2017 ICEAA Professional Development \& Training Workshop June 6-9, 2017• Portland, OR

A "Common Risk Factor" Method to Estimate Correlations between Distributions

Presented by:
Marc Greenberg
Strategic Investment Division (SID)
National Aeronautics and Space Administration

Outline

Correlation Overview
Why Propose Another Correlation Method?

- Underlying Basis for "Common Risk Factor" Method
- Concept of Mutual Information
- Using the Unit Square to Estimate Mutual Information
- "Common Risk Factor" Method (for pair of activities)
- Apply 7 Steps to Estimate Correlation between 2 Distributions
- Examples
- Correlation of Durations for Two Morning Commutes
- Correlation of Costs for Two WBS Elements of a Spacecraft
- Conclusion, Other Potential Applications \& Future Work

Correlation Overview $(I \text { of } 3)^{a}$

- A statistical measure of association between two variables.
- It measures how strongly the variables are related, or change, with each other.
- If two variables tend to move up or down together, they are said to be positively correlated.
- If they tend to move in opposite directions, they are said to be negatively correlated.
- The most common statistic for measuring association is the Pearson (linear) correlation coefficient, ρ_{P}
- Another is the Spearman (rank) correlation coefficient, ρ_{S}
- Used in Crystal Ball and @Risk

Correlation Overview (2 of 3) a

- Captured through mathematical relationships w/in cost model
- Specified by the analyst and implemented w/in cost model
- Correlations (or dependencies) between the uncertainties of WBS CERs are generally determined subjectively
- However, as we collect more data, more and more of these correlations are determined using historical data

$$
\sigma_{\text {Total }}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}+2 \sum_{k=2}^{n} \sum_{j=1}^{k-1} \rho_{j k} \sigma_{j} \sigma_{k} \quad \begin{gathered}
\ldots \text { where } \rho_{j k} \text { is the correlation between } \\
\text { uncertainties of WBS CERs jand k } \\
\text { (notated at } \sigma_{j} \text { and } \sigma_{k}, \text { respectively) }
\end{gathered}
$$

The remainder of this presentation will focus on how to calculate $\rho_{j k}$

Correlation Overview (3 of 3) a

(a) Schematic from Correlations in Cost Risk Analysis, Ray Covert, MCR LLC, 2006 Annual SCEA Conference, June 2006

Presented at the 2017 ICEAA Professional Development \& Training Workshop
 Why Propose Another Correlation Method?

I. For statistical methods, lack of data makes it difficult to calculate robust Pearson's R or Spearman's Rho

- Example: Residuals from previous slide produces Rho $=0.88$. However, the residuals exhibit an "influential observation."

2. For non-statistical methods, there can be many issues:

- "N-Effect" and "Knee-in-the-Curve" methods are not inherently intuitive to the non-practitioner.
- Although "Causal Guess" method is simple and intuitive, the analyst and/or subject matter expert are still guessing.
- Whenever parameters of 2 uncertainty distributions lack basis, the correlation between them is difficult to justify.

Unlike these other methods, the Common Risk Factor Method provides correlation between 2 uncertainties based upon common root-causes. Applying this method may lessen the degree of subjectivity in the estimate.

Correlation Overview (Revisited) ${ }^{\text {Presenequithe }}$

2 paths to obtain $\rho \ldots$

Probabilistic:
Common Risk
Factor Method

"Common Risk Factor Method" Notional Example (Output Only):

Given Tasks I \& 2 each have an apprentice welder, we expect added uncertainty in the duration of Tasks I \& 2 due to the lack of skills for each "untested" welder.
Task I: Max Duration will go up by 5 days due to adding P/T welder to team
Task 2: Max Duration will go up by 10 days due to adding F/T welder to team
Tasks I and $\mathbf{2}$ Correlation $\mathbf{=} \mathbf{0 . 4 0}$, partly driven by common skillset in each task.
(a) Schematic from Correlations in Cost Risk Analysis, Ray Covert, MCR LLC, 2006 Annual SCEA Conference, June 2006

Outline

- Correlation Overview
- Why Propose Another Correlation Method?

Underlying Basis for "Common Risk Factor" Method

- Concept of Mutual Information
- Using the Unit Square to Estimate Mutual Information
- "Common Risk Factor" Method (for pair of activities)
- Apply 7 Steps to Estimate Correlation between 2 Distributions
- Examples
- Correlation of Durations for Two Morning Commutes
- Correlation of Costs for Two WBS Elements of a Spacecraft
- Conclusion, Other Potential Applications \& Future Work

Concept of Mutual Information

- Whenever two objects share common features, these features can be perceived as "mutual information"

16 oz . of OJ 8 oz. of OJ

The "least common

Mutual information can also be applied to risk factors that are common among a pair of uncertainty distributions.

Mutualinformation between 2 groupings

Weighted Ave: Mutual Information $=\Sigma$ Weight * (Minimum $(X, Y) /$ Maximum $(X, Y))$

Group X	Group Y	$\frac{\text { Minimum }}{(X, Y)}$	$\frac{\text { Maximum }}{(X, Y)}$		Weight	Wtd Mutual Information
	8 oz.	8	(16)	$\begin{aligned} & 8 / 16 \\ & =0.50 \end{aligned}$	$\begin{aligned} & 16 / 32 \\ & =0.50 \end{aligned}$	$\begin{gathered} 0.50 \times 0.50 \\ =0.25 \end{gathered}$
	$12 \mathrm{oz} .$	4	12	$\begin{aligned} & 4 / 12 \\ & =0.333 \end{aligned}$	$\begin{aligned} & 12 / 32 \\ & =0.375 \end{aligned}$	$\begin{gathered} 0.333 \times 0.375 \\ =0.125 \end{gathered}$
		4	4	$\begin{aligned} & 4 / 4 \\ & =1.00 \end{aligned}$	$4 / 32$ $=0.125$	$\begin{aligned} & 1.00 \times 0.125 \\ & =0.125 \end{aligned}$
		Sum:	32			0.50

The Unit Square: Meeting Times Example ${ }^{a}$

$f_{X}(x)=\left\{\begin{array}{cc}\frac{1}{b-a}, & \text { for } a \leq x \leq b \\ 0 & , \text { otherwise }\end{array}\right.$

Similarly, the girl's actions can be depicted as a single continuous random variable Y that takes all values over an interval a to b with equal likelihood.

In this example, the interval is from 0.0 to 1.0 hour. Therefore $\mathrm{a}=0.0$ and $\mathrm{b}=1.0$.

Notation for this uniform distribution is $\mathbf{U}[\mathbf{0}, \mathrm{I}]$

The Unit Square: Meeting Times Example

Iteration	$r v(X)$	$r v(Y)$	$\|X-Y\|$	$\|X-Y\| \leq 0.2 ?$
1	0.142	0.318	0.176	1
2	0.368	0.733	0.365	0
3	0.786	0.647	0.138	1
4	0.375	0.902	0.528	0
5	0.549	0.935	0.386	0
6	0.336	0.775	0.439	0
7	0.613	0.726	0.113	1
\vdots	\vdots	\vdots	\vdots	\vdots
$:$	\vdots	\vdots	\vdots	\vdots
9998	0.157	0.186	0.029	1
9999	0.384	0.991	0.607	0
10000	0.045	0.399	0.354	0
			Total $=$	3630

This simulation indicates that out of 10,000 trials, the boy and girl meet 3,630 times. Probability they will meet $=0.363$ or 36%

Simulation of Joint Density Function of Uniformly Distributed Random Variables Probability of $|X-Y| \leq 0.20$ on Unit Square

The Unit Square ... Why do we Care?

| Iteration | rv (X) | rv (Y) | \|X-y| | $\|\mathrm{X}-\mathrm{Y}\| \leq 0.2$? | X: $0.786 * 60=47$ minutes. Arrives at 9:47am. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.142 | 0.318 | 0.176 | 1 | $\mathrm{Y}: 0.647 * 60=39$ minutes. Arrives at 9:39am. |
| 2 | 0.368 | 0.733 | 0.365 | | The girl arrives at 9:39am. The boy arrives at 9:47am. |
| 3 | 0.786 | 0.647 | 0.138 | 1 | He arrived w/in the 12 minute (0.2 hr) time window. |
| 4 | 0.375 | 0.902 | 0.528 | 0 | So they do meet. |
| 5 | 0.549 | 0.935 | 0.386 | 0 | |
| 6 | 0.336 | 0.775 | 0.439 | 0 | X: $0.375 * 60=22$ minutes. Arrives at 9:22am. |
| 7 | 0.613 | 0.726 | 0.113 | 1 | Y: $0.902 * 60=54$ minutes. Arrives at 9:54am. |
| | | | | | The boy arrives at 9:22am. The girl arrives at 9:54am. |
| | | | | | She arrived after the 12 minute (0.2 hr) time window. |
| 9998 | 0.157 | 0.186 | 0.029 | 1 | So they do not meet. |
| 9999 | 0.384 | 0.991 | 0.607 | 0 | |
| 10000 | 0.045 | 0.399 | 0.354 | 0 | Using 10,000 trials, the boy \& girl meet 3,630 times. |
| | | | Total $=$ | 3630 | Probability they will meet $=0.363$ |

Given that each person will "use up" 20% of their respective I. 0 hour time interval, we demonstrate the frequency (out of 10,000 trials) that the boy and girl are in "similar states" = Mutual Information

Unit Square: Geometric Estimate of Prob.

Joint Density Function of Uniformly Distributed Random Variables
Probability of $|X-Y| \leq 0.20$ on Unit Square

The Probability is Determined by Calculating the Area of the Shaded Region:

$$
\begin{aligned}
A_{1} & =A_{2}=0.5(L) *(L)=0.5 L^{2} \\
A_{3} & =\text { sqrt }(2)(L) * \text { sqrt }(2)(1-L) \\
& =2 L(1-L) \\
\text { Area } & =A_{1}+A_{2}+A_{3}
\end{aligned}
$$

$$
\text { Area }=0.5 L^{2}+0.5 L^{2}+2 L(1-L)
$$

$$
\text { Area }=L^{2}+2 L(1-L)
$$

$$
\text { Area }=0.20^{2}+2(0.20)(1-0.20)
$$

Area $=0.360$
Note: This Probability is actually a Volume, not an Area ...

Joint Distribution of Uniformily Distributed Random Variables"Xand Y

 Under the condition to include only $\mathrm{Fx}, \mathrm{y}(\mathrm{x}, \mathrm{y})$ values in cases where $|\mathrm{X}-\mathrm{Y}| \leq 0.20$

Outline

- Correlation Overview
- Why Propose Another Correlation Method?
- Underlying Basis for "Common Risk Factor" Method
- Concept of Mutual Information
- Using the Unit Square to Estimate Mutual Information
"Common Risk Factor" Method (for pair of activities)
- Apply 7 Steps to Estimate Correlation between 2 Distributions
- Examples
- Correlation of Durations for Two Morning Commutes
- Correlation of Costs for Two WBS Elements of a Spacecraft
- Conclusion, Other Potential Applications \& Future Work

Common Risk Factor Method (for 2 activities)

(a) For methods on developing uncertainty distributions using risk factors, refer to "Expert Elicitation of a Maximum Duration using Risk Scenarios," 2014 NASA Cost Symposium presentation, M. Greenberg

Ground Rules and Assumptions (I of 2)

- If it is available, then this method can be used as a cross-check
- Future work will include efforts on negative correlation
- With > 5 common risk factors, SME has difficulty "separating" salient risk factors from all possible risk factors.
- Risk factor pairs tend to become alike, producing correlations >0.30
- As a general rule, risk factors contributing < 5% to overall uncertainty should be added into "Undefined" category

Ground Rules and Assumptions (2 of 2)

- Common risk factors are assumed to be correlated whenever the common risk factors are in a similar state. This occurs when each common risk factor has "overlapping" rv's along $U[0, I]$
- Trial 98, Weather is moderate for both rv's X \& Y => X \& Y are Correlated
- Trial 99, Weather is moderate for $r v X$, severe for rv $Y=X \& Y$ are not Correlated
- The least common denominator (LCD) of relative contributions of each common risk pair models each common risk factor as continuous rv's from $0 \rightarrow$ min value, not anywhere along $U[0,1]$
- Result is that LCD technique will produce lower correlation values

Example I: Correlation of 2 Commute Durations

- Commute is from Commuter's Residence to anywhere in Washington, DC
- Maximum Commuting Distance for Phase A of the Study $=8$ miles
- A person (X) commuting to work in DC from inside the beltway has a mostlikely commute time of 20 minutes by car
- A person (Y) commuting into DC from inside the beltway has a most-likely commute time of 40 minutes by bus $\&$ metro
- To run the simulation for estimating total commute time, assume persons X and Y commutes have a medium correlation $=0.50$.

Examples and Cases that Follow are Notional. They are Provided to Demonstrate the Methodology.

Example :Commute Times

Commute Time Based Upon SME Opinion
Using Scenario-Based Values (SBV) Method

Commute Time Based Upon SME Opinion
Using Scenario-Based Values (SBV) Method

Bus/Metro: Potential 40 minute impact versus Most-Likely Bus/Metro Time

So what is the correlation between these two uncertainty distributions?

If we know the relative contributions of underlying risk factors for each distribution, we can calculate the correlation between these two distributions

Create Risk Reference Table (Step)

Objective	Means These are Primary Factors that can impact Objective
Maximize	Route Conditions
Average Speed from	\# of Vehicles on Roads
Residence to Workplace	Mandatory Stops

The utility of this Objective Hierarchy is to aid the Expert in:
(a) Establishing a Framework from which to elicit most risk factors,
(b) Describing the relative importance of each risk factor with respect to means \& objective, and
(c) Creating specific risk scenarios

Create Risk Reference Table (Step I cont'd)

Objective	Means These are Primary Factors that can impact Objective	What are some factors that could degrade route conditions?	
Maximize Average Speed from Residence to Workplace	Route Conditions	Q: What influences the \# of vehicles on the road in any given morning? A: Departure time, Day of the Work Week, and Time of Season (incl. Holiday Season) What is meant by Mandatory Stops? A: By law, need to stop for Red Lights,	
	\# of Vehicles on Roads		
	Mandatory Stops		
	Efficiency Undefined	Emergency Vehicles and School Bus Signals Q: What can reduce Efficiency?	
A: Picking the Bus or Metro Arriving Late, Bus Stopping at Most Stops, and Moving Below Optimal Speed (e.g. driving below speed limit).			

Create Risk Reference Table (Step ${ }^{\text {Pomenten }}$ cont

Objective	Means These are Primary Factors that can impact Objective	Risk Factors These are Causal Factors that can impact Means	Description (can include examples) Subject Matter Expert's (SME's) top-level description of each Barrier / Risk
Maximize Average Speed from Residence to Workplace	Route Conditions	Weather	Rain, snow or icy conditions. Drive into direct sun.
		Accidents	Vehicle accidents on either side of highway.
		Road Construction	Lane closures, bridge work, etc.
	\# of Vehicles on Roads	Departure Time	SME departure time varies from 6:00AM to 9:00AM
		Day of Work Week	Driving densities seem to vary with day of week
		Season \& Holidays	Summer vs. Fall, Holiday weekends
	Mandatory Stops	Red Lights	Approx 8 traffic intersections; some with long lights
		Emergency Vehicles	Incl. police, firetrucks, ambulances \& secret service
		School Bus Signals	School buses stopping to pick up / drop off
	Efficiency	Bus/Metro Arriving Late	Bus arriving late. Metro arriving late.
		Bus Stopping at Most Stops	On rare occasion, will call someone during commute
		Moving below Optimal Speed	Bus or Car Driver going well below speed limit
	Undefined	Undefined	It's possible for SME to exclude some risk factors

> This is the most time-intensive part of SME interview \& serves as reference for the interview method being used.

Presented at the 2017 ICEAA Professional Development \& Training Workshop

Step 2. Estimate Risk Factor \% Contributions

For each type of commute, respective SMEs ascribe the following "max" time impacts to 4 risk factors:

- Weather, Road Construction, Bus/Metro Arriving Late and Departure Time

Risk Factor	Max Impact vs Most Likely			Contribution of Total		
	Car	Bus/Metro	Total	Car	Bus/Metro	
Weather	4.0	2.0	6.0	0.20	0.05	
Road Construction	10.0	8.0	18.0	0.50	0.20	\% Impact due
Bus/Metro Arriving Late	0.0	26.0	26.0	0.00	0.65	to Realization of Given Risk
Departure Time	6.0	4.0	10.0	0.30	0.10	
Total Delay (minutes):	20	40	60	1.00	1.00	

Note: These impacts can be elicited "ad-hoc" from the SME. Nevertheless, it is recommended to apply more structured methods during the SME interview for long-duration activities or ones with higher criticality indices. ${ }^{\text {a }}$
(a) For methods on developing uncertainty distributions using risk factors, refer to "Expert Elicitation of a Maximum Duration using Risk Scenarios," 2014 NASA Cost Symposium presentation, M. Greenberg

Correlation of a Risk Pair (Road Construction)

Common Risk Factor Method: Steps 3-7

Step 3. Min \& Max Volumes Associated Step 4. Correlation (per risk factor pair) with Common Risk Factors = Min Volume / Max Volume

Risk Factor							tep 5. V for Ea Max Vol Sum of	eighting ch Min/M ume divi Max Vol	Factor lax = ded by umes
			Calculated Volumes wrt		Min Volume	Max Volume	Min/Max Volume	Weighting Factor	Weighted Min/Max
	Car	Bus/Metro	Car	Bus/Metro					
Weather	${ }^{*} 0.20$	0.05	0.360	0.098	0.098	0.360	0.271	0.14	0.039
Road Construction	0.50	0.20	0.750	0.360	0.360	0.750	0.480	0.30	0.144
Bus/Metro Arriving Late	0.00	0.65	0.000	0.878	0.000	0.878	0.000	0.35	0.000
Departure Time	0.30	0.10	0.510	0.190	0.190	0.510	0.373	0.20	0.076
Totals:	1.00	1.00	1.620	1.525	0.648	2.498	0.281	1.000	0.259

Step 6. Weight Correlation of Each Pair of Common Risk Factors

Step 7. Sum up Weighted Correlations to get total Correlation

The 0.26 correlation value reflects the mutual information (of common risks) between these 2 activities. The analyst's "Causal Guess" of 0.50 was not a reasonable estimate of correlation.

Non-Uniformly Distributed Risk Factors

When each risk factor is modeled as a triangular distribution, the simulation indicates the boy and girl meet 4,730 times out of 10,000 trials $=47 \%$ probability of meeting.
This probability increased due to added central tendency from each risk factor.

Joint Distribution" of Triangularly Distributed Random"Variabless X and Y

 Under the condition to include only $\mathrm{Fx}, \mathrm{y}(\mathrm{x}, \mathrm{y})$ values in cases where $|\mathrm{X}-\mathrm{Y}| \leq 0.20$

Non-Uniformly Distributed Risk Factors

When each risk factor is modeled as a beta distribution, the simulation indicates the boy and girl meet 5,725 times out of 10,000 trials $=57 \%$ probability of meeting. This probability increased due to added central tendency from each risk factor.

Joint Distributionn of Beta"Distributed Random Variables X"and"

Under the condition to include only $\mathrm{Fx}, \mathrm{y}(\mathrm{x}, \mathrm{y})$ values in cases where $|\mathrm{X}-\mathrm{Y}|<0.20$

Probability of 2 Independent Beta Distributed Random Variables [0, 1] Intersecting within a 0.20 Interval Example: Likelihood of boy (x) \& girl (y) meeting at park between 9 \&10am, given neither will wait more than 12 minutes (0.20 hr)

Non-Uniformly Distributed Risk Factors

As the central tendency for a risk factor increases, so will the probability of meeting, resulting in a higher probability that rand. var. X and rand. var. Y are in a similar state.
As previously shown in Slide 26, this is just part of the correlation calculation. This "volume" must be compared to the "possible" volume of the risk pair

Correlation of a Risk Pair (Road Const'n): Triangular Risk Factor *

* If this exercise were done for random variables that were beta distributed, the correlation of this risk pair would $b e=0.57 / 0.93=0.61$

The "maximum possible" value of 0.50 is used to calculate a probability of 0.89 that rv's X and Y are in a similar "state."

Recommended Applications

Best for looking at Correlations for Distributions where Risk Impacts are of Most Concern ...

- Cost and Schedule Estimating
- Estimates early-on in Acquisition Life Cycle
- Pre-Phase A, pre-Milestone A, etc. where <5 "top-level" risks tend to dominate
- Technology Cost Estimating (TRL < 6)
- Cross-check on data-driven Correlations ("Statistical")
- Support Independent Estimates (and/or Assessments)
- Technical Design and/or Assessment
- Assess Early-stage Risks in System Design \& Test
- Assess threats / barriers to Systems' Safety
- Standing Review Board (SRB) Evaluations

Recap / Conclusion

In summary, this presentation covered:

- Current challenges that estimators have in specifying defensible correlations between uncertainty distributions
- The concept of modeling correlation based upon mutual information
- How the unit square can be used to estimate correlation
- Depicted as an "intersection" in the unit square of two random variables.
- Representing risks assumed to follow (a) uniform (b) triangular or (c) beta distributions.
- A 7-step method on how to estimate correlation based upon knowledge of risk factors common among the pair of uncertainty distributions
- Examples on how to apply the 7-step method (see more in Backup!)

> Unlike other methods, the Common Risk Factor Method provides correlation between 2 uncertainties based upon common root-causes. Applying this method may lessen the degree of subjectivity in the estimate.

Presenter:

Title:
Organization:
Office Location: NASA HQ, Washington, DC
Email:
Phone:

Marc Greenberg
Operations Research Analyst
NASA Strategic Investment Division marc.w.greenberg@nasa.gov 202.358.I 025

Backup Slide Set \#I of 3 Continuation of Example I

Results: Correlation of Commute Time Uncertainties

- Part I - All risk factors contribute to > 98\% of uncertainty
- Part 2 - Account for "Unexplained Uncertainty" for each Commuting Uncertainty Distributions (Car and Bus/Metro)
- Improve \% on-time arrivals of busses and metro trains
- Improve arrival frequency of busses and metro trains during holidays

Case A: Correlation of Commute Time Uncertainties

Risk Factor	Contribution to Commute Time Uncertainty (Car)	Contribution to Commute Time Uncertainty (Bus/Metro)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation
Weather	0.25	0.20	0.360	0.438	0.823	0.184	0.152
Accidents	0.34	0.18	0.328	0.564	0.580	0.238	0.138
Road Construction	0.26	0.12	0.226	0.452	0.499	0.191	0.095
Departure Time	0.15	0.10	0.190	0.278	0.685	0.117	0.080
Bus/Metro Arriving Late	0.00	0.40	0.000	0.640	0.000	0.270	0.000
	Total:	1.00	1.00	1.103	2.372		1.000

Adding content bumps up Correlation from 0.26 to 0.465 .

SME provides content on "Undefined" (a catch-all for "Unexplained Variation"):

	Contribution to Commute Time Uncertainty (Car)	Contribution to Commute Time Uncertainty (Bus/Metro)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation
Weather	0.20	0.14	0.260	0.360	0.723	0.147	0.106
Accidents	0.28	0.13	0.243	0.482	0.505	0.197	0.099
Road Construction	0.22	0.08	0.154	0.392	0.392	0.160	0.063
Departure Time	0.12	0.07	0.135	0.226	0.599	0.092	0.055
Bus/Metro Arriving Late	0.00	0.28	0.000	0.482	0.000	0.197	0.000
Undefined	0.18	0.30	0.328	0.510	0.000	0.208	0.000
	1.00	1.00	1.120	2.450		1.000	$\mathbf{0 . 3 2 3}$

Having undefined risk factors reduces Correlation from 0.465 to 0.32 .

Case B: Correlation of Commute Time Uncertainties

$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline \text { Risk Factor } & \begin{array}{c}\text { Contribution to } \\ \text { Commute Time } \\ \text { Uncertainty } \\ \text { (Car) }\end{array} & \begin{array}{c}\text { Contribution to } \\ \text { Commute Time } \\ \text { Uncertainty } \\ \text { (Bus/Metro) }\end{array} & \text { Min Volume } & \text { Max Volume } & \begin{array}{c}\text { Correlation } \\ \text { due to } \\ \text { Common } \\ \text { Risk Factor }\end{array} & \begin{array}{c}\text { Weighting } \\ \text { Factor }\end{array} & \begin{array}{c}\text { Weighted } \\ \text { Correlation }\end{array} \\ \hline \text { Weather } & 0.20 & 0.16 & 0.294 & 0.360 & 0.818 & 0.152 & 0.124 \\ \hline \text { Accidents } & 0.28 & 0.15 & 0.278 & 0.482 & 0.576 & 0.203 & 0.117 \\ \hline \text { Road Construction } & 0.22 & 0.09 & 0.172 & 0.392 & 0.439 & 0.165 & 0.073 \\ \text { Mitigation } \\ \text { effort } \\ \text { would } \\ \text { slightly } \\ \text { increase } \\ \text { Correlation } \\ \text { from }\end{array}\right\}$

By reducing Bus/Metro's top "uncertainty driver," the dispersion for the Bus/Metro commute went down (not shown here). At the same time, correlation between the distributions went up.

Backup Slide Set \#2 of 3

Example 2

Space Flight Project WBS"Standard Level 2"Elements

 Ref: NPR 7I20.5, Appendix G

The next notional example shows an estimate of correlation between pre-Phase A costs of S/C "Structure \& Mech" and "Thermal Control"

Presented at the 2017 ICEAA Professional Development \& Training Workshop

06.04 Structures Cost Uncertainty (\$M)

Using Scenario-Based Values (SBV) Method

06.05 Thermal Control System Cost Uncertainty (\$M)

Using Scenario-Based Values (SBV) Method

Thermal Control Systems: Potential \$2.4M impact versus Most-Likely Cost

So what is the correlation between these two
uncertainty distributions?
If we know the relative contributions of underlying risk factors for each distribution, we can calculate the correlation between these two distributions

Create RiskReference Table (Step ine

Objective	Means These are Primary Factors that can impact Objective
Complete DDT\&E for a Spacecraft that Meets 	Complete Technical Design to Satisfy System (or Mission) Requirements
Schedule Objectives	Provide for Adequate Resources \& Expertise for Program Execution
N/A	Undefined

The utility of this Objective Hierarchy is to aid the Expert in:
(a) Establishing a Framework from which to elicit most risk factors,
(b) Describing the relative importance of each risk factor with respect to means \& objective, and
(c) Creating specific risk scenarios

Create RiskReference Table (Stepl, cont

Objective	Means These are Primary Factors that can impact Objective
Complete DDT\&E for a Spacecraft that Meets 	Complete Technical Design to Satisfy System (or Mission) Requirements
Schedule Objectives	Provide for Adequate Resources \& Expertise for Program Execution
N/A	Undefined

(a) Next slide served as reference to assist in brainstorming process

Q: What could influence the successful completion of your Technical Design?

- Design Complexity
- System Integration Complexity
- 1 or more Immature Technologies
- Requirements Creep
- Skills Deficiency (Vendor)

Q: What are threats and barriers for you getting adequate resources \& expertise for Program Execution?

- Lack of Programmatic Experience (NASA)
- Material Price Volatility
- Organizational Complexity
- Funding Instability
- Insufficient Reserves (Sched and/or Cost)

Space Vehicle Development Cost "Causal Process"

Create Risk Reference Table (Step I, cont'd)

Objective	Means These are Primary Factors that can impact Objective	Risk Factors (Primary) These are Causal Factors (aka "Threats" or "Barriers") that can impact Means	Description Subject Matter Expert's (SME's) top-level description of each Barrier / Risk
Complete DDT\&E for a Spacecraft that Meets Schedule Objectives	Complete Technical Design to Satisfy System (or Mission) Requirements	Design Complexity	The complexity of designing certain aspects may be underestimated
		System Integration Complexity	We don't fully appreciate the challenges of system integration that will need to occur in 18 months
		1 or more Immature Technologies	There is a likelihood that we may need to incorporate certain components that are currently at TRL 6
		Requirements Creep	About 2/3 of these types of projects have experienced requirements creep in the past decade
		Skills Deficiency (Vendor)	The Vendor may lose some of it's "graybeards" over the next year, leaving a dearth in Technical Expertise
	Provide for Adequate Resources \& Expertise for Program Execution	Lack of Programmatic Experience (NASA)	The Program Office staff has experienced a higher-than-usual turnover rate in the past year
		Material Price Volatility	The system includes exotic matls that, in the past, were subject to large price swings (largely due to low supply)
		Organizational Complexity	As of right now, there are 2 vendors, 4 sub-contractors, 3 NASA Centers and 1 university working on this project
		Funding Instability	Because this project is not an Agency priority, it is subject to funding cuts in any given year.
		Insufficient Reserves (Sched and/or Cost)	Because of the above risks, it's likely that project will not have sufficient schedule margin and/or cost reserves
N/A	Undefined	Undefined	In most cases, the SME will not be able to specify ALL risk factors that contribute to schedule / cost uncertainty

This is the most time-intensive part of SME interview \& serves as reference for the interview method being used.

Step ${ }^{\text {2. Estamate Risk Factor }} \%$ Contributions

For each cost, the SME ascribes the following "max" cost impacts to 5 risk factors:

- Systems Integration Complexity, Requirements Creep, Skills Deficiency (Vendor), Lack of Programmatic Experience (NASA) and Organizational Complexity

Risk Factor	Max Impact vs Most Likely shown by WBS in \$M		Contribution of Total									
	$\mathbf{0 6 . 0 4 . 0 4}$	$\mathbf{0 6 . 0 4 . 0 5}$	Total (\$M)	$\mathbf{0 6 . 0 4 . 0 4}$	$\mathbf{0 6 . 0 4 . 0 5}$							
System Integration Complexity	$\$ 2.00$	$\$ 0.45$	$\$ 2.45$	0.26	0.21							
Requirements Creep	$\$ 1.50$	$\$ 0.75$	$\$ 2.25$	0.19	0.36							
Skills Deficiency (Vendor)	$\$ 0.80$	$\$ 0.00$	$\$ 0.80$	0.10	0.00							
Lack of Programmatic Experience (NASA)	$\$ 1.00$	$\$ 0.30$	$\$ 1.30$	0.13	0.14							
Organizational Complexity	$\$ 1.00$	$\$ 0.00$	$\$ 1.00$	0.13	0.00							
Undefined	$\$ 1.50$	$\$ 0.60$	$\$ 2.10$	0.19	0.29							
Total Cost Impact (\$M):								$\$ 7.80$	$\$ \mathbf{2 . 1 0}$	$\$ 9.90$	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$

\% Impact Due to Realization of Given Risk

Steps to Calculate Correlation Between These 2 Spacecraft WBS are the Same as Those Used for Example I.

Common Risk Factor Method: Steps 3-7

Step 3. Min \& Max Volumes Associated Step 4. Correlation (per risk factor pair) with Common Risk Factors = Min Volume / Max Volume

Step 6. Weight Correlation of Each
Pair of Common Risk Factors

Step 7. Sum up Weighted Correlations to get total Correlation

> The 0.44 correlation value reflects the mutual information (of common risks) between Costs of WBS 06.04.04 and 06.04.05

Case A: Correlation of Spacecraft Cost Uncertainties

Risk Factor	Contribution to WBS Cost Uncertainty (06.04.04)	Contribution to WBS Cost Uncertainty (06.04.05)	Min Volume	Max Volume	Correlation due to Common Risk Factor	Weighting Factor	Weighted Correlation	The Risk Mitigation effort would decrease Correlation from 0.44 to 0.35 .
System Integration Complexity	0.26	0.15	0.278	0.447	0.621	0.191	0.119	
Requirements Creep	0.19	0.42	0.348	0.664	0.524	0.284	0.149	
Skills Deficiency (Vendor)	0.10	0.00	0.000	0.195	0.000	0.083	0.000	
Lack of Programmatic Experience	0.13	0.10	0.190	0.240	0.792	0.103	0.081	
Organizational Complexity	0.13	0.00	0.000	0.240	0.000	0.103	0.000	
Undefined	0.19	0.33	0.348	0.551	0.000	0.236	0.000	
Total:	1.00	1.00	1.163	2.336		1.000	0.349	
		his decrea ue to an dec he common	e in Corr rease in Risk Pair	lation (ve Mutual Inf s (where	rsus Bas ormation BOTH va	eline) is between ues >0)	1	

By reducing two "uncertainty drivers," the dispersion for the WBS 06.04.05 (Thermal Ctrl) went down (not shown here). Also, correlation between the distributions went slightly down.

Backup Slide Set \#3 of 3
 Depictions of Mutual Information

amorman

Method I: Mutual Information $=\Sigma$ Minimum $(X, Y) / \Sigma$ Maximum (X, Y)

Group X Group $Y \quad$ Minimum (X, Y) Maximum (X, Y)

Sum: 16
32
$16 / 32=0.50$

Mutual information can also be applied to risk factors that are common among a pair of uncertainty distributions.

Duration of Task 1

The more "similar" the 2 weather contributions (to their respective task uncertainties), the higher the \% of mutual information.

Weather Weather during during Task $1 \quad$ Task 2

Duration of Task 2

Illustration showing Weather as a risk factor attributed to duration uncertainties for Tasks I and 2. (This common risk factor reflects mutual information between Tasks I \& 2)
 \title{

Presented at the 2017 ICEAA Professional Development \& Training Workshop
 \title{ \section*{Presented at the 2017 ICEAA Professional Development \& Training Workshop

 Depiction of 2 Uniformly Distributed RVs Intersecting

 Depiction of 2 Uniformly Distributed RVs Intersecting}

Given Distributions

1 and 2

continuous random

variable $=0.2$

Therefore:

After 10,000 iterations, W1 and W2 will overlap approximately 3,600 times. In other words, W1 and W2 are expected to be in similar states about 36% of the time.

Another way of describing this is that, when given a common pair of risk factors (each with equal "weighting" of 0.20), they have a 36% chance of being in a similar "condition" or "state."

