMIC Measurement Manual [15] 
gives all the principles, rules and definitions of the 
method for software from any domain, with many 
examples, a number of domain-specific Guidelines 
have been written in order to provide more support for 
Measurers, with many more examples of how to 
measure specific types of FUR. Primary amongst these 
are the Guidelines for sizing:  

• Business Application Software [23], and  
• Real-Time Software [24].  

In addition, other COSMIC Guidelines have been 
published on measuring:  

• Data Warehouse software [25], and  
• software built according to Service-Oriented 

Architecture (SOA) conventions [26].  

Several papers and articles have also been 
published on sizing mobile applications [e.g. 27] and a 
related Guideline is under development.  

These Guidelines covering Business and Mobile 
applications, Real-Time and SOA software should be 
sufficient to meet the need to measure software 
components of ‘Internet of Things’ systems. 

Finally an increasing number of case studies of 
measurements of quite large systems have been 
published and more are in the pipeline at the time of 
writing. 

IV. INDUSTRY EVIDENCE OF COSMIC 
CONTRIBUTIONS 

All the theory and expert judgement in the world 
would be of no interest if the COSMIC Function Points 
measured functional sizes that do not correlate 
reasonably with project effort for software from its 
intended domain of applicability.  

This section presents the results of studies from 
various organizations on business application and real-
time software [9] [28] [29] [30] [31] [32]. Together, 
they form a convincing body of evidence that 
COSMIC Function Points meet both objectives: not 
only that, COSMIC meets them better than earlier 
FSM methods and is applicable to a wider range of 
software. 

A. Applying COSMIC to Agile Projects 
Both of the principal measurement objectives 

apply regardless of how the project will be managed, 
e.g. via either a waterfall or agile approach. 

However, agile projects have their own particular 
estimating needs, namely to help plan the next activity 

COSMIC 
Function
Points 
(CFP)

No abitrary max

A single CFP exists
& is well defined

1
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at every stage, e.g. at the level of user stories, sprints, 
iterations, releases, as well as for the whole system. 

The COSMIC method fit well with the size 
estimation needs of agile projects, without any 
adaptation:  

• Individual user stories can be measured in 
CFP according to the normal rules.  

• The resulting sizes are objective, unlike the 
use of Story Points, being measured in a 
standard way, sizes may be compared across 
projects.  

• Sizes can be added up at all the higher levels 
using the normal aggregation rules.  

A COSMIC Guideline explains how to apply the 
COSMIC method to agile projects [22].  

As noted previously, the use of Story Points to 
measure User Stories and to plan Sprints, etc., in agile 
projects is only practicable within one development 
environment, where all team members should have a 
common understanding of the unit of measure. Story 
Points also cannot help with estimating the total 
software size early in a project where usually a 
cost/benefit analysis is needed before committing to 
the project. Many organizations are now known to use 
COSMIC sizing for agile projects, for reasons of its 
objectivity and because it can be used at all levels of 
aggregation. 

A Canadian software house supplies security and 
surveillance software systems to world-wide clients. 
In their case, a request for new or changed 
functionality is called a ‘task’: this organization uses 
the Scrum method, with iterations lasting 6 weeks. For 
an iteration, effort is estimated using a ‘Planning 
Poker’ process in units of Story Points, and this is then 
translated directly into estimated work-hours. 

The supplier wished to understand if COSMIC 
sizing would help improve their effort estimates for 
tasks [9]. A sample of 24 tasks from nine iterations was 
measured in CFP for which SP-estimated and actual 
work-hours were available. Figure 5 shows the 
supplier’s estimated versus actual effort figures for the 
24 tasks. The SLR-fitted straight line would be poor 
for estimating accuracy (R2 = 0.33). 

When measured CFP sizes were first plotted 
against actual effort for the 24 tasks, the R2 was much 
improved at 0.78. However, two tasks showed up as 
with very low actual effort figures: that is, these 2 tasks 
had very high productivity, as measured objectively 
with CFP. It was realised that these two tasks benefited 
from very significant re-use of some existing software. 
They were next excluded from the dataset for the 
purpose of building an estimation model in the usual 
context of limited functional reuse in this organization. 
Figure 6 shows the CFP sizes versus actual effort 
figures for the remaining 22 tasks. 

 

Figure 5. Actual versus Estimated (Story Points) for 
24 Tasks [9] 

Figure 6. Actual Effort versus CFP Size for 22 Tasks 
[9] 

The study concluded that ‘although the Planning 
Poker/Story Points are widely used in the agile 
community, the COSMIC measurement method 
provides objective evidence of the team performance 
as well as better estimates’. 

 
B. Cost Estimating from Automotive Electronic 

Control Unit (ECU) Designs 

Renault, the European vehicle manufacturer, has 
published its progress in successful software 
development estimating, most recently in 2014 [28] 
[29] [30]. Similar results have been reported at another 
European automotive manufacturer – eg., Volvo and 
GM [31]. 

A modern average family car has roughly 50 
Electronic Control Units (ECU’s), small processors 
that form a distributed network to monitor and/or 
control almost every function, e.g. engine, lights, air-
conditioning, tyre pressures, navigation, driver 
information, etc. The ECU’s, their embedded software 
and their associated sensors are mostly bought from 
component suppliers, subject to specifications issued 
by Renault. 

Renault has been collecting data on the costs and 
performance of its suppliers of ECU software for a few 
years. The process by which it contracts to procure 
ECU’s is summarized next: 

• Renault software departments, specialized by 
vehicle functional area (e.g. powertrain), 
develop specifications for new or enhanced 

Commented [AA2]: To be verified and add references + 
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ECU software and store these in the Matlab 
Simulink tool. 

• A Renault-developed tool automatically 
computes the COSMIC functional size of each 
specification (or the increase in size if an 
enhancement) – see also Section V on 
COSMIC automation. 

• Past measurements and statistically-
established relationships are used to predict 
the effort that the supplier will need to develop 
the software (see Fig. 7) and its memory size 
(Fig. 8).  
 

 
Figure 7. Effort vs COSMIC size for an ECU 

software [28] 

 
Figure 8. Memory usage vs COSMIC size [28] 

• This information is used by the Purchasing 
Department to negotiate the price for each 
ECU. Further, the information available to 
Renault is now sufficiently well-established 
that it can be used to negotiate annual price 
changes in the same way that car 
manufacturers periodically negotiate prices of 
other materials such as steel, paints etc., and 
other components (Fig. 9).  

• COSMIC functional sizes are also used to 
monitor the performance of the internal staff 
who develop the specifications, since Renault 
has established a specification-size/staff-level 
relationship for their work. 

Renault states that at the end of a new ECU 
software development, the difference between the 
initially es t imated effor t  from the established 

correlation and the actual value ‘has to be lower 
than 5%’ (see Fig. 10) [28]. 

 

 
Figure 9. Purchase Department negotiation [28] 

 
 

 
Figure 10. Control of precision of cost estimates [28] 
 

C. Estimating Effort for ECU Maintenance Changes 
A leading German global automotive supplier has 

applied COSMIC sizing for change requests to 
Electronic Control Unit (ECU) software. In this case, 
the sizing and effort estimation is required at a much 
earlier stage when only diagrams in a modelling tool 
and text specifications are available. (In the Renault 
case, the estimation take place only after a design is 
completely modelled in Simulink). 

Prior to the introduction of COSMIC sizing, 
estimation was only by analogy or by informal 
methods. The organization recognized the following 
benefits of using COSMIC. 

• Use of a repeatable process for analysing the 
change requirements and mapping to a design 
proposal in the modelling language. This 
significantly increased trust leading to more 
efficient collaboration between customer and 
supplier. 

• However, each technical environment and 
modelling approach needed some different 
mapping rules to the COSMIC Generic 
Software Model. Variable input data quality 
also means that Measurers must be 
experienced to ensure accurate measurements. 

• The measurements now provide a solid base 
for benchmarking. 

• Effort estimation accuracy improved from up 
to 50% (and variable) uncertainty before 
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starting the measurement programme, to 
within 10 – 20% within one year. 

• The measurement programme also aims for 
continuous feedback and improvement. 
 

D. Effort Estimation for a Web Software Supplier 

An Italian supplier of industrial web applications 
had used IFPUG Function Points to measure the size 
of the FUR, as input to its effort estimation method. 

Wishing to understand whether COSMIC FP sizes 
would be more accurate for predicting development 
effort than IFPUG FP sizes, 25 applications were re-
measured in units of CFP [32]. 

The 25 applications formed a rather heterogeneous 
dataset, including e-government, e-banking, Web 
portals, and Intranet applications. All the projects 
were developed with SUN J2EE or Microsoft .NET 
technologies. Oracle was the most commonly 
adopted DBMS, but also SQL Server, Access and 
MySQL were employed in some of these projects. 

Application sizes ranged from roughly 100 to 
900 FP (or from under 200 to over 1100 CFP). 
Effort ranged from roughly 1000 to 5000 work-
hours, 

In order to build effort estimation models, the 
size/effort relationship was analyzed in two ways 
for the sizes measured on both FSM methods. They 
were Simple Linear Regression (SLR) and Case-
Based Reasoning (CBR), i.e. a Machine Learning-
based solution. Both analyses led to similar results. 
The ‘median of the absolute residuals’ was 180 
work-hours for the effort predicted from CFP sizes 
and 515 work-hours for the effort predicted from FP 
sizes. 

The study concluded that for this dataset 
‘COSMIC was significantly more accurate than 
FPs in estimating the development effort’ [32]. 

V. EARLY SIZE MEASUREMENT AT 
ESTIMATION TIME 
 For project estimation purposes, estimates of 
functional size are almost invariably needed quite 
early in a project, before the requirements have been 
worked out in full detail. Hence the need for versions 
of the detailed FSM method that can measure an 
approximate functional size from outline 
requirements. 
 The same need for approximate size measurement 
can arise if there is a need to measure a large number 
of software items for the purpose of controlling 
performance of maintenance and enhancement 
activities. In this case, measuring an approximate size 
may be sufficient, much faster and more cost/effective 
than making precise measurements. 
 Given these needs, several researchers and 
practitioners have carried out studies to develop 
                                                           
 

approximate variants of the COSMIC FSM method. 
These have been summarized with extensive examples 
from both the business application and real-time 
domains in a COSMIC Guideline for Early or Rapid 
COSMIC Functional Size Measurement [20-26].  
 In the early phases of a project, the documentation 
completeness cannot be expected upfront, and will 
evolve progressively. For sizing purposes, COSMIC 
recognizes various quality level of the documentation 
of the software functional processes – see Table 1. 

Table 1. Quality levels of the documentation of 
Functional Processes 

Functional Process 
Quality Level 

Quality of the functional process 
definition 

Completely defined Functional process and its data 
movements are completely defined 

Documented Functional process is documented 
but not in sufficient detail to 
identify the data movements 

Identified Functional process is listed but no 
details are given of its data 
movements3 

Counted A count of the functional processes 
is given, but there are no more 
details 

Implied (A ‘known 
unknown’) 

The functional process is implied in 
the actual requirements but is not 
explicitly mentioned 

Not mentioned (An 
‘unknown unknown’) 

Existence of the functional 
processes is completely unknown at 
present 

 
 This related COSMIC Guidelines documents the 
applicability, the reported use as well as their strengths 
and weaknesses of each of the following 
approximation techniques to complement the lack of 
quality in the documentation of the functional user 
requirements: 
• Average functional process approximation. 
• Fixed size classification approximation – see 

Table 2. 
• Equal size bands approximation – see Tables 3 

and 4. 
• Average use case approximation. 
• Early and quick COSMIC approximation – see 

Table 5. 
• Easy function points approximation – see Table 6 
• Approximation from informally written textual 

requirements. 
• Approximation using fuzzy logic – the EPCU 

model. 
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 Table 2. Fixed size classification from [8] 
Classification Size 

(CFP) 
#E #X #R #W Error messages 

Small 5 1 1 1 1 1 

Medium 10 2 2 3 2 1 

Large 15 3 3 4 4 1 

…       

 

Table 3. Equal size bands from 37 business 
applications 

Band Average size 
of a 

Functional 
Process 

% of total 
Functional 

Size 

% of total 
number 

of Functional 
Processes 

Small 4.8 25% 40% 

Medium 7.7 25% 26% 

Large 10.7 25% 19% 

Very 
Large 

16.4 25% 15% 

 

Table 4. Equal size bands from a major component 
of an avionics system 

Band Average size 
of a 

Functional 
Process 

% of total 
Functional 

Size 

% of total 
number 

of Functional 
Processes 

Small 5.5 25% 49% 

Medium 10.8 25% 26% 

Large 18.1 25% 16% 

Very 
Large 

38.8 25% 7% 

 

Table 5. Candidate values for the functional 
categories of the Early & Quick approach 

Type Level Ranges / 
COSMIC 
Equivalent 

min 
CFP 

most 
likel

y 

max 
CFP 

Functiona
l Process 

Small 1-5 Data 
movements 

2.0 3.9 5.0 

 Mediu
m 

5-8 Data 
movements 

5.0 6.9 8.0 

 Large 8-14 Data 
movements 

8.0 10.5 14.0 

 Very 
large 

14+ Data 
movements 

14.0 23.7 30.0 

Typical 
process 

Small 

CRUD 
(Small/Mediu
m processes) 
CRUD + List 
(Small 
processes) 

15.6 20.4 27.6 

 

Mediu
m 

CRUD 
(Medium/Larg
e processes) 
CRUD + List 
(Medium 
processes) 
CRUD + List 
+ Report 
(Small 
processes) 

27.6 32.3 42.0 

 

Large 

CRUD (Large 
processes) 
CRUD + List 
(Medium/Larg
e processes) 
CRUD + List 
+ Report 
(Medium 
processes) 

42.0 48.5 63.0 

General 
process 

Small 6-10 Generic 
FP's 

20.0 60.0 110.
0 

 Mediu
m 

10-15 Generic 
FP's 

40.0 95.0 160.
0 

 Large 15-20 Generic 
FP's 

60.0 130.
0 

220.
0 

Macro 
process 

Small 2-4 Generic 
GP's 

120.
0 

285.
0 

520.
0 

 Mediu
m 

4-6 Generic 
GP's 

240.
0 

475.
0 

780.
0 

 Large 6-10 Generic 
GP's 

360.
0 

760.
0 

1,30
0 

.  

Table 6. Probability distributions of approximate 
values in the business domain 

Classific
ation of 
the FP 

Specific
ation 
level 

CFP 
min 

CFP CFP 
max 

Approxi
mate 
CFP 

Probab
ility 

Small FP Little 
unknown 

2 
(10
%) 

3 
(75
%) 

5 
(15
%) 

3.2 >80% 

Small FP Unknow
n (No 
FUR) 

2 
(15
%) 

4 
(50
%) 

8 
(35
%) 

5.1 <50% 

Medium 
FP 

Little 
unknown 

5 
(10
%) 

7 
(75
%) 

10 
(15
%) 

7.25 >80% 

Medium 
FP 

Unknow
n (No 
FUR) 

5 
(15
%) 

8 
(50
%) 

12 
(35
%) 

8.95 <50% 

Large FP Little 
unknown 

8 
(10
%) 

10 
(75
%) 

12 
(15
%) 

10.1 >80% 

Large FP Unknow
n (No 
FUR) 

8 
(15
%) 

10 
(50
%) 

15 
(35
%) 

11.45 <50% 

Complex 
FP 

Little 
unknown 

10 
(10
%) 

15 
(75
%) 

20 
(15
%) 

15.25 >80% 

Complex 
FP 

Unknow
n (No 
FUR) 

10 
(15
%) 

18 
(50
%) 

30 
(35
%) 

21 <50% 

 

VI. COSMIC METHOD AUTOMATION 
A. Automation in industry and in R&D 
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Researchers in industry and academia have already 
demonstrated several tools and some have reached 
commercial use, such as: 

• The specifications of the automated process to 
measure a CFP size of Simulink blocks has 
been published by Renault for public use [33] 
[34]. Renault’s motivation for automation was 
‘speed and accuracy of measurement’. 

• Some tools are available to assist CFP 
measurement data capture and/or to enter data 
directly into an estimating tool [35]. 

• Various researchers have pointed out the 
strong links between the concepts of COSMIC 
and the Unified Modelling Language and how 
to automate CFP measurement of Use Cases. 
A Turkish telecommunications company has 
described its mapping of UML requirements 
ontology and COSMIC measurement 
ontology [36, which also includes a survey of 
similar approaches]. The paper describes the 
validation of the mapping by measuring 
requirements automatically for new and 
changed functionality of a Call Centre 
application. 

• Another example is the Polish software house 
which has developed a tool to measure CFP 
sizes from requirements stored according to 
UML conventions (with certain restrictions) in 
the Enterprise Architect CASE tool. The tool 
is available under a Creative Common Licence 
[37]. It is used by seven software suppliers to 
three Polish public-sector bodies under 
consortia contracts and the contracts allow that 
COSMIC sizes are not measured exactly 
according to the method’s rules. 

• Semi-automated measurement of CFP sizes 
from executing programs has also been 
reported [38], [39]. The process in [38] 
involved inserting code into a 3-tier Java 
business application to capture the data 
movements. The process was subsequently 
applied for three other applications. The 
resulting CFP measurements were found to be 
92% accurate; the cost of manual 
measurement was almost three times higher 
than that of automated measurement. 

• A model-based and automated approach to 
size estimation of embedded software 
components is also discussed in [40]. 

 
B. Accuracy Verification Protocol of Automation 
Tools   

A literature review in [42] has shown that very little 
work has been conducted on verifying measurement  
results produced  by  FSM  automation, and hence to  
independently  demonstrate  the  accuracy  of a FSM 
automation tool, a verification protocol has been 
proposed [42]. The COSMIC automation at Renault 

has been fully verified using this verification protocol 
that recommends the use of a sequence of input 
specifications, starting from specifications with only 
one FP and having the minimum combination of 
mandatory data movements, and then progressing in 
an orderly and systematic sequence to achieve the 
most extensive completeness, in terms of 
combinations of flows. 

In this protocol, the samples input to the 
automation tool should cover all the types of input 
combinations that might be encountered. To verify 
the accuracy of individual automated measurements, 
each sample must also be measured manually, in 
parallel, using the FSM procedures being automated, 
and all the details of the measurement steps must be 
kept for traceability purposes. So, in addition to the 
total functional size obtained in CFP, each of the FPs 
and data group movements is identified and 
compared to each of the FPs identified in parallel in 
the manual measurement procedure. 

Moreover, because an error could result from the 
manual measurement, or be caused by the prototype 
tool, the verification protocol must identify which 
party is responsible for such an error. 

Verification of the measurement accuracy of a 
tool is executed in three phases, as shown in Fig. 11: 

1. Phase 1: Numerical results comparison. The 
measurement results (in CFP) of the whole of the 
software measured, both those produced by the 
automation tool and those obtained manually, are 
compared. If the results match, then there is no 
difference between the automated and manual 
measurement processes. However, this does not 
mean that the processes used for identifying the 
individual COSMIC elements and to obtain the final 
results are similar. It is important to understand that, 
if the verification stops with this phase, only the final 
results will have been verified. 

2. Phase 2: Detailed comparison. If the final 
numerical results at the end of Phase 1 do not match, 
and to find the reason for the difference, the results at 
the detailed level are compared, that is, the FPs 
obtained automatically and manually are verified. It 
is also necessary to verify whether or not there were 
any human errors in those results, using the detailed 
measurement results obtained by the automation tool: 

• If there is no difference in the number of FPs, 
each FP obtained automatically is verified against its 
manually obtained ‘peer’ to determine whether or not 
there is a difference in their names (or their 
identifiers). 

• If every FP obtained automatically matches 
its peer obtained manually, then their functional sizes 
are compared. A difference indicates that one or more 
data movements in the FP must be responsible. Then, 
at the end of this phase, any data movement 
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responsible for an error is isolated, in both the manual 
and automated measurement results.   

3. Phase 3: Automation tool and input 
verification. This phase is triggered when the 
possibility of human error (in the manual 
measurement) is discarded at the end of Phase 2. A 
detected error can come from two sources: a 
measurement error or an error in the requirements 
input to the measurement process. Therefore, this 
phase consists of the following: 

• Determining which module of the automation 
tool is responsible for the error. These modules can 
have sub modules; if they do, the sub modules 
causing the error are inspected as well. 

• Determining, in parallel, the input 
requirements, in order to detect a possible defect that 
may be causing the error. 

Once an error has been detected, the following 
steps are taken: 

• If the error was caused by the automation 
tool, a correction is made to the tool and the 
appropriate specification is re-measured with the new 
version of the tool, and then re-verified.  

• If the cause of the error was in the 
specification itself, the defect is recorded for possible 
future enhancements to the specification or to a 
specific functionality, or both, in order to bypass this 
defect in the tool.  

Finally, the revised version of the input 
requirements – if there is one – is verified by the 
protocol, to ensure that the results of the manual and 
automated measurements are the same.  

 

 
Figure 10. The 3-phase verification protocol for FSM 
tool automation accuracy [42] 

C. COSMIC Automation Accuracy at Renault S.A. 
The verification protocol was applied at Renault with 
a set of 77 distinct specification models (designed in 
Simulink): various sizes of specifications were chosen 

among a number of software functions that 
represented different ECMs (Engine Control Modules) 
in the department where the automation prototype-tool 
was initially developed [42].  

Overall, the difference in the total size of the 76 
correct requirement models obtained both manually 
(i.e. 1,729 CFP) and using the automation prototype 
(i.e. 1,739 CFP) is less than 1% – see Table 7. The 
accuracy of the automation prototype after testing is 
greater than 99%: this means that it is 99% accurate 
not only at the total size, but also that 99% of the 
individual sizes of the data movements individually 
are accurate. 

 In addition to detecting one incomplete requirement 
specification, the proposed verification protocol 
helped identify the limitations of the prototype tool, 
which stem from the limitations inherent in the 
libraries that it uses. These limitations were next 
corrected in the automation tool developed by a 
Renault subsidiary based on the verified prototype: 
this automation tool is now more robust and has a 
greater level of accuracy, and is currently in use in a 
number of departments at Renault S.A. [28] [34].  

Table 7. Difference between the total size obtained 
manually and using the prototype tool [42] 

Total 

Number of 

Models 

Total Size 

obtained 

manually 

(CFP) 

Total Size 

obtained 

using the 

prototype 

tool (CFP) 

Difference 

(%) 

Accuracy 

76 fault-

free models 

1,729 1,739 Less than 1% >99% 

All 77 

models 

1,758 1,791 1.8% >98% 

D. COSMIC Automation at ESTACA 
Two COSMIC-based automation prototype tools 

were developed at ESTACA: they can be 
downloaded for free from the ESTACA website [44]. 
While the first prototype tool was developed to 
measure the size of aerospace real-time embedded 
software modeled using the SCADE commercial tool 
[45], the second one was developed to correctly 
measure the functional size of ECU application 
software designed following the AUTOSAR 
(AUTomotive Open System Architecture) standard 
[46]. AUTOSAR is the new generation of ECU 
software design architecture, methodology, and 
metamodel [47] [48]. It has become an important part 
of the production design criteria for many vehicle 
manufacturers, especially in the automotive 
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electronics industry [49]. The procedure automated 
by the prototype is based on the measurement 
guideline presented in [50] and has a set of mapping 
rules to be applied to the system modeled in order to 
obtain its functional size.  
The automation algorithm developed at ESTACA is 

presented in Fig. 16 and follows the proposed FSM 
procedure step by step. It was implemented first in 
Python [42] and then in Java [44]. 

The protocol on the prototype tool used the Steer-
by-Wire system described in [50]. The system 
provides two main functionalities: the feedback 
torque and the rack torque. The two functionalities 
were implemented using a set of 10 Runnables 
distributed in 6 software components (SWCs) - see 
Fig. 17.  

The manual and automated measureent results 
showed that there was no difference in the final 
measurement results of the two measurement 
procedures (manual and automated): the functional 
processes identified were exactly the same. In 
addition, precisely the same data movements were 
identified in both measurements. Lastly, the total 
functional size measured in both the manual and 
automated application of the FSM procedure was the 
same. 

 

VI. SUMMARY AND FUTURE CHALLENGES 
As a summary, from this body of evidence: 
• The COSMIC method design is simple and 

has been accepted as applicable to all the 
different types of software for which it was 
designed. 

• The 'open’ COSMIC community has made all 
the significant advances in functional size 
measurement in this century. 

• Evidence from applying the COSMIC method 
in multiple organizations around the world 
demonstrates that it can be used as a key 
component to help achieve the two principle 
objectives of software measurement: namely 
to enable control of software projects and 
other activities, and to be used for estimating 
future activities. 

• As new types of software emerge, new 
Guidelines will be needed on how to apply 
COSMIC sizing. For instance, it is possible 
that a new Guideline will be needed for 
measuring software assembled from pre-
existing components (i.e. services). This is 
currently being studied. 

• However, the advantage of the flexibility of a 
principles-based method (over the rules-based 
approach of ‘1st generation’ methods) is that 
no new rules are needed to measure new types 

of software. Fundamentally, the COSMIC 
method is stable and hence ‘future-proof’. 

The method is now being used world-wide. The 
Measurement Manual has been translated into 10 other 
languages besides English. It has been or is being 
adopted as a national standard for use by Governments 
in countries such as China, Mexico and Poland.  

As the COSMIC organization has no membership, 
the real extent of use is not known precisely. Over 600 
people have now passed the COSMIC Foundation-
level certification examination. The largest numbers 
are from countries such as Brazil, China, India, Italy, 
Poland and Turkey. 

In 2009, the General Accountability Office of the 
US Government recommended the IFPUG and 
COSMIC methods for use in software cost estimating 
[51]. In 2016, the National Institute of Standards and 
Technology of the USA in its investigation on a 
‘Rational Foundation for Software Metrology’ [52] 
cited only the COSMIC method as having a well-
defined unit of measurement. 

The single most important technical challenge is to 
develop automated tools to measure or to support 
measurement of COSMIC sizes. Automation is of 
course dependent on the technology supporting the 
inputs to the automation. For automated measurement 
of the size of the functional requirements, partially or 
entirely documented using distinct requirements 
formats and a variety of requirements tools, 
automation is required for each requirements 
technology environment. Similarly, measurement 
automation of the requirements as implemented (e.g. 
lines of code): distinct automation tools are required 
for each of the large variety of programming 
languages. 

Automation will help to progressively overcome a 
major barrier to acceptance of Function Points, namely 
the time and experience needed for accurate manual 
measurement and data recording. 

Automatic size measurement from requirements is 
particularly difficult when the requirements are not 
expressed in sufficient detail, or are full of 
ambiguities, etc. So this is a very large challenge, 
though made relatively easier by the simplicity of the 
COSMIC Generic Software Model and its foundation 
on software engineering principles. 
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