
Software Projects Estimation & Control: the Versatility and Contributions of
COSMIC Function Points

Alain Abran

ETS – University of
Québec, Canada

alain.abran@etsmtl.ca

Charles Symons
COSMIC

United Kingdom
cr.symons@btinternet.com

Christof Ebert
Vector Consulting

Services
Germany

christof.ebert@vector.com

Frank Vogelezang
Ordina

The Netherlands
frank.vogelezang@ordina.nl

Hassan Soubra
ESTACA

France
hassan.soubra@estaca.fr

Abstract – This talk presents an outline of the design
of the ‘2nd generation’ COSMIC Function Point
method and industry evidence of its versatility and
value in software project estimation and control, via
both traditional and agile methods. COSMIC
Function Points can also be used for early and rapid
sizing at estimation time and can be automated with
very high accuracy.

Keywords – COSMIC, functional size measurement,
early software sizing, software project estimating, ISO
19761, real-time embedded software, project control,
requirements measurement

I INTRODUCTION

This talk has four aims:
1. To outline the design of the COSMIC method for

measuring a functional size of software. This
includes a discussion of the weaknesses and
limitations of the 1st generation of functional size
measurement (FSM) methods as well as the
advances made by the Common Software
Measurement International Consortium
(COSMIC) to address them.

2. To present evidence that COSMIC Function
Points are of practical value in software project
performance measurement and estimating.

3. To present rapid COSMIC sizing techniques at
estimation time.

4. To present industry evidence of its automation in
a variety of contexts, including with very high
accuracy for real-time embedded software.

The paper is structured as follows. Section II
describes the background to software measurement
and to the first generation of Function Points
measurement methods. Section III presents an
overview of the principles of the COSMIC Function
Points, the second generation of Function Points.
Section IV gives several examples of how COSMIC
Function Points have been used in various
organizations and in different domains that
demonstrate how it delivers value in practice,
including in Agile contexts. Section V presents
COSMIC Guidelines for early or rapid sizing at
estimation time. Section VI presents the work done for
the automation of COSMIC size measurement,

including the work at Renault from software
specifications documented in Matlab-Simulink.
Section VII presents a summary.

II BACKGROUND TO SOFTWARE SIZE AND
FUNCTION POINTS MEASUREMENT

A Measurement Objectives
There are two principal objectives that motivate an

interest in software size measurement:
1. Enable managers to estimate and control software

projects (for both new software and enhancements
to existing software.

2. Compare performance across these projects and
activities.

Broadly speaking there are four main categories of
performance indicators that should be measured for
development projects:

• project delivery to time and budget
• project productivity (product size/project

effort)
• project speed (product size/project duration)
• product size (to control ‘scope creep’) and

product quality, both from a functional and a
technical point of view

All these indicators are of interest, since they are
tradeable. For example: it is generally accepted that,
within limits, a project may be speeded up by adding
resource at the expense of lower productivity, though
views vary on the degree of the trade-off of effort and
duration [1]. Similarly, a project that was under-
estimated may meet its budget but deliver less product
functionality or lower quality than was expected.

In order to compare performance across software
projects, the product size (taken as a measure of ‘work-
output’) must be measured in a standard way that is
independent of the development methods and
technologies used to implement the software product.

Past measurements of productivity and speed can
be used to establish performance benchmarks and to
develop estimation models for projects sharing
common characteristics. To be able to use past
performance data to estimate the effort and duration
for future projects, it is important to be able to estimate
first the size of the software to be developed from an
early statement of requirements, as size is usually the

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

largest driver of software-related project effort.
Combining the estimate of the size of the product to be
developed by a new project with benchmark
performance data from similar past projects enables
estimation of the effort and duration for a new project.

The ability to estimate and/or measure the size of
an item of software at various stages in its life-cycle is
therefore critical to managing most software
development activities.

B. FUNCTION POINTS Background
Allan Albrecht of IBM had the original idea of

measuring a size of software from its Functional User
Requirements - FUR [2]. His proposal evolved in the
1980’s into the IFPUG [3] and NESMA [4] Function
Points. Methods of measuring a size of the FUR of
software have the advantage that the resulting size
should be totally independent of the technology used
for the software and any other aspects of the
implementation.

Even from the early days, however, this initial
Function Points model of software was criticised in
various ways. Hence within a few years of Albrecht’s
proposal, a variety of variants of Function Points
methods had been proposed. Of the numerous variants,
only four of the 1st generation methods have been
recognized by ISO.

This ‘1st generation’ of FSM methods (e.g.,
methods defined before 2000) share a number of
weaknesses.

• Most were designed to measure software only
from the domain of business applications.
Nowadays even much business software is
built from components, and exploits
infrastructure software and real-time
functions.

• Most are step-functions, with very limited
ranges (various min, max), and without a well-
defined measurement unit of 1 Function Point
- see Figure 1.

Figure 1. Step function in the 1st generation of

Function Points

Concurrently over the years, in response to the

weaknesses of 1st generation FSM methods, several

1 The four 1st generation FSM methods were approved through the
ISO fast-track process without a detailed review to address their
weaknesses.

other types of sizing variants have been introduced.
These are usually associated with a specific method for
modelling requirements or a specific software
development process, such as: Use Case Points [5],
Object Points [6], and Story Points [7]. Most of these
variants share a number of common weaknesses,
including improper mathematical operations on
distinct scale types and the lack of a well-defined
measurement unit [8]. Furthermore, they lack both
detailed rules to eliminate subjectivity in
measurement, and to ensure general applicability.

The Story Points method in particular is, by design,
interpreted differently across project teams, so no
benchmarking is feasible. Story Points therefore does
not support accountability in project management and
does not provide a sound foundation for estimation
purposes [9].

III. OVERVIEW OF THE COSMIC FUNCTION
POINTS

A. Background
During the late 1990’s, an ISO Working Group

established some principles for functional size
measurement [10]. Subsequently, a sub-set of the WG
members from around the world decided that the
market needed a new Function Points method based on
these principles and designed to overcome the
weaknesses of the 1st generation methods. The
COSMIC organization was formed in 1998.
The COSMIC group took as its initial input the designs
of the Full-Function Points extension for real-time and
embedded software published [11] and of the MkII
FPA method [12]. The first official version of the
COSMIC FSM method was made publicly available in
2001, after extensive field trials. This 2nd generation
COSMIC method was approved by ISO following its
full ISO development and review process1 [13].

B. COSMIC Method Design Goals
The COSMIC FSM method was designed with the

following goals.
• To be based on fundamental software

engineering principles.
• To be applicable for sizing the software

functional requirements of business
application, real-time and infrastructure
software and hybrids of these, in any layer of
a software architecture. Sizes should be
independent of technical requirements, and of
project methods and effort used.

• To measure on a ratio scale so that all
operations on measured sizes are
mathematically valid. (Sizes measured by

Function Points (FP)

3
FP

4 FP

6 FP

3-step size range for IFPUG
External Input Transactions

Key limitations:
- Only 3 values
- Limited ranges (min, max)
- No single measurement

unit of 1 FP!

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

most 1st generation FSM and by other sizing
methods do not meet this criterion [8].)

• Measurement should be possible at any time
in the software life-cycle, and at any level of
decomposition of the software.

• To be usable for performance measurement
and for estimating software activities.

• To be an ‘open’ method, available for free
usage.

C. Overview of the COSMIC Method

ISO 14143-1 [37] specifies that a functional size
measurement (FSM) method must measure software
functional user requirements. The COSMIC Function
Points [36] standard proposes a generic model of
software that can capture the functionality of any type
of software in a measurable way. Figure 2 illustrates
the generic flow of data that can be observed in
software from a functional perspective. From this
generic model of software depicted in Figure 2 it can
be observed that:
• Software is bounded by hardware. In the left-hand

side of Figure 2, software used by a human is
bounded by I/O hardware (e.g., a mouse, a
keyboard, a printer, or a display), or by engineered
devices (e.g., sensors or relays. In the right-hand
side of Figure 2, software is bounded by persistent
storage hardware (like a hard disk, or RAM or
ROM memory).

• Software functionality is embedded within the
functional flows of data groups. These data flows
can be characterized by four distinct types of data
movements:
o two types of movements (ENTRIES and

EXITS) allow the exchange of data with users
across a boundary.

o two types of movements (READS and
WRITES) allow the exchange of data with the
persistent storage hardware.

• Different abstractions are typically used for
different measurement purposes.
o In real-time software, the users are typically

the engineered devices that interact directly
with the software, that is, the users are
considered the I/O hardware.

o In business application software, the
abstraction commonly assumes that the user
is one or more humans who interact directly
with the business application software across
the boundary; the I/O hardware is ignored.

COSMIC Function Points measure the size of
software based on identifiable functional user
requirements. Once identified, those requirements are

2 A simplified description.

allocated to hardware and software from the unifying
perspective of a system integrating these two
“components”. Since COSMIC is aimed at sizing
software, only those requirements allocated to the
software are currently considered in its measurement
procedure.

Figure 1. Generic flow of data groups through
software in COSMIC Function Points

Figure 3 presents next a model of the functional

user requirements in terms of functional processes.

Figure 3. Functional User Requirements and

Functional Processes [15]

The COSMIC model for software size
measurement rests on the following principles2:

• The functional user requirements of any
software can be decomposed into separate
functional processes.

• When a functional user detects or causes an
event (‘something that happens in the real
world’) the user sends a data group to the
software, triggering a functional process.

• A functional process is complete when it has
executed all that must be done according to the
functional user requirements in response to the
triggering data group it receives.

• Functional processes comprise sub-processes
that move data and that manipulate data. As

Functional
User

Requirements

Data
Movements

Functional
Processes

Functional
UserEvent

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

there is no agreement on how to measure data
manipulation, the method assumes that each
data movement sub-process accounts for any
associated data manipulation

• There are four types of data movements:
- Entries and Exits each move a data group

in and out of the software, from/to
functional users.

- Reads and Writes each move a data group
from/to persistent storage.

• A data group is a set of attributes that describes
a single ‘object of interest’, i.e. a ‘thing’ in the
real world of the functional users about which
the software must enter, store, or output data.

• The unit of measurement of the COSMIC
FSM method is one (1) data movement of one
(1) data group, referred to as one (1)
‘COSMIC Function Point’ (CFP) – see fig. 4.

• The size of a functional process is the addition
of its data movements. The size of an item of
software is the sum of the sizes of its
functional processes.

• There is no upper limit to the size of a
functional process. (In practice, single
processes of size over 100 CFP have been
measured.) – see Figure 4, which should be
contrasted with Fig. 1.

• The size of a change to a functional process is
the sum of its data movements that have been
added, changed and deleted. ‘Changed’ can
mean either the data group moved has changed
in some way, or the associated data
manipulation has changed. A change may vary
in size from 1 CFP, with no upper limit – see
Fig. 4.

Figure 4. COSMIC – 2nd generation of Function

Points

For a more comprehensive overview of the

method, see [14] and for the full details of the method,
including its principles, rules and definitions, see [15].
To be noted that all of the COSMIC documents,
including the case studies, are available free on the
web.

The current 2017 method is version 4.0.1.
Another COSMIC Guideline [21] describes

approaches to assuring the accuracy of functional size

measurements, dependent on the available detail of the
functional user requirements.

D. Versatility of COSMIC in Various Software
Domains

While the COSMIC Measurement Manual [15]
gives all the principles, rules and definitions of the
method for software from any domain, with many
examples, a number of domain-specific Guidelines
have been written in order to provide more support for
Measurers, with many more examples of how to
measure specific types of FUR. Primary amongst these
are the Guidelines for sizing:

• Business Application Software [23], and
• Real-Time Software [24].

In addition, other COSMIC Guidelines have been
published on measuring:

• Data Warehouse software [25], and
• software built according to Service-Oriented

Architecture (SOA) conventions [26].

Several papers and articles have also been
published on sizing mobile applications [e.g. 27] and a
related Guideline is under development.

These Guidelines covering Business and Mobile
applications, Real-Time and SOA software should be
sufficient to meet the need to measure software
components of ‘Internet of Things’ systems.

Finally an increasing number of case studies of
measurements of quite large systems have been
published and more are in the pipeline at the time of
writing.

IV. INDUSTRY EVIDENCE OF COSMIC
CONTRIBUTIONS

All the theory and expert judgement in the world
would be of no interest if the COSMIC Function Points
measured functional sizes that do not correlate
reasonably with project effort for software from its
intended domain of applicability.

This section presents the results of studies from
various organizations on business application and real-
time software [9] [28] [29] [30] [31] [32]. Together,
they form a convincing body of evidence that
COSMIC Function Points meet both objectives: not
only that, COSMIC meets them better than earlier
FSM methods and is applicable to a wider range of
software.

A. Applying COSMIC to Agile Projects
Both of the principal measurement objectives

apply regardless of how the project will be managed,
e.g. via either a waterfall or agile approach.

However, agile projects have their own particular
estimating needs, namely to help plan the next activity

COSMIC
Function
Points
(CFP)

No abitrary max

A single CFP exists
& is well defined

1
2

4
3

6
5

8
7

10
9

11

Commented [AA1]: Maybe a list of case studies can be
added here

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

at every stage, e.g. at the level of user stories, sprints,
iterations, releases, as well as for the whole system.

The COSMIC method fit well with the size
estimation needs of agile projects, without any
adaptation:

• Individual user stories can be measured in
CFP according to the normal rules.

• The resulting sizes are objective, unlike the
use of Story Points, being measured in a
standard way, sizes may be compared across
projects.

• Sizes can be added up at all the higher levels
using the normal aggregation rules.

A COSMIC Guideline explains how to apply the
COSMIC method to agile projects [22].

As noted previously, the use of Story Points to
measure User Stories and to plan Sprints, etc., in agile
projects is only practicable within one development
environment, where all team members should have a
common understanding of the unit of measure. Story
Points also cannot help with estimating the total
software size early in a project where usually a
cost/benefit analysis is needed before committing to
the project. Many organizations are now known to use
COSMIC sizing for agile projects, for reasons of its
objectivity and because it can be used at all levels of
aggregation.

A Canadian software house supplies security and
surveillance software systems to world-wide clients.
In their case, a request for new or changed
functionality is called a ‘task’: this organization uses
the Scrum method, with iterations lasting 6 weeks. For
an iteration, effort is estimated using a ‘Planning
Poker’ process in units of Story Points, and this is then
translated directly into estimated work-hours.

The supplier wished to understand if COSMIC
sizing would help improve their effort estimates for
tasks [9]. A sample of 24 tasks from nine iterations was
measured in CFP for which SP-estimated and actual
work-hours were available. Figure 5 shows the
supplier’s estimated versus actual effort figures for the
24 tasks. The SLR-fitted straight line would be poor
for estimating accuracy (R2 = 0.33).

When measured CFP sizes were first plotted
against actual effort for the 24 tasks, the R2 was much
improved at 0.78. However, two tasks showed up as
with very low actual effort figures: that is, these 2 tasks
had very high productivity, as measured objectively
with CFP. It was realised that these two tasks benefited
from very significant re-use of some existing software.
They were next excluded from the dataset for the
purpose of building an estimation model in the usual
context of limited functional reuse in this organization.
Figure 6 shows the CFP sizes versus actual effort
figures for the remaining 22 tasks.

Figure 5. Actual versus Estimated (Story Points) for
24 Tasks [9]

Figure 6. Actual Effort versus CFP Size for 22 Tasks
[9]

The study concluded that ‘although the Planning
Poker/Story Points are widely used in the agile
community, the COSMIC measurement method
provides objective evidence of the team performance
as well as better estimates’.

B. Cost Estimating from Automotive Electronic

Control Unit (ECU) Designs

Renault, the European vehicle manufacturer, has
published its progress in successful software
development estimating, most recently in 2014 [28]
[29] [30]. Similar results have been reported at another
European automotive manufacturer – eg., Volvo and
GM [31].

A modern average family car has roughly 50
Electronic Control Units (ECU’s), small processors
that form a distributed network to monitor and/or
control almost every function, e.g. engine, lights, air-
conditioning, tyre pressures, navigation, driver
information, etc. The ECU’s, their embedded software
and their associated sensors are mostly bought from
component suppliers, subject to specifications issued
by Renault.

Renault has been collecting data on the costs and
performance of its suppliers of ECU software for a few
years. The process by which it contracts to procure
ECU’s is summarized next:

• Renault software departments, specialized by
vehicle functional area (e.g. powertrain),
develop specifications for new or enhanced

Commented [AA2]: To be verified and add references +
some material from these papers

Commented [AA3]: This might need to be updated….

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

ECU software and store these in the Matlab
Simulink tool.

• A Renault-developed tool automatically
computes the COSMIC functional size of each
specification (or the increase in size if an
enhancement) – see also Section V on
COSMIC automation.

• Past measurements and statistically-
established relationships are used to predict
the effort that the supplier will need to develop
the software (see Fig. 7) and its memory size
(Fig. 8).

Figure 7. Effort vs COSMIC size for an ECU

software [28]

Figure 8. Memory usage vs COSMIC size [28]

• This information is used by the Purchasing
Department to negotiate the price for each
ECU. Further, the information available to
Renault is now sufficiently well-established
that it can be used to negotiate annual price
changes in the same way that car
manufacturers periodically negotiate prices of
other materials such as steel, paints etc., and
other components (Fig. 9).

• COSMIC functional sizes are also used to
monitor the performance of the internal staff
who develop the specifications, since Renault
has established a specification-size/staff-level
relationship for their work.

Renault states that at the end of a new ECU
software development, the difference between the
initially es t imated effor t from the established

correlation and the actual value ‘has to be lower
than 5%’ (see Fig. 10) [28].

Figure 9. Purchase Department negotiation [28]

Figure 10. Control of precision of cost estimates [28]

C. Estimating Effort for ECU Maintenance Changes
A leading German global automotive supplier has

applied COSMIC sizing for change requests to
Electronic Control Unit (ECU) software. In this case,
the sizing and effort estimation is required at a much
earlier stage when only diagrams in a modelling tool
and text specifications are available. (In the Renault
case, the estimation take place only after a design is
completely modelled in Simulink).

Prior to the introduction of COSMIC sizing,
estimation was only by analogy or by informal
methods. The organization recognized the following
benefits of using COSMIC.

• Use of a repeatable process for analysing the
change requirements and mapping to a design
proposal in the modelling language. This
significantly increased trust leading to more
efficient collaboration between customer and
supplier.

• However, each technical environment and
modelling approach needed some different
mapping rules to the COSMIC Generic
Software Model. Variable input data quality
also means that Measurers must be
experienced to ensure accurate measurements.

• The measurements now provide a solid base
for benchmarking.

• Effort estimation accuracy improved from up
to 50% (and variable) uncertainty before

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

starting the measurement programme, to
within 10 – 20% within one year.

• The measurement programme also aims for
continuous feedback and improvement.

D. Effort Estimation for a Web Software Supplier

An Italian supplier of industrial web applications
had used IFPUG Function Points to measure the size
of the FUR, as input to its effort estimation method.

Wishing to understand whether COSMIC FP sizes
would be more accurate for predicting development
effort than IFPUG FP sizes, 25 applications were re-
measured in units of CFP [32].

The 25 applications formed a rather heterogeneous
dataset, including e-government, e-banking, Web
portals, and Intranet applications. All the projects
were developed with SUN J2EE or Microsoft .NET
technologies. Oracle was the most commonly
adopted DBMS, but also SQL Server, Access and
MySQL were employed in some of these projects.

Application sizes ranged from roughly 100 to
900 FP (or from under 200 to over 1100 CFP).
Effort ranged from roughly 1000 to 5000 work-
hours,

In order to build effort estimation models, the
size/effort relationship was analyzed in two ways
for the sizes measured on both FSM methods. They
were Simple Linear Regression (SLR) and Case-
Based Reasoning (CBR), i.e. a Machine Learning-
based solution. Both analyses led to similar results.
The ‘median of the absolute residuals’ was 180
work-hours for the effort predicted from CFP sizes
and 515 work-hours for the effort predicted from FP
sizes.

The study concluded that for this dataset
‘COSMIC was significantly more accurate than
FPs in estimating the development effort’ [32].

V. EARLY SIZE MEASUREMENT AT
ESTIMATION TIME
 For project estimation purposes, estimates of
functional size are almost invariably needed quite
early in a project, before the requirements have been
worked out in full detail. Hence the need for versions
of the detailed FSM method that can measure an
approximate functional size from outline
requirements.
 The same need for approximate size measurement
can arise if there is a need to measure a large number
of software items for the purpose of controlling
performance of maintenance and enhancement
activities. In this case, measuring an approximate size
may be sufficient, much faster and more cost/effective
than making precise measurements.
 Given these needs, several researchers and
practitioners have carried out studies to develop

approximate variants of the COSMIC FSM method.
These have been summarized with extensive examples
from both the business application and real-time
domains in a COSMIC Guideline for Early or Rapid
COSMIC Functional Size Measurement [20-26].
 In the early phases of a project, the documentation
completeness cannot be expected upfront, and will
evolve progressively. For sizing purposes, COSMIC
recognizes various quality level of the documentation
of the software functional processes – see Table 1.

Table 1. Quality levels of the documentation of
Functional Processes

Functional Process
Quality Level

Quality of the functional process
definition

Completely defined Functional process and its data
movements are completely defined

Documented Functional process is documented
but not in sufficient detail to
identify the data movements

Identified Functional process is listed but no
details are given of its data
movements3

Counted A count of the functional processes
is given, but there are no more
details

Implied (A ‘known
unknown’)

The functional process is implied in
the actual requirements but is not
explicitly mentioned

Not mentioned (An
‘unknown unknown’)

Existence of the functional
processes is completely unknown at
present

 This related COSMIC Guidelines documents the
applicability, the reported use as well as their strengths
and weaknesses of each of the following
approximation techniques to complement the lack of
quality in the documentation of the functional user
requirements:
• Average functional process approximation.
• Fixed size classification approximation – see

Table 2.
• Equal size bands approximation – see Tables 3

and 4.
• Average use case approximation.
• Early and quick COSMIC approximation – see

Table 5.
• Easy function points approximation – see Table 6
• Approximation from informally written textual

requirements.
• Approximation using fuzzy logic – the EPCU

model.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

 Table 2. Fixed size classification from [8]
Classification Size

(CFP)
#E #X #R #W Error messages

Small 5 1 1 1 1 1

Medium 10 2 2 3 2 1

Large 15 3 3 4 4 1

…

Table 3. Equal size bands from 37 business
applications

Band Average size
of a

Functional
Process

% of total
Functional

Size

% of total
number

of Functional
Processes

Small 4.8 25% 40%

Medium 7.7 25% 26%

Large 10.7 25% 19%

Very
Large

16.4 25% 15%

Table 4. Equal size bands from a major component
of an avionics system

Band Average size
of a

Functional
Process

% of total
Functional

Size

% of total
number

of Functional
Processes

Small 5.5 25% 49%

Medium 10.8 25% 26%

Large 18.1 25% 16%

Very
Large

38.8 25% 7%

Table 5. Candidate values for the functional
categories of the Early & Quick approach

Type Level Ranges /
COSMIC
Equivalent

min
CFP

most
likel

y

max
CFP

Functiona
l Process

Small 1-5 Data
movements

2.0 3.9 5.0

 Mediu
m

5-8 Data
movements

5.0 6.9 8.0

 Large 8-14 Data
movements

8.0 10.5 14.0

 Very
large

14+ Data
movements

14.0 23.7 30.0

Typical
process

Small

CRUD
(Small/Mediu
m processes)
CRUD + List
(Small
processes)

15.6 20.4 27.6

Mediu
m

CRUD
(Medium/Larg
e processes)
CRUD + List
(Medium
processes)
CRUD + List
+ Report
(Small
processes)

27.6 32.3 42.0

Large

CRUD (Large
processes)
CRUD + List
(Medium/Larg
e processes)
CRUD + List
+ Report
(Medium
processes)

42.0 48.5 63.0

General
process

Small 6-10 Generic
FP's

20.0 60.0 110.
0

 Mediu
m

10-15 Generic
FP's

40.0 95.0 160.
0

 Large 15-20 Generic
FP's

60.0 130.
0

220.
0

Macro
process

Small 2-4 Generic
GP's

120.
0

285.
0

520.
0

 Mediu
m

4-6 Generic
GP's

240.
0

475.
0

780.
0

 Large 6-10 Generic
GP's

360.
0

760.
0

1,30
0

.

Table 6. Probability distributions of approximate
values in the business domain

Classific
ation of
the FP

Specific
ation
level

CFP
min

CFP CFP
max

Approxi
mate
CFP

Probab
ility

Small FP Little
unknown

2
(10
%)

3
(75
%)

5
(15
%)

3.2 >80%

Small FP Unknow
n (No
FUR)

2
(15
%)

4
(50
%)

8
(35
%)

5.1 <50%

Medium
FP

Little
unknown

5
(10
%)

7
(75
%)

10
(15
%)

7.25 >80%

Medium
FP

Unknow
n (No
FUR)

5
(15
%)

8
(50
%)

12
(35
%)

8.95 <50%

Large FP Little
unknown

8
(10
%)

10
(75
%)

12
(15
%)

10.1 >80%

Large FP Unknow
n (No
FUR)

8
(15
%)

10
(50
%)

15
(35
%)

11.45 <50%

Complex
FP

Little
unknown

10
(10
%)

15
(75
%)

20
(15
%)

15.25 >80%

Complex
FP

Unknow
n (No
FUR)

10
(15
%)

18
(50
%)

30
(35
%)

21 <50%

VI. COSMIC METHOD AUTOMATION
A. Automation in industry and in R&D

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Researchers in industry and academia have already
demonstrated several tools and some have reached
commercial use, such as:

• The specifications of the automated process to
measure a CFP size of Simulink blocks has
been published by Renault for public use [33]
[34]. Renault’s motivation for automation was
‘speed and accuracy of measurement’.

• Some tools are available to assist CFP
measurement data capture and/or to enter data
directly into an estimating tool [35].

• Various researchers have pointed out the
strong links between the concepts of COSMIC
and the Unified Modelling Language and how
to automate CFP measurement of Use Cases.
A Turkish telecommunications company has
described its mapping of UML requirements
ontology and COSMIC measurement
ontology [36, which also includes a survey of
similar approaches]. The paper describes the
validation of the mapping by measuring
requirements automatically for new and
changed functionality of a Call Centre
application.

• Another example is the Polish software house
which has developed a tool to measure CFP
sizes from requirements stored according to
UML conventions (with certain restrictions) in
the Enterprise Architect CASE tool. The tool
is available under a Creative Common Licence
[37]. It is used by seven software suppliers to
three Polish public-sector bodies under
consortia contracts and the contracts allow that
COSMIC sizes are not measured exactly
according to the method’s rules.

• Semi-automated measurement of CFP sizes
from executing programs has also been
reported [38], [39]. The process in [38]
involved inserting code into a 3-tier Java
business application to capture the data
movements. The process was subsequently
applied for three other applications. The
resulting CFP measurements were found to be
92% accurate; the cost of manual
measurement was almost three times higher
than that of automated measurement.

• A model-based and automated approach to
size estimation of embedded software
components is also discussed in [40].

B. Accuracy Verification Protocol of Automation
Tools

A literature review in [42] has shown that very little
work has been conducted on verifying measurement
results produced by FSM automation, and hence to
independently demonstrate the accuracy of a FSM
automation tool, a verification protocol has been
proposed [42]. The COSMIC automation at Renault

has been fully verified using this verification protocol
that recommends the use of a sequence of input
specifications, starting from specifications with only
one FP and having the minimum combination of
mandatory data movements, and then progressing in
an orderly and systematic sequence to achieve the
most extensive completeness, in terms of
combinations of flows.

In this protocol, the samples input to the
automation tool should cover all the types of input
combinations that might be encountered. To verify
the accuracy of individual automated measurements,
each sample must also be measured manually, in
parallel, using the FSM procedures being automated,
and all the details of the measurement steps must be
kept for traceability purposes. So, in addition to the
total functional size obtained in CFP, each of the FPs
and data group movements is identified and
compared to each of the FPs identified in parallel in
the manual measurement procedure.

Moreover, because an error could result from the
manual measurement, or be caused by the prototype
tool, the verification protocol must identify which
party is responsible for such an error.

Verification of the measurement accuracy of a
tool is executed in three phases, as shown in Fig. 11:

1. Phase 1: Numerical results comparison. The
measurement results (in CFP) of the whole of the
software measured, both those produced by the
automation tool and those obtained manually, are
compared. If the results match, then there is no
difference between the automated and manual
measurement processes. However, this does not
mean that the processes used for identifying the
individual COSMIC elements and to obtain the final
results are similar. It is important to understand that,
if the verification stops with this phase, only the final
results will have been verified.

2. Phase 2: Detailed comparison. If the final
numerical results at the end of Phase 1 do not match,
and to find the reason for the difference, the results at
the detailed level are compared, that is, the FPs
obtained automatically and manually are verified. It
is also necessary to verify whether or not there were
any human errors in those results, using the detailed
measurement results obtained by the automation tool:

• If there is no difference in the number of FPs,
each FP obtained automatically is verified against its
manually obtained ‘peer’ to determine whether or not
there is a difference in their names (or their
identifiers).

• If every FP obtained automatically matches
its peer obtained manually, then their functional sizes
are compared. A difference indicates that one or more
data movements in the FP must be responsible. Then,
at the end of this phase, any data movement

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

responsible for an error is isolated, in both the manual
and automated measurement results.

3. Phase 3: Automation tool and input
verification. This phase is triggered when the
possibility of human error (in the manual
measurement) is discarded at the end of Phase 2. A
detected error can come from two sources: a
measurement error or an error in the requirements
input to the measurement process. Therefore, this
phase consists of the following:

• Determining which module of the automation
tool is responsible for the error. These modules can
have sub modules; if they do, the sub modules
causing the error are inspected as well.

• Determining, in parallel, the input
requirements, in order to detect a possible defect that
may be causing the error.

Once an error has been detected, the following
steps are taken:

• If the error was caused by the automation
tool, a correction is made to the tool and the
appropriate specification is re-measured with the new
version of the tool, and then re-verified.

• If the cause of the error was in the
specification itself, the defect is recorded for possible
future enhancements to the specification or to a
specific functionality, or both, in order to bypass this
defect in the tool.

Finally, the revised version of the input
requirements – if there is one – is verified by the
protocol, to ensure that the results of the manual and
automated measurements are the same.

Figure 10. The 3-phase verification protocol for FSM
tool automation accuracy [42]

C. COSMIC Automation Accuracy at Renault S.A.
The verification protocol was applied at Renault with
a set of 77 distinct specification models (designed in
Simulink): various sizes of specifications were chosen

among a number of software functions that
represented different ECMs (Engine Control Modules)
in the department where the automation prototype-tool
was initially developed [42].

Overall, the difference in the total size of the 76
correct requirement models obtained both manually
(i.e. 1,729 CFP) and using the automation prototype
(i.e. 1,739 CFP) is less than 1% – see Table 7. The
accuracy of the automation prototype after testing is
greater than 99%: this means that it is 99% accurate
not only at the total size, but also that 99% of the
individual sizes of the data movements individually
are accurate.

 In addition to detecting one incomplete requirement
specification, the proposed verification protocol
helped identify the limitations of the prototype tool,
which stem from the limitations inherent in the
libraries that it uses. These limitations were next
corrected in the automation tool developed by a
Renault subsidiary based on the verified prototype:
this automation tool is now more robust and has a
greater level of accuracy, and is currently in use in a
number of departments at Renault S.A. [28] [34].

Table 7. Difference between the total size obtained
manually and using the prototype tool [42]

Total

Number of

Models

Total Size

obtained

manually

(CFP)

Total Size

obtained

using the

prototype

tool (CFP)

Difference

(%)

Accuracy

76 fault-

free models

1,729 1,739 Less than 1% >99%

All 77

models

1,758 1,791 1.8% >98%

D. COSMIC Automation at ESTACA
Two COSMIC-based automation prototype tools

were developed at ESTACA: they can be
downloaded for free from the ESTACA website [44].
While the first prototype tool was developed to
measure the size of aerospace real-time embedded
software modeled using the SCADE commercial tool
[45], the second one was developed to correctly
measure the functional size of ECU application
software designed following the AUTOSAR
(AUTomotive Open System Architecture) standard
[46]. AUTOSAR is the new generation of ECU
software design architecture, methodology, and
metamodel [47] [48]. It has become an important part
of the production design criteria for many vehicle
manufacturers, especially in the automotive

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

electronics industry [49]. The procedure automated
by the prototype is based on the measurement
guideline presented in [50] and has a set of mapping
rules to be applied to the system modeled in order to
obtain its functional size.
The automation algorithm developed at ESTACA is

presented in Fig. 16 and follows the proposed FSM
procedure step by step. It was implemented first in
Python [42] and then in Java [44].

The protocol on the prototype tool used the Steer-
by-Wire system described in [50]. The system
provides two main functionalities: the feedback
torque and the rack torque. The two functionalities
were implemented using a set of 10 Runnables
distributed in 6 software components (SWCs) - see
Fig. 17.

The manual and automated measureent results
showed that there was no difference in the final
measurement results of the two measurement
procedures (manual and automated): the functional
processes identified were exactly the same. In
addition, precisely the same data movements were
identified in both measurements. Lastly, the total
functional size measured in both the manual and
automated application of the FSM procedure was the
same.

VI. SUMMARY AND FUTURE CHALLENGES
As a summary, from this body of evidence:
• The COSMIC method design is simple and

has been accepted as applicable to all the
different types of software for which it was
designed.

• The 'open’ COSMIC community has made all
the significant advances in functional size
measurement in this century.

• Evidence from applying the COSMIC method
in multiple organizations around the world
demonstrates that it can be used as a key
component to help achieve the two principle
objectives of software measurement: namely
to enable control of software projects and
other activities, and to be used for estimating
future activities.

• As new types of software emerge, new
Guidelines will be needed on how to apply
COSMIC sizing. For instance, it is possible
that a new Guideline will be needed for
measuring software assembled from pre-
existing components (i.e. services). This is
currently being studied.

• However, the advantage of the flexibility of a
principles-based method (over the rules-based
approach of ‘1st generation’ methods) is that
no new rules are needed to measure new types

of software. Fundamentally, the COSMIC
method is stable and hence ‘future-proof’.

The method is now being used world-wide. The
Measurement Manual has been translated into 10 other
languages besides English. It has been or is being
adopted as a national standard for use by Governments
in countries such as China, Mexico and Poland.

As the COSMIC organization has no membership,
the real extent of use is not known precisely. Over 600
people have now passed the COSMIC Foundation-
level certification examination. The largest numbers
are from countries such as Brazil, China, India, Italy,
Poland and Turkey.

In 2009, the General Accountability Office of the
US Government recommended the IFPUG and
COSMIC methods for use in software cost estimating
[51]. In 2016, the National Institute of Standards and
Technology of the USA in its investigation on a
‘Rational Foundation for Software Metrology’ [52]
cited only the COSMIC method as having a well-
defined unit of measurement.

The single most important technical challenge is to
develop automated tools to measure or to support
measurement of COSMIC sizes. Automation is of
course dependent on the technology supporting the
inputs to the automation. For automated measurement
of the size of the functional requirements, partially or
entirely documented using distinct requirements
formats and a variety of requirements tools,
automation is required for each requirements
technology environment. Similarly, measurement
automation of the requirements as implemented (e.g.
lines of code): distinct automation tools are required
for each of the large variety of programming
languages.

Automation will help to progressively overcome a
major barrier to acceptance of Function Points, namely
the time and experience needed for accurate manual
measurement and data recording.

Automatic size measurement from requirements is
particularly difficult when the requirements are not
expressed in sufficient detail, or are full of
ambiguities, etc. So this is a very large challenge,
though made relatively easier by the simplicity of the
COSMIC Generic Software Model and its foundation
on software engineering principles.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the enormous

contribution over the years of the many members of
the Measurement Practices Committee and other
measurement experts who have given their time to
continually improve the COSMIC method and to
produce its various publications.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

REFERENCES
References labelled with an asterisk are available for free

download from:
http://cosmic-sizing.org/cosmic-publications/overview/

[1] Charles Symons, ‘Exploring Software Project Effort versus
Duration Trade-offs,’ IEEE Software, July-August 2012, pp
67-74.

[2] Allan Albrecht, “Measuring application development
productivity,” IBM Applications Development Symposium,
Monterey, California, pp. 83-92, 1979.

[3] ISO, “ISO/IEC 20926:2009: Software and systems
engineering -- Software measurement - IFPUG functional size
measurement method,” International Organization for
Standardization, Geneva, 2009.

[4] ISO, “ISO/IEC 24570:2005 Software engineering -- NESMA
functional size measurement method version 2.1 -- Definitions
and counting guidelines for the application of Function Point
Analysis,” International Organization for Standardization,
Geneva, 2005.

[5] Gustav Karner, “Resource Estimation for Objectory Projects,”
Objective Systems SF AB, 1993.

[6] Kauffman, Wright, Zweig, “Automating Output Size and
Reuse Metrics in a Repository-Based Computer Aided
Software Engineering (CASE) Environment,” IEEE Trans.
Software Engineering, 20(3), p. 169-186, 1994.

[7] M. Cohn, “User Stories Applied for Agile Software
Development,” Addison-Wesley, 2004.

[8] Alain Abran, ‘Software Metrics and Software Metrology,’
IEEE-CS Press & John Wiley & Sons – Hoboken, New Jersey,
May 2010, pp. 328.

[9] Christophe Commeyne, Alain Abran, Rachida Djouab, “Effort
Estimation with Story Points and COSMIC Function Points -
An Industry Case Study,” Software Measurement News, Vol.
21, No. 1, 2016. *

[10] ISO, “ISO/IEC 14143/1:2007 Software and systems
engineering - software measurement - functional size
measurement - definition of concepts,” International
Organization for Standardization, Geneva, 2007.

[11] Alain Abran, Marcela Maya, JM Desharnais, Denis St-Pierre,
“Adapting Function Points to Real-Time Software,” American
Programmer, Vol. 10, Issue 11, November 1997, pp. 32-43.

[12] Charles Symons, ‘Function Point Analysis: Difficulties and
Improvements’, IEEE Transactions on Software Engineering,
Vo. 14, no. 1, January 1988.

[13] ISO, “ISO/IEC 19761:2011 Software engineering --
COSMIC: a functional size measurement method,”
International Organization for Standardization, Geneva, 2011.

[14] COSMIC, “Introduction to the COSMIC method of measuring
software,” version 1.1, January 2016. *

[15] COSMIC, “Measurement Manual (The COSMIC
Implementation Guide for ISO/IEC 19761: 2011),” version
4.0.1, April 2015. *

[16] Alain Abran, Khalid Al-Sarayreh, J.J. Cuadrado-Gallego, “A
Standards-based Reference Framework for System Portability
Requirements,” Computer Standards and Interfaces, Vol. 35,
2013, pp. 380–395.

[17] Christof Ebert, ‘Putting Requirements Management into
Praxis: Dealing with Non-functional Requirements,’
Information and Software Technology, Vol. 40, No. 3, pp.
175-185, 1998.

[18] COSMIC and IFPUG, “Glossary of terms for Non-Functional
Requirements and Project Requirements used in software
project performance measurement, benchmarking and
estimating,” v1.0, September 2015. *

[19] COSMIC, “Guideline on Non-Functional & Project
Requirements: How to consider non-functional and project
requirements in software project performance measurement,
benchmarking and estimating,” version 1 November 2015. *

[20] COSMIC, “Guideline for Early or Rapid COSMIC Functional
Size Measurement by using approximation approaches,” July
2015. *

[21] COSMIC, “Guideline for assuring the accuracy of
measurements,” version 0.93, February 2011. *

[22] COSMIC, “Guideline for the use of COSMIC FSM to manage
Agile projects,” version 1.0, September 2011. *

[23] COSMIC, “Guideline for Sizing Business Application
Software,” version 1.2b, September 2015. *

[24] COSMIC, “Guideline for Sizing Real-Time Software,”
version 1.1 April 2015. *

[25] COSMIC, “Guideline for Sizing Data Warehouse Application
Software,” version 1.1, April 2015. *

[26] COSMIC, “Guideline for Sizing Service-Oriented
Architecture Software,” version 1.1, March 2015. *

[27] F. Vogelezang, J.K. Ramasubramani, S. Arvamudhan,
“Estimation for Mobile and Cloud Environments,” book
chapter in Modern Software Engineering Methodologies for
Mobile and Cloud Environments, (eds.) A.M. Rosado da Cruz
and S. Paiva, DOI 10.4018/978-1-4666-9916-8.

[28] Alexandre Oriou, E. Bronca, B. Bouzid, O. Guetta, and K.
Guillard, “Manage the automotive embedded software
development cost & productivity with the automation of a
Functional Size Measurement Method (COSMIC),” Joint 24th
International Workshop on Software Measurement (IWSM)
and 9th MENSURA conference, Rotterdam (The Netherlands),
IEEE CS Press, 2014.

[29] Sophie Stern and Olivier Guetta, "Manage the automotive
embedded software development cost by using a Functional
Size Measurement Method (COSMIC)," in ERTS² 2010, 5th
International Congress & Exhibition, Toulouse, France, 2010.

[30] Cigdem Gencel and Sophie Stern, "Embedded software
memory size estimation using COSMIC: a case study,"
IWSM/MetriKon/Mensura, Stuttgart, Germany, 2010.

[31] Kenneth Lind, and Rogardt Heldal, "Estimation of Real-Time
Software Code Size using COSMIC FSM," IEEE Intl.
Symposium on Object/component/service-oriented Real-time
distributed Computing - ISORC 2009, pp. 244-248.

[32] S. Di Martino, F. Ferruci. C. Gravion, F. Sarro, “Web Effort
Estimation: Function Point Analysis vs. COSMIC,”
Information and Software Technology 72, 2016, pp. 90–109.

[33] Hassan Soubra, Alain Abran, Sophie Stern, and Amar
Ramdane-Cherif, “Design of a Functional Size Measurement
Procedure for Real-Time Embedded Software Requirements
Expressed using the Simulink Model,” IWSM-MENSURA,
Nara, Japan, IEEE CS Press, 2011, pp. 76-85.

[34] Renault S.A., "Design of a Functional Size Measurement Tool
for Real-Time Embedded Software Requirements Expressed
Using a Simulink Model," MathWorks Automotive
Conference. Stuttgart, 2012.

 [35] See http://cosmic-sizing.org/organization/commercial-
support/vendor-list/

[36] S. Bagriyanik, A. Karahoca, “Automatic COSMIC function
point measurement using requirements engineering ontology”,
submitted to “Information and Software Technology,” 2016.

[37] J. Swierczek, “Automatic COSMIC sizing of requirements
held in UML,” in the “COSMIC Masterclass,”
IWSM/Mensura Conference 2014 www.ieeexplore.org. Tool
available from http://300dc.pl/oferta/standardy-modelowania/

[38] A. Akca, A. Tarhan, “Run-time measurement of COSMIC
functional size for Java business applications: is it worth the
cost?” IWSM/Mensura Conference, 2013.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://dx.doi.org/10.1016/j.infsof.2015.12.001
http://cosmic-sizing.org/organization/commercial-support/vendor-list/
http://cosmic-sizing.org/organization/commercial-support/vendor-list/
http://www.ieeexplore.org/
http://300dc.pl/oferta/standardy-modelowania/

[39] H. Huigens, M. Bruntink, A. van Deursen, T. van der Storm,
F. Vogelezang, “Exploratory Study on Functional Size
Measurement based on Code,” International Conference on
Systems and Software Processes - ICSSP, 2016 DOI
10.1145/2904354.290436

[40] Kenneth Lind and Rogardt Heldal, "A Model-Based and
Automated Approach to Size Estimation of Embedded
Software Components," in ACM/IEEE 14th International
Conference on Model Driven Engineering Languages and
Systems, Wellington (New Zealand), 2011.

[41] Olavo Mendes, "Développement d’un protocole d’évaluation
pour les outils informatisé de comptage automatique de points
de fonction," Master’s thesis, Computer Science Department,
Université du Québec à Montréal (Canada), 1996.

[42] Hassan Soubra, Alain Abran, Amar Ramdane Cherif ‘Verifying
the Accuracy of Automation Tools for the Measurement of
Software with COSMIC – ISO 19761 including an
AUTOSAR-based Example and a Case Study,’ Joint 24rd
International Workshop on Software Measurement & 9th
MENSURA Conference, Rotterdam (The Netherlands), Oct.
6-8, 2014, IEEE CS Press, pp. 23-31.

[43] Keith Paton and Alain Abran, "A Formal Notation for the Rules
of Function Point Analysis," Research Report 247, Montreal:
Computer Science Department, Université du Québec à
Montréal, Canada, 1995.

[44] http://www.estaca.fr/hassan-soubra/
[45] H. Soubra, L. Jacot, S. Lemaire, "Manual and automated

functional size measurement of an aerospace real-time
embedded system : a case study based on SCADE and on
COSMIC ISO 19761," International Journal of Engineering
Research and Science Technology - IJERST, Vol. 4 n°2, pp.
79-100, 2015.

[46] H. Soubra, A. Abran and M. Sehit, "Functional size
measurement for processor load estimation in AUTOSAR,"
Joint 25th International Workshop on Software Measurement
and 10th MENSURA Conference, Kraków, Poland, October
"5-7, 2015, Lecture Notes in Business Information Processing
- Springer, vol. 230, pp. 114-129, 2015.

[47] http://www.autosar.org
[48] Heinecke, Harald et al., "AUTOSAR – Current results and

preparations for exploitation," Euroforum Conference, May 3,
2006.

[49] H. Fennel et al,. "Achievements and Exploitation of the
AUTOSAR Development Partnership," SAE Convergence
Congress, Detroit, MI, 2006.

[50] H. Soubra, and K. Chaaban, "Functional Size Measurement of
Electronic Control Units Software Designed Following the
AUTOSAR Standard: A Measurement Guideline Based on the
COSMIC ISO 19761 Standard," Joint 22nd International
Workshop on Software Measurement and 7th MENSURA
Conference, IEEE CS Press, 2012.

 [51] GAO, “Cost Estimating and Assessment Guide,”
http://www.gao.gov/new.items/d093sp.pdf , March 2009.

[52] NIST, “A Rational Foundation for Software Metrology,”
National Institute for Standards & Technology, NIST IR 8101,
January 2016.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://www.gao.gov/new.items/d093sp.pdf

	C. COSMIC Automation Accuracy at Renault S.A.
	In addition to detecting one incomplete requirement specification, the proposed verification protocol helped identify the limitations of the prototype tool, which stem from the limitations inherent in the libraries that it uses. These limitations wer...
	D. COSMIC Automation at ESTACA

