

2017 ICEAA Professional Development & Training Workshop June 6 - 9, 2017 • Portland, OR

A "Common Risk Factor" Method to Estimate Correlations between Distributions

Presented by:

Marc Greenberg Strategic Investment Division (SID) National Aeronautics and Space Administration

- Correlation Overview
- Why Propose Another Correlation Method?
 - Underlying Basis for "Common Risk Factor" Method
 - Concept of Mutual Information
 - Using the Unit Square to Estimate Mutual Information
 - "Common Risk Factor" Method (for pair of activities)
 - Apply 7 Steps to Estimate Correlation between 2 Distributions
 - Examples
 - Correlation of Durations for Two Morning Commutes
 - Correlation of Costs for Two WBS Elements of a Spacecraft
 - Conclusion, Other Potential Applications & Future Work

Correlation Overview (1 of 3) a

- A statistical measure of association between two variables.
- It measures how strongly the variables are related, or change, with each other.
 - If two variables tend to move up or down together, they are said to be positively correlated.
 - If they tend to move in opposite directions, they are said to be negatively correlated.
- The most common statistic for measuring association is the Pearson (linear) correlation coefficient, ρ_{P}
- Another is the Spearman (rank) correlation coefficient, ρ_{S}
 - Used in Crystal Ball and @Risk

Correlation Overview (2 of 3) a

- Captured through mathematical relationships w/in cost model
- Specified by the analyst and implemented w/in cost model
- Correlations (or dependencies) between the uncertainties of WBS CERs are generally determined subjectively
 - However, as we collect more data, more and more of these correlations are determined using historical data

$$\sigma_{Total}^{2} = \sum_{k=1}^{n} \sigma_{k}^{2} + 2\sum_{k=2}^{n} \sum_{j=1}^{k-1} \rho_{jk} \sigma_{j} \sigma_{k}$$

... where ρ_{jk} is the correlation between uncertainties of WBS CERs j and k (notated at σ_i and σ_k , respectively)

The remainder of this presentation will focus on how to calculate ρ_{ik}

(a) Schematic from Correlations in Cost Risk Analysis, Ray Covert, MCR LLC, 2006 Annual SCEA Conference, June 2006 Slide 5

Www.iceaaopline.com/portland2017 Why Propose Another Correlation Method?

- I. For statistical methods, lack of data makes it difficult to calculate robust Pearson's R or Spearman's Rho
 - Example: Residuals from previous slide produces Rho = 0.88.
 However, the residuals exhibit an "influential observation."
- 2. For non-statistical methods, there can be many issues:
 - "N-Effect" and "Knee-in-the-Curve" methods are not inherently intuitive to the non-practitioner.
 - Although "Causal Guess" method is simple and intuitive, the analyst and/or subject matter expert are still guessing.
 - Whenever parameters of 2 uncertainty distributions lack basis, the correlation between them is difficult to justify.

Unlike these other methods, the Common Risk Factor Method provides correlation between 2 uncertainties based upon common root-causes. Applying this method may lessen the degree of subjectivity in the estimate. Correlation Overview (Revisited)

www.iceaaonline.com/portland2017

Labor Skillset during Task I Labor Skillset during Task 2

"Common Risk Factor Method" Notional Example (Output Only):

Given Tasks I & 2 each have an apprentice welder, we expect added uncertainty in the duration of Tasks I & 2 due to the lack of skills for each "untested" welder.
Task I: Max Duration will go up by 5 days due to adding P/T welder to team
Task 2: Max Duration will go up by 10 days due to adding F/T welder to team
Tasks I and 2 Correlation = 0.40, partly driven by common skillset in each task.

- Correlation Overview
- Why Propose Another Correlation Method?
- Underlying Basis for "Common Risk Factor" Method
 - Concept of Mutual Information
 - Using the Unit Square to Estimate Mutual Information
 - "Common Risk Factor" Method (for pair of activities)
 - Apply 7 Steps to Estimate Correlation between 2 Distributions
 - Examples
 - Correlation of Durations for Two Morning Commutes
 - Correlation of Costs for Two WBS Elements of a Spacecraft
 - Conclusion, Other Potential Applications & Future Work

Concept of Mutual Information

• Whenever two objects share common features, these features can be perceived as "mutual information"

Binary string x: 0
Binary string y: 1

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$
 \implies Mutual information:
= 2 / 8 or 0.25 or 25%
16 oz. of OJ
 \implies B oz. of OJ
 \implies The "least common
denominator" is
 \implies 8 oz. of OJ
 \implies = 8 / 16 or 0.50 or 50%

Mutual information can also be applied to risk factors that are common among a pair of uncertainty distributions.

Mutual Information between 2 groupings

Weighted Ave: Mutual Information = Σ Weight * (Minimum (X,Y) / Maximum (X,Y))

The Unit Square: Meeting Times Example a

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{, for } a \le x \le b \\ 0 & \text{, otherwise} \end{cases}$$

Similarly, the girl's actions can be depicted as a single continuous random variable Y that takes all values over an interval a to b with equal likelihood.

In this example, the interval is from 0.0 to 1.0 hour. Therefore a = 0.0 and b = 1.0.

Notation for this uniform distribution is **U** [0, 1]

The Unit Square: Meeting Times Example

Iteration	rv (X)	rv (Y)	X - Y	X - Y <u><</u> 0.2?
1	0.142	0.318	0.176	1
2	0.368	0.733	0.365	0
3	0.786	0.647	0.138	1
4	0.375	0.902	0.528	0
5	0.549	0.935	0.386	0
6	0.336	0.775	0.439	0
7	0.613	0.726	0.113	1
:	:	•	:	:
•	•	•	•	•
9998	0.157	0.186	0.029	1
9999	0.384	0.991	0.607	0
10000	0.045	0.399	0.354	0
			Total =	3630

This simulation indicates that out of 10,000 trials, the boy and girl meet 3,630 times. Probability they will meet = 0.363 or 36%

Probability of |X - Y | < 0.20 on Unit Square 1.00 0.90 0.80 0.70 Random Variable Y 0.60 0.50 0.40 0.30 0.20 Parameters: Min = 00.10 Max = 10.00 0.10 0.20 0.30 0.40 0.60 0.80 0.90 1.00 0.00 0.50 0.70 Random Variable X

Simulation of Joint Density Function of Uniformly Distributed Random Variables

The Unit Square ... Why do we Care?

Iteration	rv (X)	rv (Y)	X - Y	X - Y ≤0.2?	X: 0.786 * 60 = 47 minutes. Arrives at 9:47am.
1	0.142	0.318	0.176	1	Y: 0.647 * 60 = 39 minutes. Arrives at 9:39am.
2	0.368	0.733	0.365	0	The girl arrives at 9:39am. The boy arrives at 9:47am.
3	0.786	0.647	0.138	1	He arrived w/in the 12 minute (0.2 hr) time window.
4	0.375	0.902	0.528	0	So they <u>do</u> meet.
5	0.549	0.935	0.386	0	/
6	0.336	0.775	0.439	0	X: 0.375 * 60 = 22 minutes. Arrives at 9:22am.
7	0.613	0.726	0.113	1	Y: 0.902 * 60 = 54 minutes. Arrives at 9:54am.
:	:	:	:	:	The how environ of 9.22 and The sind environ of 9.54 and
					The boy arrives at 9:22am. The girl arrives at 9:54am.
•	•	•	•	•	She arrived after the 12 minute (0.2 hr) time window.
9998	0.157	0.186	0.029	1	So they <u>do not</u> meet.
9999	0.384	0.991	0.607	0	
10000	0.045	0.399	0.354	0	Using 10,000 trials, the boy & girl meet 3,630 times.
			Total =	3630	Probability they will meet = 0.363

Given that each person will "use up" 20% of their respective 1.0 hour time interval, we demonstrate the frequency (out of 10,000 trials) that the boy and girl are in "similar states" = Mutual Information

Unit Square: Geometric Estimate of Prob.

The Probability is Determined by Calculating the Area of the Shaded **Region:** $A_1 = A_2 = 0.5 (L) * (L) = 0.5 L^2$ $A_3 =$ sqrt (2) (L) * sqrt (2) (1 - L) = 2 L (1 - L)Area = $A_1 + A_2 + A_3$ Area = $0.5 L^2 + 0.5 L^2 + 2 L (1 - L)$ Area = L^2 + 2 L (1 - L) Area = $0.20^2 + 2(0.20)(1 - 0.20)$ Area = 0.360

Note: This Probability is actually a Volume, not an Area ...

Joint Distribution of Uniformity Distributed Random Variables X and Y

Under the condition to include only $F_{x,y}(x,y)$ values in cases where $|X - Y| \le 0.20$

- Correlation Overview
- Why Propose Another Correlation Method?
- Underlying Basis for "Common Risk Factor" Method
 - Concept of Mutual Information
 - Using the Unit Square to Estimate Mutual Information
- "Common Risk Factor" Method (for pair of activities)
 - Apply 7 Steps to Estimate Correlation between 2 Distributions
 - Examples
 - Correlation of Durations for Two Morning Commutes
 - Correlation of Costs for Two WBS Elements of a Spacecraft
 - Conclusion, Other Potential Applications & Future Work

(a) For methods on developing uncertainty distributions using risk factors, refer to "Expert Elicitation of a Maximum Duration using Risk Scenarios," 2014 NASA Cost Symposium presentation, M. Greenberg

- If it is available, then this method can be used as a cross-check

- Future work will include efforts on negative correlation
- With > 5 common risk factors, SME has difficulty "separating" salient risk factors from all possible risk factors.
 - Risk factor pairs tend to become alike, producing correlations > 0.30
- As a general rule, risk factors contributing < 5% to overall uncertainty should be added into "Undefined" category

Ground Rules and Assumptions (2 of 2)

- Common risk factors are assumed to be correlated whenever the common risk factors are in a similar state. This occurs when each common risk factor has "overlapping" rv's along U[0,1]
 - Trial 98, Weather is moderate for <u>both</u> rv's X &Y => X & Y are Correlated
 - Trial 99, Weather is *moderate* for rv X, severe for rv Y = X & Y are not Correlated
- The least common denominator (LCD) of relative contributions of each common risk pair models each common risk factor as continuous rv's from $0 \rightarrow$ min value, not anywhere along U[0,1]
 - Result is that LCD technique will produce lower correlation values

- Commute is from Commuter's Residence to anywhere in Washington, DC
- Maximum Commuting Distance for Phase A of the Study = 8 miles
- A person (X) commuting to work in DC from inside the beltway has a mostlikely commute time of 20 minutes by car
- A person (Y) commuting into DC from inside the beltway has a most-likely commute time of 40 minutes by bus & metro
- To run the simulation for estimating total commute time, assume persons X and Y commutes have a medium correlation = 0.50.

Examples and Cases that Follow are Notional. They are Provided to Demonstrate the Methodology.

Example I: Commute Training Workshop Times

Bus/Metro: Potential 40 minute impact versus Most-Likely Bus/Metro Time

So what is the correlation between these two uncertainty distributions?

If we know the relative contributions of underlying risk factors for each distribution, we can calculate the correlation between these two distributions Create Risk Reference Table (Step I)

Objective	Means		
	These are Primary Factors		
	that can impact Objective		
Maximize	Route Conditions		
Average Speed from	# of Vehicles on Roads		
Residence to Workplace	Mandatory Stops		
	Efficiency		
	Undefined		

The utility of this Objective Hierarchy is to aid the Expert in:

- (a) Establishing a Framework from which to elicit most risk factors,
- (b) Describing the relative importance of each risk factor with respect to means & objective, and
- (c) Creating specific risk scenarios

Create Risk Reference Table (Step I cont'd)

Objective	Means		
	These are Primary Factors		
	that can impact Objective		
Maximize Average Speed from Residence to Workplace	Route Conditions		
	# of Vehicles on Roads		
	Mandatory Stops		
	Efficiency		
	Undefined		

- Q: What are some factors that could degrade route conditions?
- A: Weather, Road Construction, and Accidents
- Q: What influences the # of vehicles on the road in any given morning?
- A: Departure time, Day of the Work Week, and Time of Season (incl. Holiday Season)
- Q: What is meant by Mandatory Stops?
 - A: By law, need to stop for Red Lights, Emergency Vehicles and School Bus Signals
 - Q: What can reduce Efficiency?
 - A: Picking the Bus or Metro Arriving Late, Bus Stopping at Most Stops, and Moving Below Optimal Speed (e.g. driving below speed limit).

Create Risk Reference Table (Step I cont'd)

Objective	Means	Risk Factors	Description (can include examples)		
	These are Primary Factors	These are Causal Factors	Subject Matter Expert's (SME's) top-level		
	that can impact Objective	that can impact Means	description of each Barrier / Risk		
		Weather	Rain, snow or icy conditions. Drive into direct sun.		
	Route Conditions	Accidents	Vehicle accidents on either side of highway.		
Maximize		Road Construction	Lane closures, bridge work, etc.		
Average		Departure Time	SME departure time varies from 6:00AM to 9:00AM		
Speed	# of Vehicles on Roads	Day of Work Week	Driving densities seem to vary with day of week		
from		Season & Holidays	Summer vs. Fall, Holiday weekends		
Residence		Red Lights	Approx 8 traffic intersections; some with long lights		
to	Mandatory Stops	Emergency Vehicles	Incl. police, firetrucks, ambulances & secret service		
Workplace		School Bus Signals	School buses stopping to pick up / drop off		
		Bus/Metro Arriving Late	Bus arriving late. Metro arriving late.		
	Efficiency	Bus Stopping at Most Stops	On rare occasion, will call someone during commute		
		Moving below Optimal Speed	Bus or Car Driver going well below speed limit		
	Undefined	Undefined	It's possible for SME to exclude some risk factors		

This is the most time-intensive part of SME interview & serves as reference for the interview method being used.

Step 2. Estimate Risk Factor % Contributions

For each type of commute, respective SMEs ascribe the following "max" time impacts to 4 risk factors:

• Weather, Road Construction, Bus/Metro Arriving Late and Departure Time

	Max Impact vs Most Likely				Contribution of Total		
Risk Factor	Car	Bus/Metro	Total		Car	Bus/Metro	_
Weather	4.0	2.0	6.0		0.20	0.05	
Road Construction	10.0	8.0	18.0	\square	0.50	0.20	% Impact due
Bus/Metro Arriving Late	0.0	26.0	26.0		0.00	0.65	of Given Risk
Departure Time	6.0	4.0	10.0		0.30	0.10	
Total Delay (minutes):	20	40	60		1.00	1.00	

Note: These impacts can be elicited "ad-hoc" from the SME. Nevertheless, it is recommended to apply more structured methods during the SME interview for long-duration activities or ones with higher criticality indices.^a

(a) For methods on developing uncertainty distributions using risk factors, refer to "Expert Elicitation of a Maximum Duration using Risk Scenarios," 2014 NASA Cost Symposium presentation, M. Greenberg

Correlation of a Risk Pair (Road Construction)

Common Risk Factor Method: Steps 3 - 7

Step 3. Min & Max Volumes Associated **Step 4.** Correlation (per risk factor pair) = Min Volume / Max Volume with Common Risk Factors **Step 5.** Weighting Factor for Each Min/Max = Max Volume divided by Sum of Max Volumes **Contribution of Total** Calculated Volumes wrt Min/Max Weighting Weighted Min Max **Risk Factor** Car **Bus/Metro** Car Bus/Metro Volume Volume Volume Factor Min/Max ▲ 0.20 Weather 0.05 0.360 0.098 0.098 0.360 0.271 0.14 0.039 Road Construction 0.50 0.20 0.750 0.360 0.360 0.750 0.480 0.30 0.144 0.878 **Bus/Metro Arriving Late** 0.00 0.65 0.000 0.878 0.000 0.000 0.35 0.000 **Departure Time** 0.20 0.30 0.10 0.510 0.190 0.190 0.510 0.373 0.076 1.000 Totals: 1.00 1.00 1.620 1.525 0.281 0.259 0.648 2.498

> Step 6. Weight Correlation of Each Pair of Common Risk Factors

Step 7. Sum up Weighted Correlations to get total Correlation

The 0.26 correlation value reflects the mutual information (of common risks) between these 2 activities. The analyst's "Causal Guess" of 0.50 was not a reasonable estimate of correlation.

Non-Uniformly Distributed Risk Factors

When each risk factor is modeled as a triangular distribution, the simulation indicates the boy and girl meet 4,730 times out of 10,000 trials = 47% probability of meeting.
 This probability increased due to added central tendency from each risk factor.

Joint Distribution of Triangularly Distributed Random Variables X¹ and Y Under the condition to include only Fx,y(x,y) values in cases where $|X - Y| \le 0.20$

Probability of 2 Independent Triangular Distributed Random Variables [0, 1] Intersecting within a 0.20 Interval Example: Likelihood of boy (x) & girl (y) meeting at park between 9 &10am, given neither will wait more than 12 minutes (0.20 hr) Given triangularly distributed random values, X and Y: For $|Y-X| \leq 0.20$, "meetup" probability (> 0%) varies depending on the pair of X and Y values. 4.00 3.50 3.00 F_{X.Y} (x,y) 2.50 0.98 for 2.00 0.91 0.84 | Y - X | < 0.20 0.77 1.50 Area = 0.41 0.70 1.00 0.63 0.56 0.50 0.49 0.42 0.00 0.35 Random 0.28 Variable Y 0.21 0.14 Parameters: 0.00 Min = 0Mode = 0.122Random Max = 1Variable X Given triangularly distributed random values, X and Y: For |X-Y| > 0.20, "meetup" probability = 0%

Non-Uniformly Distributed Risk Factors

When each risk factor is modeled as a beta distribution, the simulation indicates the boy and girl meet 5,725 times out of 10,000 trials = 57% probability of meeting.
 This probability increased due to added central tendency from each risk factor.

Joint Distribution of Beta Distributed Random Variables and Y^{d2017} Under the condition to include only Fx,y(x,y) values in cases where |X - Y| < 0.20

Probability of 2 Independent Beta Distributed Random Variables [0, 1] Intersecting within a 0.20 Interval Example: Likelihood of boy (x) & girl (y) meeting at park between 9 &10am, given neither will wait more than 12 minutes (0.20 hr) Given beta distributed random values, X and Y: For $|Y-X| \leq 0.20$, "meetup" probability (> 0%) varies depending on the pair of X and Y values. 6.00 5.00 4.00 F_{X.Y} (x,y) for 3.00 | Y - X | < 0.20 0.99 2.00 0.90 Area = 0.57 0.81 1.00 0.72 0.63 0.00 0.54 0.00 0.05 0.10 0.45 Random 0.15 Variable Y 0.36 0.27 Parameters: Min = 00.18 Mode = 0.1220.09 Max = 10.00 0.95 1.00 $\lambda = 3.00$ Variable X $\alpha = 1.37$ Given beta distributed random values, X and Y: $\beta = 3.63$ For |Y-X| > 0.20, "meetup" probability = 0%

Non-Uniformly Distributed Risk Factors

As the **central tendency** for a risk factor increases, so will the probability of meeting, resulting in a higher probability that rand. var. X and rand. var.Y are in a similar state. As previously shown in Slide 26, this is just part of the correlation calculation. This "volume" must be compared to the "possible" volume of the risk pair ...

Correlation of a Risk Pair (Road Const'n): Triangular Risk Factor *

Recommended Applications

Best for looking at Correlations for Distributions where Risk Impacts are of Most Concern ...

Cost and Schedule Estimating

- Estimates early-on in Acquisition Life Cycle
 - Pre-Phase A, pre-Milestone A, etc. where <5 "top-level" risks tend to dominate
- Technology Cost Estimating (TRL < 6)
- Cross-check on data-driven Correlations ("Statistical")
- Support Independent Estimates (and/or Assessments)

Technical Design and/or Assessment

- Assess Early-stage Risks in System Design & Test
- Assess threats / barriers to Systems' Safety
- Standing Review Board (SRB) Evaluations

Recap Conclusion

In summary, this presentation covered:

- Current challenges that estimators have in specifying defensible correlations between uncertainty distributions
- The concept of modeling correlation based upon mutual information
- How the unit square can be used to estimate correlation
 - Depicted as an "intersection" in the unit square of two random variables.
 - Representing risks assumed to follow (a) uniform (b) triangular or (c) beta distributions.
- A 7-step method on how to estimate correlation based upon knowledge of risk factors common among the pair of uncertainty distributions
- Examples on how to apply the 7-step method (see more in Backup!)

Unlike other methods, the Common Risk Factor Method provides correlation between 2 uncertainties based upon common root-causes. Applying this method may lessen the degree of subjectivity in the estimate.

Presenter:	Marc Greenberg
Title:	Operations Research Analyst
Organization:	NASA Strategic Investment Division
Office Location:	NASA HQ, Washington, DC
Email:	marc.w.greenberg@nasa.gov
Phone:	202.358.1025

Backup Slide Set #1 of 3 Continuation of Example 1

- Part I All risk factors contribute to > 98% of uncertainty
- Part 2 Account for "Unexplained Uncertainty" for each Commuting Uncertainty Distributions (Car and Bus/Metro)
- Improve % on-time arrivals of busses and metro trains
- Improve arrival frequency of busses and metro trains during holidays

Case A: Correlation of Commute Time Uncertainties

Risk Factor	Contribution to Commute Time Uncertainty (Car)	Contribution to Commute Time Uncertainty (Bus/Metro)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation	Adding content
Weather	0.25	0.20	0.360	0.438	0.823	0.184	0.152	bumps up
Accidents	0.34	0.18	0.328	0.564	0.580	0.238	0.138	Correlation from 0.26 to
Road Construction	0.26	0.12	0.226	0.452	0.499	0.191	0.095	0.465.
Departure Time	0.15	0.10	0.190	0.278	0.685	0.117	0.080	
Bus/Metro Arriving Late	0.00	0.40	0.000	0.640	0.000	0.270	0.000	
Total:	1.00	1.00	1.103	2.372		1.000	0.465	

SME provides content on "Undefined" (a catch-all for "Unexplained Variation"):

Risk Factor	Contribution to Commute Time Uncertainty (Car)	Contribution to Commute Time Uncertainty (Bus/Metro)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation	
Weather	0.20	0.14	0.260	0.360	0.723	0.147	0.106	ι
Accidents	0.28	0.13	0.243	0.482	0.505	0.197	0.099	fa
Road Construction	0.22	0.08	0.154	0.392	0.392	0.160	0.063	
Departure Time	0.12	0.07	0.135	0.226	0.599	0.092	0.055	
Bus/Metro Arriving Late	0.00	0.28	0.000	0.482	0.000	0.197	0.000	(
Undefined	0.18	0.30	0.328	0.510	0.000	0.208	0.000	
Total:	1.00	1.00	1.120	2.450		1.000	0.323	

Having undefined risk actors reduces Correlation from 0.465 to 0.32.

Case B: Correlation of Commute Time Uncertainties

Risk Factor	Contribution to Commute Time Uncertainty (Car)	Contribution to Commute Time Uncertainty (Bus/Metro)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation	The Risk Mitigation effort
Weather	0.20	0.16	0.294	0.360	0.818	0.152	0.124	would
Accidents	0.28	0.15	0.278	0.482	0.576	0.203	0.117	slightly
Road Construction	0.22	0.09	0.172	0.392	0.439	0.165	0.073	increase Correlatio
Departure Time	0.12	0.07	0.135	0.226	0.599	0.095	0.057	from
Bus/Metro Arriving Late	0.00	0.20	0.000	0.360	0.000	0.152	0.000	0.32 to 0.37
Undefined	0.18	0.33	0.328	0.551	0.000	0.233	0.000	
Total:	1.00	1.00	1.207	2.370		1.000	0.371	

n 37.

This increase in Correlation (versus Case A) is due to an increase in Mutual Information between the common Risk Pairs (where BOTH values > 0)

By reducing Bus/Metro's top "uncertainty driver," the dispersion for the Bus/Metro commute went down (not shown here). At the same time, correlation between the distributions went up.

Backup Slide Set #2 of 3 Example 2

Space Flight Project WBS Standard Level 2 Elements

Ref: NPR 7120.5, Appendix G

The next notional example shows an estimate of correlation between pre-Phase A costs of S/C "Structure & Mech" and "Thermal Control"

Example 2: Spacecraft Cost Elements

06.04 Structures Cost Uncertainty (\$M) Using Scenario-Based Values (SBV) Method

06.05 Thermal Control System Cost Uncertainty (\$M) Using Scenario-Based Values (SBV) Method

Thermal Control Systems: Potential \$2.4M impact versus Most-Likely Cost

So what is the correlation between these two uncertainty distributions?

If we know the relative contributions of underlying risk factors for each distribution, we can calculate the correlation between these two distributions Create Risk Reference Table (Step I)

Objective	Means These are Primary Factors that can impact Objective	
Complete DDT&E for a Spacecraft	Complete Technical Design to Satisfy System (or Mission) Requirements	, , ,
that Meets Cost & Schedule Objectives	Provide for Adequate Resources & Expertise for Program Execution	
N/A	Undefined	

The utility of this Objective Hierarchy is to aid the Expert in:

- (a) Establishing a Framework from which to elicit most risk factors,
- (b) Describing the relative importance of each risk factor with respect to means & objective, and
- (c) Creating specific risk scenarios

Create Risk Reference Table (Step I, cont'd)

Objective	Means These are Primary Factors that can impact Objective	
Complete DDT&E for a Spacecraft	Complete Technical Design to Satisfy System (or Mission) Requirements	
that Meets Cost & Schedule Objectives	Provide for Adequate Resources & Expertise for Program Execution	
N/A	Undefined	

(a) Next slide served as reference to assist in brainstorming process Q: What could influence the successful completion of your Technical Design?

- Design Complexity
- System Integration Complexity
- 1 or more Immature Technologies
- Requirements Creep
- Skills Deficiency (Vendor)
- Q: What are threats and barriers for you getting adequate resources & expertise for Program Execution?
 - Lack of Programmatic Experience (NASA)
 - Material Price Volatility
 - Organizational Complexity
 - Funding Instability
 - Insufficient Reserves (Sched and/or Cost)

Space Vehicle Development & Training Workshop "www.iceaaonline.com/portland2017" Space Vehicle Development Cost "Causal Process"

Create Risk Reference Table (Step I, cont'd)

Objective	Means These are Primary Factors that can impact Objective	Risk Factors (Primary) These are Causal Factors (aka "Threats" or "Barriers") that can impact Means	Description Subject Matter Expert's (SME's) top-level description of each Barrier / Risk
		Design Complexity	The complexity of designing certain aspects may be underestimated
Complete	Complete Technical Design	System Integration Complexity	We don't fully appreciate the challenges of system integration that will need to occur in 18 months
DDT&E	to Satisfy System (or	1 or more Immature Technologies	There is a likelihood that we may need to incorporate certain components that are currently at TRL 6
for a	Mission) Requirements	Requirements Creep	About 2/3 of these types of projects have experienced requirements creep in the past decade
Spacecraft		Skills Deficiency (Vendor)	The Vendor may lose some of it's "graybeards" over the next year, leaving a dearth in Technical Expertise
that Meets		Lack of Programmatic Experience (NASA)	The Program Office staff has experienced a higher-than-usual turnover rate in the past year
Cost &	Provide for Adequate	Material Price Volatility	The system includes exotic matls that, in the past, were subject to large price swings (largely due to low supply)
Schedule	Resources & Expertise	Organizational Complexity	As of right now, there are 2 vendors, 4 sub-contractors, 3 NASA Centers and 1 university working on this project
Objectives	for Program Execution	Funding Instability	Because this project is not an Agency priority, it is subject to funding cuts in any given year.
		Insufficient Reserves (Sched and/or Cost)	Because of the above risks, it's likely that project will not have sufficient schedule margin and/or cost reserves
N/A	Undefined	Undefined	In most cases, the SME will not be able to specify ALL risk factors that contribute to schedule / cost uncertainty

This is the most time-intensive part of SME interview & serves as reference for the interview method being used.

Step 2. Estimate Risk Factor % Contributions

For each cost, the SME ascribes the following "max" cost impacts to 5 risk factors:

• Systems Integration Complexity, Requirements Creep, Skills Deficiency (Vendor), Lack of Programmatic Experience (NASA) and Organizational Complexity

Risk Factor	-	bact vs Mos by WBS in \$N	-	Contrik of To		
	06.04.04	06.04.05	Total (\$M)	06.04.04	06.04.05	
System Integration Complexity	\$2.00	\$0.45	\$2.45	0.26	0.21	
Requirements Creep	\$1.50	\$0.75	\$2.25	0.19	0.36	% Impact Due to
Skills Deficiency (Vendor)	\$0.80	\$0.00	\$0.80	0.10	0.00	
Lack of Programmatic Experience (NASA)	\$1.00	\$0.30	\$1.30	0.13	0.14	Realization
Organizational Complexity	\$1.00	\$0.00	\$1.00	0.13	0.00	of Given Risk
Undefined	\$1.50	\$0.60	\$2.10	0.19	0.29	
Total Cost Impact (\$M):	\$7.80	\$2.10	\$9.90	1.00	1.00	

Steps to Calculate Correlation Between These 2 Spacecraft WBS are the Same as Those Used for Example 1.

Common Risk Factor Method: Steps 3 - 7

Step 6. Weight Correlation of Each

Pair of Common Risk Factors

Step 7. Sum up Weighted Correlations to get total Correlation

The 0.44 correlation value reflects the mutual information (of common risks) between Costs of WBS 06.04.04 and 06.04.05

Case A: Correlation of Spacecraft Cost Uncertainties

Risk Factor	С	ontribution to WBS Cost Uncertainty (06.04.04)		Contribution to WBS Cost Uncertainty (06.04.05)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation
System Integration Complexity		0.26		0.15	0.278	0.447	0.621	0.191	0.119
Requirements Creep		0.19		0.42	0.348	0.664	0.524	0.284	0.149
Skills Deficiency (Vendor)		0.10		0.00	0.000	0.195	0.000	0.083	0.000
Lack of Programmatic Experience		0.13		0.10	0.190	0.240	0.792	0.103	0.081
Organizational Complexity		0.13		0.00	0.000	0.240	0.000	0.103	0.000
Undefined		0.19	Ι	0.33	\0.348	0.551	0.000	0.236	0.000
Total:		1.00		1.00	1 163	2.336		1.000	0.349

The Risk Mitigation effort would decrease Correlation from 0.44 to 0.35.

This decrease in Correlation (versus Baseline) is 4 due to an decrease in Mutual Information between the common Risk Pairs (where BOTH values > 0)

By reducing two "uncertainty drivers," the dispersion for the WBS 06.04.05 (Thermal Ctrl) went down (not shown here). Also, correlation between the distributions went slightly down.

Backup Slide Set #3 of 3 Depictions of Mutual Information

Mutual Information between 2 groupings

Method I: Mutual Information = Σ Minimum (X,Y) / Σ Maximum (X,Y)

Mutual Information of Risk Factors

Mutual information can also be applied to risk factors that are common among a pair of uncertainty distributions.

Illustration showing **Weather** as a risk factor attributed to duration uncertainties for Tasks 1 and 2. (This common risk factor reflects mutual information between Tasks 1 & 2)

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017 Depiction of 2 Uniformly Distributed RVs Intersecting ...

Given "Weather" for Distributions 1 and 2

W1

W2

Weighting for each continuous random variable = 0.2

After 10,000 iterations, W1 and W2 will overlap approximately 3,600 times. In other words, W1 and W2 are expected to be in similar states about 36% of the time.

Another way of describing this is that, when given a common pair of risk factors (each with equal "weighting" of 0.20), they have a 36% chance of being in a similar "condition" or "state."